Merge tag 'gvt-next-2017-09-08' of https://github.com/01org/gvt-linux into drm-intel-next-queued

gvt-next-2017-09-08

- PCI config sanitize series (Changbin)
- Workload submission error handling series (Fred)

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20170908063155.l54lvpivxntjm7hq@zhen-hp.sh.intel.com
This commit is contained in:
Jani Nikula 2017-09-08 10:22:05 +03:00
commit 6af5d6707f
10 changed files with 369 additions and 191 deletions

View File

@ -101,7 +101,7 @@ int intel_vgpu_emulate_cfg_read(struct intel_vgpu *vgpu, unsigned int offset,
if (WARN_ON(bytes > 4))
return -EINVAL;
if (WARN_ON(offset + bytes > INTEL_GVT_MAX_CFG_SPACE_SZ))
if (WARN_ON(offset + bytes > vgpu->gvt->device_info.cfg_space_size))
return -EINVAL;
memcpy(p_data, vgpu_cfg_space(vgpu) + offset, bytes);
@ -110,13 +110,25 @@ int intel_vgpu_emulate_cfg_read(struct intel_vgpu *vgpu, unsigned int offset,
static int map_aperture(struct intel_vgpu *vgpu, bool map)
{
u64 first_gfn, first_mfn;
phys_addr_t aperture_pa = vgpu_aperture_pa_base(vgpu);
unsigned long aperture_sz = vgpu_aperture_sz(vgpu);
u64 first_gfn;
u64 val;
int ret;
if (map == vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked)
return 0;
if (map) {
vgpu->gm.aperture_va = memremap(aperture_pa, aperture_sz,
MEMREMAP_WC);
if (!vgpu->gm.aperture_va)
return -ENOMEM;
} else {
memunmap(vgpu->gm.aperture_va);
vgpu->gm.aperture_va = NULL;
}
val = vgpu_cfg_space(vgpu)[PCI_BASE_ADDRESS_2];
if (val & PCI_BASE_ADDRESS_MEM_TYPE_64)
val = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2);
@ -124,14 +136,16 @@ static int map_aperture(struct intel_vgpu *vgpu, bool map)
val = *(u32 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2);
first_gfn = (val + vgpu_aperture_offset(vgpu)) >> PAGE_SHIFT;
first_mfn = vgpu_aperture_pa_base(vgpu) >> PAGE_SHIFT;
ret = intel_gvt_hypervisor_map_gfn_to_mfn(vgpu, first_gfn,
first_mfn,
vgpu_aperture_sz(vgpu) >>
PAGE_SHIFT, map);
if (ret)
aperture_pa >> PAGE_SHIFT,
aperture_sz >> PAGE_SHIFT,
map);
if (ret) {
memunmap(vgpu->gm.aperture_va);
vgpu->gm.aperture_va = NULL;
return ret;
}
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked = map;
return 0;
@ -197,78 +211,65 @@ static int emulate_pci_command_write(struct intel_vgpu *vgpu,
static int emulate_pci_bar_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes)
{
unsigned int bar_index =
(rounddown(offset, 8) % PCI_BASE_ADDRESS_0) / 8;
u32 new = *(u32 *)(p_data);
bool lo = IS_ALIGNED(offset, 8);
u64 size;
int ret = 0;
bool mmio_enabled =
vgpu_cfg_space(vgpu)[PCI_COMMAND] & PCI_COMMAND_MEMORY;
struct intel_vgpu_pci_bar *bars = vgpu->cfg_space.bar;
if (WARN_ON(bar_index >= INTEL_GVT_PCI_BAR_MAX))
return -EINVAL;
/*
* Power-up software can determine how much address
* space the device requires by writing a value of
* all 1's to the register and then reading the value
* back. The device will return 0's in all don't-care
* address bits.
*/
if (new == 0xffffffff) {
/*
* Power-up software can determine how much address
* space the device requires by writing a value of
* all 1's to the register and then reading the value
* back. The device will return 0's in all don't-care
* address bits.
*/
size = vgpu->cfg_space.bar[bar_index].size;
if (lo) {
new = rounddown(new, size);
} else {
u32 val = vgpu_cfg_space(vgpu)[rounddown(offset, 8)];
/* for 32bit mode bar it returns all-0 in upper 32
* bit, for 64bit mode bar it will calculate the
* size with lower 32bit and return the corresponding
* value
switch (offset) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
