mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-15 08:14:15 +08:00
microblaze_mmu_v2: Page fault handling high level - fault.c
Signed-off-by: Michal Simek <monstr@monstr.eu>
This commit is contained in:
parent
23098649e0
commit
5de9612100
304
arch/microblaze/mm/fault.c
Normal file
304
arch/microblaze/mm/fault.c
Normal file
@ -0,0 +1,304 @@
|
||||
/*
|
||||
* arch/microblaze/mm/fault.c
|
||||
*
|
||||
* Copyright (C) 2007 Xilinx, Inc. All rights reserved.
|
||||
*
|
||||
* Derived from "arch/ppc/mm/fault.c"
|
||||
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
||||
*
|
||||
* Derived from "arch/i386/mm/fault.c"
|
||||
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
||||
*
|
||||
* Modified by Cort Dougan and Paul Mackerras.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General
|
||||
* Public License. See the file COPYING in the main directory of this
|
||||
* archive for more details.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/signal.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/interrupt.h>
|
||||
|
||||
#include <asm/page.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/mmu.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/system.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/exceptions.h>
|
||||
|
||||
#if defined(CONFIG_KGDB)
|
||||
int debugger_kernel_faults = 1;
|
||||
#endif
|
||||
|
||||
static unsigned long pte_misses; /* updated by do_page_fault() */
|
||||
static unsigned long pte_errors; /* updated by do_page_fault() */
|
||||
|
||||
/*
|
||||
* Check whether the instruction at regs->pc is a store using
|
||||
* an update addressing form which will update r1.
|
||||
*/
|
||||
static int store_updates_sp(struct pt_regs *regs)
|
||||
{
|
||||
unsigned int inst;
|
||||
|
||||
if (get_user(inst, (unsigned int *)regs->pc))
|
||||
return 0;
|
||||
/* check for 1 in the rD field */
|
||||
if (((inst >> 21) & 0x1f) != 1)
|
||||
return 0;
|
||||
/* check for store opcodes */
|
||||
if ((inst & 0xd0000000) == 0xd0000000)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* bad_page_fault is called when we have a bad access from the kernel.
|
||||
* It is called from do_page_fault above and from some of the procedures
|
||||
* in traps.c.
|
||||
*/
|
||||
static void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
|
||||
{
|
||||
const struct exception_table_entry *fixup;
|
||||
/* MS: no context */
|
||||
/* Are we prepared to handle this fault? */
|
||||
fixup = search_exception_tables(regs->pc);
|
||||
if (fixup) {
|
||||
regs->pc = fixup->fixup;
|
||||
return;
|
||||
}
|
||||
|
||||
/* kernel has accessed a bad area */
|
||||
#if defined(CONFIG_KGDB)
|
||||
if (debugger_kernel_faults)
|
||||
debugger(regs);
|
||||
#endif
|
||||
die("kernel access of bad area", regs, sig);
|
||||
}
|
||||
|
||||
/*
|
||||
* The error_code parameter is ESR for a data fault,
|
||||
* 0 for an instruction fault.
