cpu-topology: Move cpu topology code to common code.

Both RISC-V & ARM64 are using cpu-map device tree to describe
their cpu topology. It's better to move the relevant code to
a common place instead of duplicate code.

To: Will Deacon <will.deacon@arm.com>
To: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Atish Patra <atish.patra@wdc.com>
[Tested on QDF2400]
Tested-by: Jeffrey Hugo <jhugo@codeaurora.org>
[Tested on Juno and other embedded platforms.]
Tested-by: Sudeep Holla <sudeep.holla@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
This commit is contained in:
Atish Patra 2019-06-27 12:52:58 -07:00 committed by Paul Walmsley
parent 124e46a865
commit 60c1b220d8
5 changed files with 329 additions and 322 deletions

View File

@ -4,29 +4,6 @@
#include <linux/cpumask.h>
struct cpu_topology {
int thread_id;
int core_id;
int package_id;
int llc_id;
cpumask_t thread_sibling;
cpumask_t core_sibling;
cpumask_t llc_sibling;
};
extern struct cpu_topology cpu_topology[NR_CPUS];
#define topology_physical_package_id(cpu) (cpu_topology[cpu].package_id)
#define topology_core_id(cpu) (cpu_topology[cpu].core_id)
#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling)
#define topology_sibling_cpumask(cpu) (&cpu_topology[cpu].thread_sibling)
#define topology_llc_cpumask(cpu) (&cpu_topology[cpu].llc_sibling)
void init_cpu_topology(void);
void store_cpu_topology(unsigned int cpuid);
void remove_cpu_topology(unsigned int cpuid);
const struct cpumask *cpu_coregroup_mask(int cpu);
#ifdef CONFIG_NUMA
struct pci_bus;

View File

@ -14,250 +14,13 @@
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/string.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
cpu = of_cpu_node_to_id(cpu_node);
if (cpu >= 0)
topology_parse_cpu_capacity(cpu_node, cpu);
else
pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
of_node_put(cpu_node);
return cpu;
}
static int __init parse_core(struct device_node *core, int package_id,
int core_id)
{
char name[10];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%pOF: Can't get CPU for thread\n",
t);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%pOF: Core has both threads and CPU\n",
core);
return -EINVAL;
}
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%pOF: Can't get CPU for leaf core\n", core);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[10];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int package_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%pOF: cpu-map children should be clusters\n",
c);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, package_id, core_id++);
} else {
pr_err("%pOF: Non-leaf cluster with core %s\n",
cluster, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%pOF: empty cluster\n", cluster);
if (leaf)
package_id++;
return 0;
}
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
topology_normalize_cpu_scale();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].package_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
/* Find the smaller of NUMA, core or LLC siblings */
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
/* not numa in package, lets use the package siblings */
core_mask = &cpu_topology[cpu].core_sibling;
}
if (cpu_topology[cpu].llc_id != -1) {
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
core_mask = &cpu_topology[cpu].llc_sibling;
}
return core_mask;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_online_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->llc_id == cpu_topo->llc_id) {
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
}
if (cpuid_topo->package_id != cpu_topo->package_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
void store_cpu_topology(unsigned int cpuid)
{
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
@ -296,59 +59,19 @@ topology_populated:
update_siblings_masks(cpuid);
}
static void clear_cpu_topology(int cpu)
{
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpumask_clear(&cpu_topo->llc_sibling);
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = 0;
cpu_topo->package_id = -1;
cpu_topo->llc_id = -1;
clear_cpu_topology(cpu);
}
}
void remove_cpu_topology(unsigned int cpu)
{
int sibling;
for_each_cpu(sibling, topology_core_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
for_each_cpu(sibling, topology_llc_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
clear_cpu_topology(cpu);
}
#ifdef CONFIG_ACPI
/*
* Propagate the topology information of the processor_topology_node tree to the
* cpu_topology array.
*/
static int __init parse_acpi_topology(void)
int __init parse_acpi_topology(void)
{
bool is_threaded;
int cpu, topology_id;
if (acpi_disabled)
return 0;
is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
for_each_possible_cpu(cpu) {
@ -384,24 +107,6 @@ static int __init parse_acpi_topology(void)
return 0;
}
#else
static inline int __init parse_acpi_topology(void)
{
return -EINVAL;
}
#endif
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (!acpi_disabled && parse_acpi_topology())
reset_cpu_topology();
else if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}