size = ~(bars[INTEL_GVT_PCI_BAR_GTTMMIO].size -1);
intel_vgpu_write_pci_bar(vgpu, offset,
size >> (lo ? 0 : 32), lo);
/*
* Untrap the BAR, since guest hasn't configured a
* valid GPA
*/
if (val & PCI_BASE_ADDRESS_MEM_TYPE_64)
new &= (~(size-1)) >> 32;
else
new = 0;
}
/*
* Unmapp & untrap the BAR, since guest hasn't configured a
* valid GPA
*/
switch (bar_index) {
case INTEL_GVT_PCI_BAR_GTTMMIO:
ret = trap_gttmmio(vgpu, false);
break;
case INTEL_GVT_PCI_BAR_APERTURE:
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
size = ~(bars[INTEL_GVT_PCI_BAR_APERTURE].size -1);
intel_vgpu_write_pci_bar(vgpu, offset,
size >> (lo ? 0 : 32), lo);
ret = map_aperture(vgpu, false);
break;
default:
/* Unimplemented BARs */
intel_vgpu_write_pci_bar(vgpu, offset, 0x0, false);
}
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
} else {
/*
* Unmapp & untrap the old BAR first, since guest has
* re-configured the BAR
*/
switch (bar_index) {
case INTEL_GVT_PCI_BAR_GTTMMIO:
ret = trap_gttmmio(vgpu, false);
switch (offset) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
/*
* Untrap the old BAR first, since guest has
* re-configured the BAR
*/
trap_gttmmio(vgpu, false);
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
ret = trap_gttmmio(vgpu, mmio_enabled);
break;
case INTEL_GVT_PCI_BAR_APERTURE:
ret = map_aperture(vgpu, false);
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
map_aperture(vgpu, false);
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
ret = map_aperture(vgpu, mmio_enabled);
break;
}
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
/* Track the new BAR */
if (mmio_enabled) {
switch (bar_index) {
case INTEL_GVT_PCI_BAR_GTTMMIO:
ret = trap_gttmmio(vgpu, true);
break;
case INTEL_GVT_PCI_BAR_APERTURE:
ret = map_aperture(vgpu, true);
break;
}
default:
intel_vgpu_write_pci_bar(vgpu, offset, new, lo);
}
}
return ret;
@ -288,7 +289,7 @@ int intel_vgpu_emulate_cfg_write(struct intel_vgpu *vgpu, unsigned int offset,
if (WARN_ON(bytes > 4))
return -EINVAL;
if (WARN_ON(offset + bytes > INTEL_GVT_MAX_CFG_SPACE_SZ))
if (WARN_ON(offset + bytes > vgpu->gvt->device_info.cfg_space_size))
return -EINVAL;
/* First check if it's PCI_COMMAND */
@ -299,10 +300,7 @@ int intel_vgpu_emulate_cfg_write(struct intel_vgpu *vgpu, unsigned int offset,
}
switch (rounddown(offset, 4)) {
case PCI_BASE_ADDRESS_0:
case PCI_BASE_ADDRESS_1:
case PCI_BASE_ADDRESS_2:
case PCI_BASE_ADDRESS_3:
case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_5:
if (WARN_ON(!IS_ALIGNED(offset, 4)))
return -EINVAL;
return emulate_pci_bar_write(vgpu, offset, p_data, bytes);
@ -344,7 +342,6 @@ void intel_vgpu_init_cfg_space(struct intel_vgpu *vgpu,
struct intel_gvt *gvt = vgpu->gvt;
const struct intel_gvt_device_info *info = &gvt->device_info;
u16 *gmch_ctl;
int i;
memcpy(vgpu_cfg_space(vgpu), gvt->firmware.cfg_space,
info->cfg_space_size);
@ -371,13 +368,13 @@ void intel_vgpu_init_cfg_space(struct intel_vgpu *vgpu,
*/
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_1, 0, 4);
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_3, 0, 4);
memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_4, 0, 8);
memset(vgpu_cfg_space(vgpu) + INTEL_GVT_PCI_OPREGION, 0, 4);
for (i = 0; i < INTEL_GVT_MAX_BAR_NUM; i++) {
vgpu->cfg_space.bar[i].size = pci_resource_len(
gvt->dev_priv->drm.pdev, i * 2);
vgpu->cfg_space.bar[i].tracked = false;
}
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].size =
pci_resource_len(gvt->dev_priv->drm.pdev, 0);
vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].size =
pci_resource_len(gvt->dev_priv->drm.pdev, 2);
}
/**

