mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-26 13:44:15 +08:00
Merge branch 'for-next/cortex-strings' into for-next/core
Update our kernel string routines to the latest Cortex Strings implementation. * for-next/cortex-strings: arm64: update string routine copyrights and URLs arm64: Rewrite __arch_clear_user() arm64: Better optimised memchr() arm64: Import latest memcpy()/memmove() implementation arm64: Add assembly annotations for weak-PI-alias madness arm64: Import latest version of Cortex Strings' strncmp arm64: Import updated version of Cortex Strings' strlen arm64: Import latest version of Cortex Strings' strcmp arm64: Import latest version of Cortex Strings' memcmp
This commit is contained in:
commit
5ceb045541
@ -56,8 +56,16 @@
|
||||
SYM_FUNC_START_ALIAS(__pi_##x); \
|
||||
SYM_FUNC_START_WEAK(x)
|
||||
|
||||
#define SYM_FUNC_START_WEAK_ALIAS_PI(x) \
|
||||
SYM_FUNC_START_ALIAS(__pi_##x); \
|
||||
SYM_START(x, SYM_L_WEAK, SYM_A_ALIGN)
|
||||
|
||||
#define SYM_FUNC_END_PI(x) \
|
||||
SYM_FUNC_END(x); \
|
||||
SYM_FUNC_END_ALIAS(__pi_##x)
|
||||
|
||||
#define SYM_FUNC_END_ALIAS_PI(x) \
|
||||
SYM_FUNC_END_ALIAS(x); \
|
||||
SYM_FUNC_END_ALIAS(__pi_##x)
|
||||
|
||||
#endif
|
||||
|
@ -1,7 +1,7 @@
|
||||
# SPDX-License-Identifier: GPL-2.0
|
||||
lib-y := clear_user.o delay.o copy_from_user.o \
|
||||
copy_to_user.o copy_in_user.o copy_page.o \
|
||||
clear_page.o csum.o memchr.o memcpy.o memmove.o \
|
||||
clear_page.o csum.o memchr.o memcpy.o \
|
||||
memset.o memcmp.o strcmp.o strncmp.o strlen.o \
|
||||
strnlen.o strchr.o strrchr.o tishift.o
|
||||
|
||||
|
@ -1,12 +1,9 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Based on arch/arm/lib/clear_user.S
|
||||
*
|
||||
* Copyright (C) 2012 ARM Ltd.
|
||||
* Copyright (C) 2021 Arm Ltd.
|
||||
*/
|
||||
#include <linux/linkage.h>
|
||||
|
||||
#include <asm/asm-uaccess.h>
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
.text
|
||||
@ -19,25 +16,33 @@
|
||||
*
|
||||
* Alignment fixed up by hardware.
|
||||
*/
|
||||
|
||||
.p2align 4
|
||||
// Alignment is for the loop, but since the prologue (including BTI)
|
||||
// is also 16 bytes we can keep any padding outside the function
|
||||
SYM_FUNC_START(__arch_clear_user)
|
||||
mov x2, x1 // save the size for fixup return
|
||||
add x2, x0, x1
|
||||
subs x1, x1, #8
|
||||
b.mi 2f
|
||||
1:
|
||||
user_ldst 9f, sttr, xzr, x0, 8
|
||||
USER(9f, sttr xzr, [x0])
|
||||
add x0, x0, #8
|
||||
subs x1, x1, #8
|
||||
b.pl 1b
|
||||
2: adds x1, x1, #4
|
||||
b.mi 3f
|
||||
user_ldst 9f, sttr, wzr, x0, 4
|
||||
sub x1, x1, #4
|
||||
3: adds x1, x1, #2
|
||||
b.mi 4f
|
||||
user_ldst 9f, sttrh, wzr, x0, 2
|
||||
sub x1, x1, #2
|
||||
4: adds x1, x1, #1
|
||||
b.mi 5f
|
||||
user_ldst 9f, sttrb, wzr, x0, 0
|
||||
b.hi 1b
|
||||
USER(9f, sttr xzr, [x2, #-8])
|
||||
mov x0, #0
|
||||
ret
|
||||
|
||||
2: tbz x1, #2, 3f
|
||||
USER(9f, sttr wzr, [x0])
|
||||
USER(8f, sttr wzr, [x2, #-4])
|
||||
mov x0, #0
|
||||
ret
|
||||
|
||||
3: tbz x1, #1, 4f
|
||||
USER(9f, sttrh wzr, [x0])
|
||||
4: tbz x1, #0, 5f
|
||||
USER(7f, sttrb wzr, [x2, #-1])
|
||||
5: mov x0, #0
|
||||
ret
|
||||
SYM_FUNC_END(__arch_clear_user)
|
||||
@ -45,6 +50,8 @@ EXPORT_SYMBOL(__arch_clear_user)
|
||||
|
||||
.section .fixup,"ax"
|
||||
.align 2
|
||||
9: mov x0, x2 // return the original size
|
||||
7: sub x0, x2, #5 // Adjust for faulting on the final byte...