|
||||
*/
|
||||
void do_page_fault(struct pt_regs *regs, unsigned long address,
|
||||
unsigned long error_code)
|
||||
{
|
||||
struct vm_area_struct *vma;
|
||||
struct mm_struct *mm = current->mm;
|
||||
siginfo_t info;
|
||||
int code = SEGV_MAPERR;
|
||||
int is_write = error_code & ESR_S;
|
||||
int fault;
|
||||
|
||||
regs->ear = address;
|
||||
regs->esr = error_code;
|
||||
|
||||
/* On a kernel SLB miss we can only check for a valid exception entry */
|
||||
if (kernel_mode(regs) && (address >= TASK_SIZE)) {
|
||||
printk(KERN_WARNING "kernel task_size exceed");
|
||||
_exception(SIGSEGV, regs, code, address);
|
||||
}
|
||||
|
||||
/* for instr TLB miss and instr storage exception ESR_S is undefined */
|
||||
if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
|
||||
is_write = 0;
|
||||
|
||||
#if defined(CONFIG_KGDB)
|
||||
if (debugger_fault_handler && regs->trap == 0x300) {
|
||||
debugger_fault_handler(regs);
|
||||
return;
|
||||
}
|
||||
#endif /* CONFIG_KGDB */
|
||||
|
||||
if (in_atomic() || mm == NULL) {
|
||||
/* FIXME */
|
||||
if (kernel_mode(regs)) {
|
||||
printk(KERN_EMERG
|
||||
"Page fault in kernel mode - Oooou!!! pid %d\n",
|
||||
current->pid);
|
||||
_exception(SIGSEGV, regs, code, address);
|
||||
return;
|
||||
}
|
||||
/* in_atomic() in user mode is really bad,
|
||||
as is current->mm == NULL. */
|
||||
printk(KERN_EMERG "Page fault in user mode with "
|
||||
"in_atomic(), mm = %p\n", mm);
|
||||
printk(KERN_EMERG "r15 = %lx MSR = %lx\n",
|
||||
regs->r15, regs->msr);
|
||||
die("Weird page fault", regs, SIGSEGV);
|
||||
}
|
||||
|
||||
/* When running in the kernel we expect faults to occur only to
|
||||
* addresses in user space. All other faults represent errors in the
|
||||
* kernel and should generate an OOPS. Unfortunately, in the case of an
|
||||
* erroneous fault occurring in a code path which already holds mmap_sem
|
||||
* we will deadlock attempting to validate the fault against the
|
||||
* address space. Luckily the kernel only validly references user
|
||||
* space from well defined areas of code, which are listed in the
|
||||
* exceptions table.
|
||||
*
|
||||
* As the vast majority of faults will be valid we will only perform
|
||||
* the source reference check when there is a possibility of a deadlock.
|
||||
* Attempt to lock the address space, if we cannot we then validate the
|
||||
* source. If this is invalid we can skip the address space check,
|
||||
* thus avoiding the deadlock.
|
||||
*/
|
||||
if (!down_read_trylock(&mm->mmap_sem)) {
|
||||
if (kernel_mode(regs) && !search_exception_tables(regs->pc))
|
||||
goto bad_area_nosemaphore;
|
||||
|
||||
down_read(&mm->mmap_sem);
|
||||
}
|
||||
|
||||
vma = find_vma(mm, address);
|
||||
if (!vma)
|
||||
goto bad_area;
|
||||
|
||||
if (vma->vm_start <= address)
|
||||
goto good_area;
|
||||
|
||||
if (!(vma->vm_flags & VM_GROWSDOWN))
|
||||
goto bad_area;
|
||||
|
||||
if (!is_write)
|
||||
goto bad_area;
|
||||
|
||||
/*
|
||||
* N.B. The ABI allows programs to access up to
|
||||
* a few hundred bytes below the stack pointer (TBD).
|
||||
* The kernel signal delivery code writes up to about 1.5kB
|
||||
* below the stack pointer (r1) before decrementing it.
|
||||
* The exec code can write slightly over 640kB to the stack
|
||||
* before setting the user r1. Thus we allow the stack to
|
||||
* expand to 1MB without further checks.
|
||||
*/
|
||||
if (address + 0x100000 < vma->vm_end) {
|
||||
|
||||
/* get user regs even if this fault is in kernel mode */
|
||||
struct pt_regs *uregs = current->thread.regs;
|
||||
if (uregs == NULL)
|
||||
goto bad_area;
|
||||
|
||||
/*
|
||||
* A user-mode access to an address a long way below
|
||||
* the stack pointer is only valid if the instruction
|
||||
* is one which would update the stack pointer to the
|
||||
* address accessed if the instruction completed,
|
||||
* i.e. either stwu rs,n(r1) or stwux rs,r1,rb
|
||||
* (or the byte, halfword, float or double forms).