View File

@ -1576,11 +1576,11 @@ static int batch_buffer_needs_scan(struct parser_exec_state *s)
return 1;
}
static uint32_t find_bb_size(struct parser_exec_state *s)
static int find_bb_size(struct parser_exec_state *s)
{
unsigned long gma = 0;
struct cmd_info *info;
uint32_t bb_size = 0;
int bb_size = 0;
uint32_t cmd_len = 0;
bool met_bb_end = false;
struct intel_vgpu *vgpu = s->vgpu;
@ -1637,6 +1637,8 @@ static int perform_bb_shadow(struct parser_exec_state *s)
/* get the size of the batch buffer */
bb_size = find_bb_size(s);
if (bb_size < 0)
return -EINVAL;
/* allocate shadow batch buffer */
entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
@ -2603,7 +2605,8 @@ static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
u32 *cs;
void *shadow_ring_buffer_va;
int ring_id = workload->ring_id;
int ret;
guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
@ -2616,34 +2619,42 @@ static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
gma_tail = workload->rb_start + workload->rb_tail;
gma_top = workload->rb_start + guest_rb_size;
/* allocate shadow ring buffer */
cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
if (IS_ERR(cs))
return PTR_ERR(cs);
if (workload->rb_len > vgpu->reserve_ring_buffer_size[ring_id]) {
void *va = vgpu->reserve_ring_buffer_va[ring_id];
/* realloc the new ring buffer if needed */
vgpu->reserve_ring_buffer_va[ring_id] =
krealloc(va, workload->rb_len, GFP_KERNEL);
if (!vgpu->reserve_ring_buffer_va[ring_id]) {
gvt_vgpu_err("fail to alloc reserve ring buffer\n");
return -ENOMEM;
}
vgpu->reserve_ring_buffer_size[ring_id] = workload->rb_len;
}
shadow_ring_buffer_va = vgpu->reserve_ring_buffer_va[ring_id];
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = cs;
workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
/* head > tail --> copy head <-> top */
if (gma_head > gma_tail) {
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
gma_head, gma_top, cs);
gma_head, gma_top, shadow_ring_buffer_va);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest ring buffer\n");
return ret;
}
cs += ret / sizeof(u32);
shadow_ring_buffer_va += ret;
gma_head = workload->rb_start;
}
/* copy head or start <-> tail */
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, cs);
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
shadow_ring_buffer_va);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest ring buffer\n");
return ret;
}
cs += ret / sizeof(u32);
intel_ring_advance(workload->req, cs);
return 0;
}

