mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-19 00:54:41 +08:00
bpf: add special smin32/smax32 derivation from 64-bit bounds
Add a special case where we can derive valid s32 bounds from umin/umax or smin/smax by stitching together negative s32 subrange and non-negative s32 subrange. That requires upper 32 bits to form a [N, N+1] range in u32 domain (taking into account wrap around, so 0xffffffff to 0x00000000 is a valid [N, N+1] range in this sense). See code comment for concrete examples. Eduard Zingerman also provided an alternative explanation ([0]) for more mathematically inclined readers: Suppose: . there are numbers a, b, c . 2**31 <= b < 2**32 . 0 <= c < 2**31 . umin = 2**32 * a + b . umax = 2**32 * (a + 1) + c The number of values in the range represented by [umin; umax] is: . N = umax - umin + 1 = 2**32 + c - b + 1 . min(N) = 2**32 + 0 - (2**32-1) + 1 = 2, with b = 2**32-1, c = 0 . max(N) = 2**32 + (2**31 - 1) - 2**31 + 1 = 2**32, with b = 2**31, c = 2**31-1 Hence [(s32)b; (s32)c] forms a valid range. [0] https://lore.kernel.org/bpf/d7af631802f0cfae20df77fe70068702d24bbd31.camel@gmail.com/ Acked-by: Eduard Zingerman <eddyz87@gmail.com> Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231102033759.2541186-7-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit is contained in:
parent
c1efab6468
commit
6593f2e674
@ -2369,6 +2369,29 @@ static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
|
||||
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
|
||||
}
|
||||
}
|
||||
/* Special case where upper bits form a small sequence of two
|
||||
* sequential numbers (in 32-bit unsigned space, so 0xffffffff to
|
||||
* 0x00000000 is also valid), while lower bits form a proper s32 range
|
||||
* going from negative numbers to positive numbers. E.g., let's say we
|
||||
* have s64 range [-1, 1] ([0xffffffffffffffff, 0x0000000000000001]).
|
||||
* Possible s64 values are {-1, 0, 1} ({0xffffffffffffffff,
|
||||
* 0x0000000000000000, 0x00000000000001}). Ignoring upper 32 bits,
|
||||
* we still get a valid s32 range [-1, 1] ([0xffffffff, 0x00000001]).
|
||||
* Note that it doesn't have to be 0xffffffff going to 0x00000000 in
|
||||
* upper 32 bits. As a random example, s64 range
|
||||
* [0xfffffff0fffffff0; 0xfffffff100000010], forms a valid s32 range
|
||||
* [-16, 16] ([0xfffffff0; 0x00000010]) in its 32 bit subregister.
|
||||
*/
|
||||
if ((u32)(reg->umin_value >> 32) + 1 == (u32)(reg->umax_value >> 32) &&
|
||||
(s32)reg->umin_value < 0 && (s32)reg->umax_value >= 0) {
|
||||
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->umin_value);
|
||||
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->umax_value);
|
||||
}
|
||||
if ((u32)(reg->smin_value >> 32) + 1 == (u32)(reg->smax_value >> 32) &&
|
||||
(s32)reg->smin_value < 0 && (s32)reg->smax_value >= 0) {
|
||||
reg->s32_min_value = max_t(s32, reg->s32_min_value, (s32)reg->smin_value);
|
||||
reg->s32_max_value = min_t(s32, reg->s32_max_value, (s32)reg->smax_value);
|
||||
}
|
||||
/* if u32 range forms a valid s32 range (due to matching sign bit),
|
||||
* try to learn from that
|
||||
*/
|
||||
|
Loading…
Reference in New Issue
Block a user