|
||||
8: add x0, x0, #4 // ...or the second word of the 4-7 byte case
|
||||
9: sub x0, x2, x0
|
||||
ret
|
||||
.previous
|
||||
|
@ -1,9 +1,6 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Based on arch/arm/lib/memchr.S
|
||||
*
|
||||
* Copyright (C) 1995-2000 Russell King
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2021 Arm Ltd.
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
@ -19,16 +16,60 @@
|
||||
* Returns:
|
||||
* x0 - address of first occurrence of 'c' or 0
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
|
||||
#define srcin x0
|
||||
#define chrin w1
|
||||
#define cntin x2
|
||||
|
||||
#define result x0
|
||||
|
||||
#define wordcnt x3
|
||||
#define rep01 x4
|
||||
#define repchr x5
|
||||
#define cur_word x6
|
||||
#define cur_byte w6
|
||||
#define tmp x7
|
||||
#define tmp2 x8
|
||||
|
||||
.p2align 4
|
||||
nop
|
||||
SYM_FUNC_START_WEAK_PI(memchr)
|
||||
and w1, w1, #0xff
|
||||
1: subs x2, x2, #1
|
||||
b.mi 2f
|
||||
ldrb w3, [x0], #1
|
||||
cmp w3, w1
|
||||
b.ne 1b
|
||||
sub x0, x0, #1
|
||||
and chrin, chrin, #0xff
|
||||
lsr wordcnt, cntin, #3
|
||||
cbz wordcnt, L(byte_loop)
|
||||
mov rep01, #REP8_01
|
||||
mul repchr, x1, rep01
|
||||
and cntin, cntin, #7
|
||||
L(word_loop):
|
||||
ldr cur_word, [srcin], #8
|
||||
sub wordcnt, wordcnt, #1
|
||||
eor cur_word, cur_word, repchr
|
||||
sub tmp, cur_word, rep01
|
||||
orr tmp2, cur_word, #REP8_7f
|
||||
bics tmp, tmp, tmp2
|
||||
b.ne L(found_word)
|
||||
cbnz wordcnt, L(word_loop)
|
||||
L(byte_loop):
|
||||
cbz cntin, L(not_found)
|
||||
ldrb cur_byte, [srcin], #1
|
||||
sub cntin, cntin, #1
|
||||
cmp cur_byte, chrin
|
||||
b.ne L(byte_loop)
|
||||
sub srcin, srcin, #1
|
||||
ret
|
||||
2: mov x0, #0
|
||||
L(found_word):
|
||||
CPU_LE( rev tmp, tmp)
|
||||
clz tmp, tmp
|
||||
sub tmp, tmp, #64
|
||||
add result, srcin, tmp, asr #3
|
||||
ret
|
||||
L(not_found):
|
||||
mov result, #0
|
||||
ret
|
||||
SYM_FUNC_END_PI(memchr)
|
||||
EXPORT_SYMBOL_NOKASAN(memchr)
|
||||
|
@ -1,247 +1,139 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2013-2021, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/e823e3abf5f89ecb/string/aarch64/memcmp.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* compare memory areas(when two memory areas' offset are different,
|
||||
* alignment handled by the hardware)
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const memory area 1 pointer
|
||||
* x1 - const memory area 2 pointer
|
||||
* x2 - the maximal compare byte length
|
||||
* Returns:
|
||||
* x0 - a compare result, maybe less than, equal to, or greater than ZERO
|
||||
*/
|
||||
/* Assumptions:
|
||||
*
|
||||
* ARMv8-a, AArch64, unaligned accesses.