View File

@ -368,7 +368,7 @@ static void free_workload(struct intel_vgpu_workload *workload)
#define get_desc_from_elsp_dwords(ed, i) \
((struct execlist_ctx_descriptor_format *)&((ed)->data[i * 2]))
static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
{
const int gmadr_bytes = workload->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
struct intel_shadow_bb_entry *entry_obj;
@ -379,7 +379,7 @@ static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
vma = i915_gem_object_ggtt_pin(entry_obj->obj, NULL, 0, 4, 0);
if (IS_ERR(vma)) {
return;
return PTR_ERR(vma);
}
/* FIXME: we are not tracking our pinned VMA leaving it
@ -392,6 +392,7 @@ static void prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
if (gmadr_bytes == 8)
entry_obj->bb_start_cmd_va[2] = 0;
}
return 0;
}
static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
@ -420,7 +421,7 @@ static int update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
return 0;
}
static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
struct i915_vma *vma;
unsigned char *per_ctx_va =
@ -428,12 +429,12 @@ static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
wa_ctx->indirect_ctx.size;
if (wa_ctx->indirect_ctx.size == 0)
return;
return 0;
vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
0, CACHELINE_BYTES, 0);
if (IS_ERR(vma)) {
return;
return PTR_ERR(vma);
}
/* FIXME: we are not tracking our pinned VMA leaving it
@ -447,26 +448,7 @@ static void prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
memset(per_ctx_va, 0, CACHELINE_BYTES);
update_wa_ctx_2_shadow_ctx(wa_ctx);
}
static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct execlist_ctx_descriptor_format ctx[2];
int ring_id = workload->ring_id;
intel_vgpu_pin_mm(workload->shadow_mm);
intel_vgpu_sync_oos_pages(workload->vgpu);
intel_vgpu_flush_post_shadow(workload->vgpu);
prepare_shadow_batch_buffer(workload);
prepare_shadow_wa_ctx(&workload->wa_ctx);
if (!workload->emulate_schedule_in)
return 0;
ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
return emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
return 0;
}
static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
@ -489,13 +471,62 @@ static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
}
}
static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
static int prepare_execlist_workload(struct intel_vgpu_workload *workload)
{
if (!wa_ctx->indirect_ctx.obj)
return;
struct intel_vgpu *vgpu = workload->vgpu;
struct execlist_ctx_descriptor_format ctx[2];
int ring_id = workload->ring_id;
int ret;
i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
i915_gem_object_put(wa_ctx->indirect_ctx.obj);
ret = intel_vgpu_pin_mm(workload->shadow_mm);
if (ret) {
gvt_vgpu_err("fail to vgpu pin mm\n");
goto out;
}
ret = intel_vgpu_sync_oos_pages(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to vgpu sync oos pages\n");
goto err_unpin_mm;
}
ret = intel_vgpu_flush_post_shadow(workload->vgpu);
if (ret) {
gvt_vgpu_err("fail to flush post shadow\n");
goto err_unpin_mm;
}
ret = prepare_shadow_batch_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
goto err_unpin_mm;
}
ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
if (ret) {
gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
goto err_shadow_batch;
}
if (!workload->emulate_schedule_in)
return 0;
ctx[0] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 1);
ctx[1] = *get_desc_from_elsp_dwords(&workload->elsp_dwords, 0);
ret = emulate_execlist_schedule_in(&vgpu->execlist[ring_id], ctx);
if (!ret)
goto out;
else
gvt_vgpu_err("fail to emulate execlist schedule in\n");
release_shadow_wa_ctx(&workload->wa_ctx);
err_shadow_batch:
release_shadow_batch_buffer(workload);
err_unpin_mm:
intel_vgpu_unpin_mm(workload->shadow_mm);
out:
return ret;
}
static int complete_execlist_workload(struct intel_vgpu_workload *workload)
@ -511,8 +542,10 @@ static int complete_execlist_workload(struct intel_vgpu_workload *workload)
gvt_dbg_el("complete workload %p status %d\n", workload,
workload->status);
release_shadow_batch_buffer(workload);
release_shadow_wa_ctx(&workload->wa_ctx);
if (!workload->status) {
release_shadow_batch_buffer(workload);
release_shadow_wa_ctx(&workload->wa_ctx);
}
if (workload->status || (vgpu->resetting_eng & ENGINE_MASK(ring_id))) {
/* if workload->status is not successful means HW GPU
@ -820,10 +853,21 @@ static void clean_workloads(struct intel_vgpu *vgpu, unsigned long engine_mask)
void intel_vgpu_clean_execlist(struct intel_vgpu *vgpu)
{
enum intel_engine_id i;
struct intel_engine_cs *engine;
clean_workloads(vgpu, ALL_ENGINES);
kmem_cache_destroy(vgpu->workloads);
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
kfree(vgpu->reserve_ring_buffer_va[i]);
vgpu->reserve_ring_buffer_va[i] = NULL;
vgpu->reserve_ring_buffer_size[i] = 0;
}
}
#define RESERVE_RING_BUFFER_SIZE ((1 * PAGE_SIZE)/8)
int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
{
enum intel_engine_id i;
@ -843,7 +887,26 @@ int intel_vgpu_init_execlist(struct intel_vgpu *vgpu)
if (!vgpu->workloads)
return -ENOMEM;
/* each ring has a shadow ring buffer until vgpu destroyed */
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
vgpu->reserve_ring_buffer_va[i] =
kmalloc(RESERVE_RING_BUFFER_SIZE, GFP_KERNEL);
if (!vgpu->reserve_ring_buffer_va[i]) {
gvt_vgpu_err("fail to alloc reserve ring buffer\n");
goto out;
}
vgpu->reserve_ring_buffer_size[i] = RESERVE_RING_BUFFER_SIZE;
}
return 0;
out:
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
if (vgpu->reserve_ring_buffer_size[i]) {
kfree(vgpu->reserve_ring_buffer_va[i]);
vgpu->reserve_ring_buffer_va[i] = NULL;
vgpu->reserve_ring_buffer_size[i] = 0;
}
}
return -ENOMEM;
}
void intel_vgpu_reset_execlist(struct intel_vgpu *vgpu,