View File

@ -15,6 +15,11 @@
#include <linux/string.h>
#include <linux/sched/topology.h>
#include <linux/cpuset.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/smp.h>
DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
@ -241,3 +246,294 @@ static void parsing_done_workfn(struct work_struct *work)
#else
core_initcall(free_raw_capacity);
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
cpu = of_cpu_node_to_id(cpu_node);
if (cpu >= 0)
topology_parse_cpu_capacity(cpu_node, cpu);
else
pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
of_node_put(cpu_node);
return cpu;
}
static int __init parse_core(struct device_node *core, int package_id,
int core_id)
{
char name[10];
bool leaf = true;
int i = 0;
int cpu;
struct device_node *t;
do {
snprintf(name, sizeof(name), "thread%d", i);
t = of_get_child_by_name(core, name);
if (t) {
leaf = false;
cpu = get_cpu_for_node(t);
if (cpu >= 0) {
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
cpu_topology[cpu].thread_id = i;
} else {
pr_err("%pOF: Can't get CPU for thread\n",
t);
of_node_put(t);
return -EINVAL;
}
of_node_put(t);
}
i++;
} while (t);
cpu = get_cpu_for_node(core);
if (cpu >= 0) {
if (!leaf) {
pr_err("%pOF: Core has both threads and CPU\n",
core);
return -EINVAL;
}
cpu_topology[cpu].package_id = package_id;
cpu_topology[cpu].core_id = core_id;
} else if (leaf) {
pr_err("%pOF: Can't get CPU for leaf core\n", core);
return -EINVAL;
}
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int depth)
{
char name[10];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
static int package_id __initdata;
int core_id = 0;
int i, ret;
/*
* First check for child clusters; we currently ignore any
* information about the nesting of clusters and present the
* scheduler with a flat list of them.
*/
i = 0;
do {
snprintf(name, sizeof(name), "cluster%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_cluster(c, depth + 1);
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
/* Now check for cores */
i = 0;
do {
snprintf(name, sizeof(name), "core%d", i);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
if (depth == 0) {
pr_err("%pOF: cpu-map children should be clusters\n",
c);
of_node_put(c);
return -EINVAL;
}
if (leaf) {
ret = parse_core(c, package_id, core_id++);
} else {
pr_err("%pOF: Non-leaf cluster with core %s\n",
cluster, name);
ret = -EINVAL;
}
of_node_put(c);
if (ret != 0)
return ret;
}
i++;
} while (c);
if (leaf && !has_cores)
pr_warn("%pOF: empty cluster\n", cluster);
if (leaf)
package_id++;
return 0;
}
static int __init parse_dt_topology(void)
{
struct device_node *cn, *map;
int ret = 0;
int cpu;
cn = of_find_node_by_path("/cpus");
if (!cn) {
pr_err("No CPU information found in DT\n");
return 0;
}
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_get_child_by_name(cn, "cpu-map");
if (!map)
goto out;
ret = parse_cluster(map, 0);
if (ret != 0)
goto out_map;
topology_normalize_cpu_scale();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].package_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
out:
of_node_put(cn);
return ret;
}
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
/* Find the smaller of NUMA, core or LLC siblings */
if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
/* not numa in package, lets use the package siblings */
core_mask = &cpu_topology[cpu].core_sibling;
}
if (cpu_topology[cpu].llc_id != -1) {
if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
core_mask = &cpu_topology[cpu].llc_sibling;
}
return core_mask;
}
void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_online_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->llc_id == cpu_topo->llc_id) {
cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
}
if (cpuid_topo->package_id != cpu_topo->package_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
static void clear_cpu_topology(int cpu)
{
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpumask_clear(&cpu_topo->llc_sibling);
cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
}
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
cpu_topo->thread_id = -1;
cpu_topo->core_id = -1;
cpu_topo->package_id = -1;
cpu_topo->llc_id = -1;
clear_cpu_topology(cpu);
}
}
void remove_cpu_topology(unsigned int cpu)
{
int sibling;
for_each_cpu(sibling, topology_core_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
for_each_cpu(sibling, topology_sibling_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
for_each_cpu(sibling, topology_llc_cpumask(cpu))
cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
clear_cpu_topology(cpu);
}
__weak int __init parse_acpi_topology(void)
{
return 0;
}
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (parse_acpi_topology())
reset_cpu_topology();
else if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
}
#endif

View File

@ -33,4 +33,32 @@ unsigned long topology_get_freq_scale(int cpu)
return per_cpu(freq_scale, cpu);
}
struct cpu_topology {
int thread_id;
int core_id;
int package_id;
int llc_id;
cpumask_t thread_sibling;
cpumask_t core_sibling;
cpumask_t llc_sibling;
};
#ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
extern struct cpu_topology cpu_topology[NR_CPUS];
#define topology_physical_package_id(cpu) (cpu_topology[cpu].package_id)
#define topology_core_id(cpu) (cpu_topology[cpu].core_id)
#define topology_core_cpumask(cpu) (&cpu_topology[cpu].core_sibling)
#define topology_sibling_cpumask(cpu) (&cpu_topology[cpu].thread_sibling)
#define topology_llc_cpumask(cpu) (&cpu_topology[cpu].llc_sibling)
void init_cpu_topology(void);
void store_cpu_topology(unsigned int cpuid);
const struct cpumask *cpu_coregroup_mask(int cpu);
#endif
#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
void update_siblings_masks(unsigned int cpu);
#endif
void remove_cpu_topology(unsigned int cpuid);
#endif /* _LINUX_ARCH_TOPOLOGY_H_ */

View File

@ -27,6 +27,7 @@
#ifndef _LINUX_TOPOLOGY_H
#define _LINUX_TOPOLOGY_H
#include <linux/arch_topology.h>
#include <linux/cpumask.h>
#include <linux/bitops.h>
#include <linux/mmzone.h>