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
/* Parameters and result. */
|
||||
src1 .req x0
|
||||
src2 .req x1
|
||||
limit .req x2
|
||||
result .req x0
|
||||
#define src1 x0
|
||||
#define src2 x1
|
||||
#define limit x2
|
||||
#define result w0
|
||||
|
||||
/* Internal variables. */
|
||||
data1 .req x3
|
||||
data1w .req w3
|
||||
data2 .req x4
|
||||
data2w .req w4
|
||||
has_nul .req x5
|
||||
diff .req x6
|
||||
endloop .req x7
|
||||
tmp1 .req x8
|
||||
tmp2 .req x9
|
||||
tmp3 .req x10
|
||||
pos .req x11
|
||||
limit_wd .req x12
|
||||
mask .req x13
|
||||
#define data1 x3
|
||||
#define data1w w3
|
||||
#define data1h x4
|
||||
#define data2 x5
|
||||
#define data2w w5
|
||||
#define data2h x6
|
||||
#define tmp1 x7
|
||||
#define tmp2 x8
|
||||
|
||||
SYM_FUNC_START_WEAK_PI(memcmp)
|
||||
cbz limit, .Lret0
|
||||
eor tmp1, src1, src2
|
||||
tst tmp1, #7
|
||||
b.ne .Lmisaligned8
|
||||
ands tmp1, src1, #7
|
||||
b.ne .Lmutual_align
|
||||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
|
||||
lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
|
||||
/*
|
||||
* The input source addresses are at alignment boundary.
|
||||
* Directly compare eight bytes each time.
|
||||
*/
|
||||
.Lloop_aligned:
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
.Lstart_realigned:
|
||||
subs limit_wd, limit_wd, #1
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, cs /* Last Dword or differences. */
|
||||
cbz endloop, .Lloop_aligned
|
||||
subs limit, limit, 8
|
||||
b.lo L(less8)
|
||||
|
||||
/* Not reached the limit, must have found a diff. */
|
||||
tbz limit_wd, #63, .Lnot_limit
|
||||
ldr data1, [src1], 8
|
||||
ldr data2, [src2], 8
|
||||
cmp data1, data2
|
||||
b.ne L(return)
|
||||
|
||||
/* Limit % 8 == 0 => the diff is in the last 8 bytes. */
|
||||
ands limit, limit, #7
|
||||
b.eq .Lnot_limit
|
||||
/*
|
||||
* The remained bytes less than 8. It is needed to extract valid data
|
||||
* from last eight bytes of the intended memory range.
|
||||
*/
|
||||
lsl limit, limit, #3 /* bytes-> bits. */
|
||||
mov mask, #~0
|
||||
CPU_BE( lsr mask, mask, limit )
|
||||
CPU_LE( lsl mask, mask, limit )
|
||||
bic data1, data1, mask
|
||||
bic data2, data2, mask
|
||||
subs limit, limit, 8
|
||||
b.gt L(more16)
|
||||
|
||||
orr diff, diff, mask
|
||||
b .Lnot_limit
|
||||
ldr data1, [src1, limit]
|
||||
ldr data2, [src2, limit]
|
||||
b L(return)
|
||||
|
||||
.Lmutual_align:
|
||||
/*
|
||||
* Sources are mutually aligned, but are not currently at an
|
||||
* alignment boundary. Round down the addresses and then mask off
|
||||
* the bytes that precede the start point.
|
||||
*/
|
||||
bic src1, src1, #7
|
||||
bic src2, src2, #7
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
/*
|
||||
* We can not add limit with alignment offset(tmp1) here. Since the
|
||||
* addition probably make the limit overflown.