View File

@ -1647,14 +1647,13 @@ int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
return 0;
atomic_inc(&mm->pincount);
if (!mm->shadowed) {
ret = shadow_mm(mm);
if (ret)
return ret;
}
atomic_inc(&mm->pincount);
list_del_init(&mm->lru_list);
list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
return 0;

View File

@ -111,7 +111,7 @@ static void init_device_info(struct intel_gvt *gvt)
if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
|| IS_KABYLAKE(gvt->dev_priv)) {
info->max_support_vgpus = 8;
info->cfg_space_size = 256;
info->cfg_space_size = PCI_CFG_SPACE_EXP_SIZE;
info->mmio_size = 2 * 1024 * 1024;
info->mmio_bar = 0;
info->gtt_start_offset = 8 * 1024 * 1024;

View File

@ -80,6 +80,7 @@ struct intel_gvt_device_info {
struct intel_vgpu_gm {
u64 aperture_sz;
u64 hidden_sz;
void *aperture_va;
struct drm_mm_node low_gm_node;
struct drm_mm_node high_gm_node;
};
@ -99,7 +100,6 @@ struct intel_vgpu_mmio {
bool disable_warn_untrack;
};
#define INTEL_GVT_MAX_CFG_SPACE_SZ 256
#define INTEL_GVT_MAX_BAR_NUM 4
struct intel_vgpu_pci_bar {
@ -108,7 +108,7 @@ struct intel_vgpu_pci_bar {
};
struct intel_vgpu_cfg_space {
unsigned char virtual_cfg_space[INTEL_GVT_MAX_CFG_SPACE_SZ];
unsigned char virtual_cfg_space[PCI_CFG_SPACE_EXP_SIZE];
struct intel_vgpu_pci_bar bar[INTEL_GVT_MAX_BAR_NUM];
};
@ -165,6 +165,9 @@ struct intel_vgpu {
struct list_head workload_q_head[I915_NUM_ENGINES];
struct kmem_cache *workloads;
atomic_t running_workload_num;
/* 1/2K for each reserve ring buffer */
void *reserve_ring_buffer_va[I915_NUM_ENGINES];
int reserve_ring_buffer_size[I915_NUM_ENGINES];
DECLARE_BITMAP(tlb_handle_pending, I915_NUM_ENGINES);
struct i915_gem_context *shadow_ctx;
DECLARE_BITMAP(shadow_ctx_desc_updated, I915_NUM_ENGINES);
@ -474,6 +477,13 @@ int intel_vgpu_emulate_cfg_read(struct intel_vgpu *vgpu, unsigned int offset,
int intel_vgpu_emulate_cfg_write(struct intel_vgpu *vgpu, unsigned int offset,
void *p_data, unsigned int bytes);
static inline u64 intel_vgpu_get_bar_gpa(struct intel_vgpu *vgpu, int bar)
{
/* We are 64bit bar. */
return (*(u64 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
PCI_BASE_ADDRESS_MEM_MASK;
}
void intel_gvt_clean_opregion(struct intel_gvt *gvt);
int intel_gvt_init_opregion(struct intel_gvt *gvt);