|
||||
*
|
||||
* If we don't check this then any write to the area
|
||||
* between the last mapped region and the stack will
|
||||
* expand the stack rather than segfaulting.
|
||||
*/
|
||||
if (address + 2048 < uregs->r1
|
||||
&& (kernel_mode(regs) || !store_updates_sp(regs)))
|
||||
goto bad_area;
|
||||
}
|
||||
if (expand_stack(vma, address))
|
||||
goto bad_area;
|
||||
|
||||
good_area:
|
||||
code = SEGV_ACCERR;
|
||||
|
||||
/* a write */
|
||||
if (is_write) {
|
||||
if (!(vma->vm_flags & VM_WRITE))
|
||||
goto bad_area;
|
||||
/* a read */
|
||||
} else {
|
||||
/* protection fault */
|
||||
if (error_code & 0x08000000)
|
||||
goto bad_area;
|
||||
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
|
||||
goto bad_area;
|
||||
}
|
||||
|
||||
/*
|
||||
* If for any reason at all we couldn't handle the fault,
|
||||
* make sure we exit gracefully rather than endlessly redo
|
||||
* the fault.
|
||||
*/
|
||||
survive:
|
||||
fault = handle_mm_fault(mm, vma, address, is_write);
|
||||
if (unlikely(fault & VM_FAULT_ERROR)) {
|
||||
if (fault & VM_FAULT_OOM)
|
||||
goto out_of_memory;
|
||||
else if (fault & VM_FAULT_SIGBUS)
|
||||
goto do_sigbus;
|
||||
BUG();
|
||||
}
|
||||
if (fault & VM_FAULT_MAJOR)
|
||||
current->maj_flt++;
|
||||
else
|
||||
current->min_flt++;
|
||||
up_read(&mm->mmap_sem);
|
||||
/*
|
||||
* keep track of tlb+htab misses that are good addrs but
|
||||
* just need pte's created via handle_mm_fault()
|
||||
* -- Cort
|
||||
*/
|
||||
pte_misses++;
|
||||
return;
|
||||
|
||||
bad_area:
|
||||
up_read(&mm->mmap_sem);
|
||||
|
||||
bad_area_nosemaphore:
|
||||
pte_errors++;
|
||||
|
||||
/* User mode accesses cause a SIGSEGV */
|
||||
if (user_mode(regs)) {
|
||||
_exception(SIGSEGV, regs, code, address);
|
||||
/* info.si_signo = SIGSEGV;
|
||||
info.si_errno = 0;
|
||||
info.si_code = code;
|
||||
info.si_addr = (void *) address;
|
||||
force_sig_info(SIGSEGV, &info, current);*/
|
||||
return;
|
||||
}
|
||||
|
||||
bad_page_fault(regs, address, SIGSEGV);
|
||||
return;
|
||||
|
||||
/*
|
||||
* We ran out of memory, or some other thing happened to us that made
|
||||
* us unable to handle the page fault gracefully.
|
||||
*/
|
||||
out_of_memory:
|
||||
if (current->pid == 1) {
|
||||
yield();
|
||||
down_read(&mm->mmap_sem);
|
||||
goto survive;
|
||||
}
|
||||
up_read(&mm->mmap_sem);
|
||||
printk(KERN_WARNING "VM: killing process %s\n", current->comm);
|
||||
if (user_mode(regs))
|
||||
do_exit(SIGKILL);
|
||||
bad_page_fault(regs, address, SIGKILL);
|
||||
return;
|
||||
|
||||
do_sigbus:
|
||||
up_read(&mm->mmap_sem);
|
||||
if (user_mode(regs)) {
|
||||
info.si_signo = SIGBUS;
|
||||
info.si_errno = 0;
|
||||
info.si_code = BUS_ADRERR;
|
||||
info.si_addr = (void __user *)address;
|
||||
force_sig_info(SIGBUS, &info, current);
|
||||
return;
|
||||
}
|
||||
bad_page_fault(regs, address, SIGBUS);
|
||||
}
|
Loading…
Reference in New Issue
Block a user