|
||||
*/
|
||||
sub limit_wd, limit, #1/*limit != 0, so no underflow.*/
|
||||
and tmp3, limit_wd, #7
|
||||
lsr limit_wd, limit_wd, #3
|
||||
add tmp3, tmp3, tmp1
|
||||
add limit_wd, limit_wd, tmp3, lsr #3
|
||||
add limit, limit, tmp1/* Adjust the limit for the extra. */
|
||||
L(more16):
|
||||
ldr data1, [src1], 8
|
||||
ldr data2, [src2], 8
|
||||
cmp data1, data2
|
||||
bne L(return)
|
||||
|
||||
lsl tmp1, tmp1, #3/* Bytes beyond alignment -> bits.*/
|
||||
neg tmp1, tmp1/* Bits to alignment -64. */
|
||||
mov tmp2, #~0
|
||||
/*mask off the non-intended bytes before the start address.*/
|
||||
CPU_BE( lsl tmp2, tmp2, tmp1 )/*Big-endian.Early bytes are at MSB*/
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp1 )
|
||||
/* Jump directly to comparing the last 16 bytes for 32 byte (or less)
|
||||
strings. */
|
||||
subs limit, limit, 16
|
||||
b.ls L(last_bytes)
|
||||
|
||||
orr data1, data1, tmp2
|
||||
orr data2, data2, tmp2
|
||||
b .Lstart_realigned
|
||||
/* We overlap loads between 0-32 bytes at either side of SRC1 when we
|
||||
try to align, so limit it only to strings larger than 128 bytes. */
|
||||
cmp limit, 96
|
||||
b.ls L(loop16)
|
||||
|
||||
/*src1 and src2 have different alignment offset.*/
|
||||
.Lmisaligned8:
|
||||
cmp limit, #8
|
||||
b.lo .Ltiny8proc /*limit < 8: compare byte by byte*/
|
||||
/* Align src1 and adjust src2 with bytes not yet done. */
|
||||
and tmp1, src1, 15
|
||||
add limit, limit, tmp1
|
||||
sub src1, src1, tmp1
|
||||
sub src2, src2, tmp1
|
||||
|
||||
and tmp1, src1, #7
|
||||
neg tmp1, tmp1
|
||||
add tmp1, tmp1, #8/*valid length in the first 8 bytes of src1*/
|
||||
and tmp2, src2, #7
|
||||
neg tmp2, tmp2
|
||||
add tmp2, tmp2, #8/*valid length in the first 8 bytes of src2*/
|
||||
subs tmp3, tmp1, tmp2
|
||||
csel pos, tmp1, tmp2, hi /*Choose the maximum.*/
|
||||
/* Loop performing 16 bytes per iteration using aligned src1.
|
||||
Limit is pre-decremented by 16 and must be larger than zero.
|
||||
Exit if <= 16 bytes left to do or if the data is not equal. */
|
||||
.p2align 4
|
||||
L(loop16):
|
||||
ldp data1, data1h, [src1], 16
|
||||
ldp data2, data2h, [src2], 16
|
||||
subs limit, limit, 16
|
||||
ccmp data1, data2, 0, hi
|
||||
ccmp data1h, data2h, 0, eq
|
||||
b.eq L(loop16)
|
||||
|
||||
sub limit, limit, pos
|
||||
/*compare the proceeding bytes in the first 8 byte segment.*/
|
||||
.Ltinycmp:
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs pos, pos, #1
|
||||
ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */
|
||||
b.eq .Ltinycmp
|
||||
cbnz pos, 1f /*diff occurred before the last byte.*/
|
||||
cmp data1, data2
|
||||
bne L(return)
|
||||
mov data1, data1h
|
||||
mov data2, data2h
|
||||
cmp data1, data2
|
||||
bne L(return)
|
||||
|
||||
/* Compare last 1-16 bytes using unaligned access. */
|
||||
L(last_bytes):
|
||||
add src1, src1, limit
|
||||
add src2, src2, limit
|
||||
ldp data1, data1h, [src1]
|
||||
ldp data2, data2h, [src2]
|
||||
cmp data1, data2
|
||||
bne L(return)
|
||||
mov data1, data1h
|
||||
mov data2, data2h
|
||||
cmp data1, data2
|
||||
|
||||
/* Compare data bytes and set return value to 0, -1 or 1. */
|
||||
L(return):
|
||||
#ifndef __AARCH64EB__
|
||||
rev data1, data1
|
||||
rev data2, data2
|
||||
#endif
|
||||
cmp data1, data2
|
||||
L(ret_eq):
|
||||
cset result, ne
|
||||
cneg result, result, lo
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
/* Compare up to 8 bytes. Limit is [-8..-1]. */
|
||||
L(less8):
|
||||
adds limit, limit, 4
|
||||
b.lo L(less4)
|
||||
ldr data1w, [src1], 4
|
||||
ldr data2w, [src2], 4
|
||||
cmp data1w, data2w
|
||||
b.eq .Lstart_align
|
||||
1:
|
||||
sub result, data1, data2
|
||||
b.ne L(return)
|
||||