View File

@ -609,21 +609,20 @@ static void intel_vgpu_release_work(struct work_struct *work)
__intel_vgpu_release(vgpu);
}
static uint64_t intel_vgpu_get_bar0_addr(struct intel_vgpu *vgpu)
static uint64_t intel_vgpu_get_bar_addr(struct intel_vgpu *vgpu, int bar)
{
u32 start_lo, start_hi;
u32 mem_type;
int pos = PCI_BASE_ADDRESS_0;
start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + pos)) &
start_lo = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
PCI_BASE_ADDRESS_MEM_MASK;
mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + pos)) &
mem_type = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space + bar)) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_64:
start_hi = (*(u32 *)(vgpu->cfg_space.virtual_cfg_space
+ pos + 4));
+ bar + 4));
break;
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
@ -637,6 +636,21 @@ static uint64_t intel_vgpu_get_bar0_addr(struct intel_vgpu *vgpu)
return ((u64)start_hi << 32) | start_lo;
}
static int intel_vgpu_bar_rw(struct intel_vgpu *vgpu, int bar, uint64_t off,
void *buf, unsigned int count, bool is_write)
{
uint64_t bar_start = intel_vgpu_get_bar_addr(vgpu, bar);
int ret;
if (is_write)
ret = intel_gvt_ops->emulate_mmio_write(vgpu,
bar_start + off, buf, count);
else
ret = intel_gvt_ops->emulate_mmio_read(vgpu,
bar_start + off, buf, count);
return ret;
}
static ssize_t intel_vgpu_rw(struct mdev_device *mdev, char *buf,
size_t count, loff_t *ppos, bool is_write)
{
@ -661,20 +675,14 @@ static ssize_t intel_vgpu_rw(struct mdev_device *mdev, char *buf,
buf, count);
break;
case VFIO_PCI_BAR0_REGION_INDEX:
case VFIO_PCI_BAR1_REGION_INDEX:
if (is_write) {
uint64_t bar0_start = intel_vgpu_get_bar0_addr(vgpu);
ret = intel_gvt_ops->emulate_mmio_write(vgpu,
bar0_start + pos, buf, count);
} else {
uint64_t bar0_start = intel_vgpu_get_bar0_addr(vgpu);
ret = intel_gvt_ops->emulate_mmio_read(vgpu,
bar0_start + pos, buf, count);
}
ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_0, pos,
buf, count, is_write);
break;
case VFIO_PCI_BAR2_REGION_INDEX:
ret = intel_vgpu_bar_rw(vgpu, PCI_BASE_ADDRESS_2, pos,
buf, count, is_write);
break;
case VFIO_PCI_BAR1_REGION_INDEX:
case VFIO_PCI_BAR3_REGION_INDEX:
case VFIO_PCI_BAR4_REGION_INDEX:
case VFIO_PCI_BAR5_REGION_INDEX:
@ -970,7 +978,7 @@ static long intel_vgpu_ioctl(struct mdev_device *mdev, unsigned int cmd,
switch (info.index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = INTEL_GVT_MAX_CFG_SPACE_SZ;
info.size = vgpu->gvt->device_info.cfg_space_size;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;

View File

@ -45,8 +45,7 @@
*/
int intel_vgpu_gpa_to_mmio_offset(struct intel_vgpu *vgpu, u64 gpa)
{
u64 gttmmio_gpa = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_0) &
~GENMASK(3, 0);
u64 gttmmio_gpa = intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_0);
return gpa - gttmmio_gpa;
}
@ -57,6 +56,38 @@ int intel_vgpu_gpa_to_mmio_offset(struct intel_vgpu *vgpu, u64 gpa)
(reg >= gvt->device_info.gtt_start_offset \
&& reg < gvt->device_info.gtt_start_offset + gvt_ggtt_sz(gvt))
static bool vgpu_gpa_is_aperture(struct intel_vgpu *vgpu, uint64_t gpa)
{
u64 aperture_gpa = intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_2);
u64 aperture_sz = vgpu_aperture_sz(vgpu);
return gpa >= aperture_gpa && gpa < aperture_gpa + aperture_sz;
}
static int vgpu_aperture_rw(struct intel_vgpu *vgpu, uint64_t gpa,
void *pdata, unsigned int size, bool is_read)
{
u64 aperture_gpa = intel_vgpu_get_bar_gpa(vgpu, PCI_BASE_ADDRESS_2);
u64 offset = gpa - aperture_gpa;
if (!vgpu_gpa_is_aperture(vgpu, gpa + size - 1)) {
gvt_vgpu_err("Aperture rw out of range, offset %llx, size %d\n",
offset, size);
return -EINVAL;
}
if (!vgpu->gm.aperture_va) {
gvt_vgpu_err("BAR is not enabled\n");
return -ENXIO;
}
if (is_read)
memcpy(pdata, vgpu->gm.aperture_va + offset, size);
else
memcpy(vgpu->gm.aperture_va + offset, pdata, size);
return 0;
}
static void failsafe_emulate_mmio_rw(struct intel_vgpu *vgpu, uint64_t pa,
void *p_data, unsigned int bytes, bool read)
{
@ -133,6 +164,12 @@ int intel_vgpu_emulate_mmio_read(struct intel_vgpu *vgpu, uint64_t pa,
}
mutex_lock(&gvt->lock);
if (vgpu_gpa_is_aperture(vgpu, pa)) {
ret = vgpu_aperture_rw(vgpu, pa, p_data, bytes, true);
mutex_unlock(&gvt->lock);
return ret;
}
if (atomic_read(&vgpu->gtt.n_write_protected_guest_page)) {
struct intel_vgpu_guest_page *gp;
@ -224,6 +261,12 @@ int intel_vgpu_emulate_mmio_write(struct intel_vgpu *vgpu, uint64_t pa,
mutex_lock(&gvt->lock);
if (vgpu_gpa_is_aperture(vgpu, pa)) {
ret = vgpu_aperture_rw(vgpu, pa, p_data, bytes, false);
mutex_unlock(&gvt->lock);
return ret;
}
if (atomic_read(&vgpu->gtt.n_write_protected_guest_page)) {
struct intel_vgpu_guest_page *gp;

