mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-24 12:44:11 +08:00
mm: pin address_space before dereferencing it while isolating an LRU page
Minchan Kim asked the following question -- what locks protects
address_space destroying when race happens between inode trauncation and
__isolate_lru_page? Jan Kara clarified by describing the race as follows
CPU1 CPU2
truncate(inode) __isolate_lru_page()
...
truncate_inode_page(mapping, page);
delete_from_page_cache(page)
spin_lock_irqsave(&mapping->tree_lock, flags);
__delete_from_page_cache(page, NULL)
page_cache_tree_delete(..)
... mapping = page_mapping(page);
page->mapping = NULL;
...
spin_unlock_irqrestore(&mapping->tree_lock, flags);
page_cache_free_page(mapping, page)
put_page(page)
if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space
if (mapping && !mapping->a_ops->migratepage)
- we've dereferenced mapping which is potentially already free.
The race is theoretically possible but unlikely. Before the
delete_from_page_cache, truncate_cleanup_page is called so the page is
likely to be !PageDirty or PageWriteback which gets skipped by the only
caller that checks the mappping in __isolate_lru_page. Even if the race
occurs, a substantial amount of work has to happen during a tiny window
with no preemption but it could potentially be done using a virtual
machine to artifically slow one CPU or halt it during the critical
window.
This patch should eliminate the race with truncation by try-locking the
page before derefencing mapping and aborting if the lock was not
acquired. There was a suggestion from Huang Ying to use RCU as a
side-effect to prevent mapping being freed. However, I do not like the
solution as it's an unconventional means of preserving a mapping and
it's not a context where rcu_read_lock is obviously protecting rcu data.
Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net
Fixes: c824493528
("mm: compaction: make isolate_lru_page() filter-aware again")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
284cd241a1
commit
69d763fc6d
14
mm/vmscan.c
14
mm/vmscan.c
@ -1415,14 +1415,24 @@ int __isolate_lru_page(struct page *page, isolate_mode_t mode)
|
||||
|
||||
if (PageDirty(page)) {
|
||||
struct address_space *mapping;
|
||||
bool migrate_dirty;
|
||||
|
||||
/*
|
||||
* Only pages without mappings or that have a
|
||||
* ->migratepage callback are possible to migrate
|
||||
* without blocking
|
||||
* without blocking. However, we can be racing with
|
||||
* truncation so it's necessary to lock the page
|
||||
* to stabilise the mapping as truncation holds
|
||||
* the page lock until after the page is removed
|
||||
* from the page cache.
|
||||
*/
|
||||
if (!trylock_page(page))
|
||||
return ret;
|
||||
|
||||
mapping = page_mapping(page);
|
||||
if (mapping && !mapping->a_ops->migratepage)
|
||||
migrate_dirty = mapping && mapping->a_ops->migratepage;
|
||||
unlock_page(page);
|
||||
if (!migrate_dirty)
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user