View File

@ -201,6 +201,43 @@ static void shadow_context_descriptor_update(struct i915_gem_context *ctx,
ce->lrc_desc = desc;
}
static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
void *shadow_ring_buffer_va;
u32 *cs;
/* allocate shadow ring buffer */
cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
if (IS_ERR(cs)) {
gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
workload->rb_len);
return PTR_ERR(cs);
}
shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = cs;
memcpy(cs, shadow_ring_buffer_va,
workload->rb_len);
cs += workload->rb_len / sizeof(u32);
intel_ring_advance(workload->req, cs);
return 0;
}
void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
if (!wa_ctx->indirect_ctx.obj)
return;
i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
i915_gem_object_put(wa_ctx->indirect_ctx.obj);
}
/**
* intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
* shadow it as well, include ringbuffer,wa_ctx and ctx.
@ -214,8 +251,10 @@ int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
struct drm_i915_gem_request *rq;
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_ring *ring;
int ret;
lockdep_assert_held(&dev_priv->drm.struct_mutex);
@ -231,61 +270,15 @@ int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
shadow_context_descriptor_update(shadow_ctx,
dev_priv->engine[ring_id]);
rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
if (IS_ERR(rq)) {
gvt_vgpu_err("fail to allocate gem request\n");
ret = PTR_ERR(rq);
goto out;
}
gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
workload->req = i915_gem_request_get(rq);
ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
if (ret)
goto out;
goto err_scan;
if ((workload->ring_id == RCS) &&
(workload->wa_ctx.indirect_ctx.size != 0)) {
ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
if (ret)
goto out;
}
ret = populate_shadow_context(workload);
if (ret)
goto out;
workload->shadowed = true;
out:
return ret;
}
static int dispatch_workload(struct intel_vgpu_workload *workload)
{
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_ring *ring;
int ret = 0;
gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
ring_id, workload);
mutex_lock(&dev_priv->drm.struct_mutex);
ret = intel_gvt_scan_and_shadow_workload(workload);
if (ret)
goto out;
if (workload->prepare) {
ret = workload->prepare(workload);
if (ret)
goto out;
goto err_scan;
}
/* pin shadow context by gvt even the shadow context will be pinned
@ -299,7 +292,60 @@ static int dispatch_workload(struct intel_vgpu_workload *workload)
if (IS_ERR(ring)) {
ret = PTR_ERR(ring);
gvt_vgpu_err("fail to pin shadow context\n");
goto err_shadow;
}
ret = populate_shadow_context(workload);
if (ret)
goto err_unpin;
rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
if (IS_ERR(rq)) {
gvt_vgpu_err("fail to allocate gem request\n");
ret = PTR_ERR(rq);
goto err_unpin;
}
gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);
workload->req = i915_gem_request_get(rq);
ret = copy_workload_to_ring_buffer(workload);
if (ret)
goto err_unpin;
workload->shadowed = true;
return 0;
err_unpin:
engine->context_unpin(engine, shadow_ctx);
err_shadow:
release_shadow_wa_ctx(&workload->wa_ctx);
err_scan:
return ret;
}
static int dispatch_workload(struct intel_vgpu_workload *workload)
{
int ring_id = workload->ring_id;
struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
struct intel_engine_cs *engine = dev_priv->engine[ring_id];
int ret = 0;
gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
ring_id, workload);
mutex_lock(&dev_priv->drm.struct_mutex);
ret = intel_gvt_scan_and_shadow_workload(workload);
if (ret)
goto out;
if (workload->prepare) {
ret = workload->prepare(workload);
if (ret) {
engine->context_unpin(engine, shadow_ctx);
goto out;
}
}
out:

View File

@ -140,4 +140,5 @@ int intel_vgpu_init_gvt_context(struct intel_vgpu *vgpu);
void intel_vgpu_clean_gvt_context(struct intel_vgpu *vgpu);
void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx);
#endif