sub limit, limit, 4
|
||||
L(less4):
|
||||
adds limit, limit, 4
|
||||
beq L(ret_eq)
|
||||
L(byte_loop):
|
||||
ldrb data1w, [src1], 1
|
||||
ldrb data2w, [src2], 1
|
||||
subs limit, limit, 1
|
||||
ccmp data1w, data2w, 0, ne /* NZCV = 0b0000. */
|
||||
b.eq L(byte_loop)
|
||||
sub result, data1w, data2w
|
||||
ret
|
||||
|
||||
.Lstart_align:
|
||||
lsr limit_wd, limit, #3
|
||||
cbz limit_wd, .Lremain8
|
||||
|
||||
ands xzr, src1, #7
|
||||
b.eq .Lrecal_offset
|
||||
/*process more leading bytes to make src1 aligned...*/
|
||||
add src1, src1, tmp3 /*backwards src1 to alignment boundary*/
|
||||
add src2, src2, tmp3
|
||||
sub limit, limit, tmp3
|
||||
lsr limit_wd, limit, #3
|
||||
cbz limit_wd, .Lremain8
|
||||
/*load 8 bytes from aligned SRC1..*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
subs limit_wd, limit_wd, #1
|
||||
eor diff, data1, data2 /*Non-zero if differences found.*/
|
||||
csinv endloop, diff, xzr, ne
|
||||
cbnz endloop, .Lunequal_proc
|
||||
/*How far is the current SRC2 from the alignment boundary...*/
|
||||
and tmp3, tmp3, #7
|
||||
|
||||
.Lrecal_offset:/*src1 is aligned now..*/
|
||||
neg pos, tmp3
|
||||
.Lloopcmp_proc:
|
||||
/*
|
||||
* Divide the eight bytes into two parts. First,backwards the src2
|
||||
* to an alignment boundary,load eight bytes and compare from
|
||||
* the SRC2 alignment boundary. If all 8 bytes are equal,then start
|
||||
* the second part's comparison. Otherwise finish the comparison.
|
||||
* This special handle can garantee all the accesses are in the
|
||||
* thread/task space in avoid to overrange access.
|
||||
*/
|
||||
ldr data1, [src1,pos]
|
||||
ldr data2, [src2,pos]
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
cbnz diff, .Lnot_limit
|
||||
|
||||
/*The second part process*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
subs limit_wd, limit_wd, #1
|
||||
csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
|
||||
cbz endloop, .Lloopcmp_proc
|
||||
.Lunequal_proc:
|
||||
cbz diff, .Lremain8
|
||||
|
||||
/* There is difference occurred in the latest comparison. */
|
||||
.Lnot_limit:
|
||||
/*
|
||||
* For little endian,reverse the low significant equal bits into MSB,then
|
||||
* following CLZ can find how many equal bits exist.
|
||||
*/
|
||||
CPU_LE( rev diff, diff )
|
||||
CPU_LE( rev data1, data1 )
|
||||
CPU_LE( rev data2, data2 )
|
||||
|
||||
/*
|
||||
* The MS-non-zero bit of DIFF marks either the first bit
|
||||
* that is different, or the end of the significant data.
|
||||
* Shifting left now will bring the critical information into the
|
||||
* top bits.
|
||||
*/
|
||||
clz pos, diff
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/*
|
||||
* We need to zero-extend (char is unsigned) the value and then
|
||||
* perform a signed subtraction.
|
||||
*/
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
|
||||
.Lremain8:
|
||||
/* Limit % 8 == 0 =>. all data are equal.*/
|
||||
ands limit, limit, #7
|
||||
b.eq .Lret0
|
||||
|
||||
.Ltiny8proc:
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs limit, limit, #1
|
||||
|
||||
ccmp data1w, data2w, #0, ne /* NZCV = 0b0000. */
|
||||
b.eq .Ltiny8proc
|
||||
sub result, data1, data2
|
||||
ret
|
||||
.Lret0:
|
||||
mov result, #0
|
||||
ret
|
||||
SYM_FUNC_END_PI(memcmp)
|
||||
EXPORT_SYMBOL_NOKASAN(memcmp)
|
||||
|
@ -1,66 +1,252 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2012-2021, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/afd6244a1f8d9229/string/aarch64/memcpy.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/cache.h>
|
||||
|
||||
/*
|
||||
* Copy a buffer from src to dest (alignment handled by the hardware)
|
||||
/* Assumptions:
|
||||
*
|
||||
* ARMv8-a, AArch64, unaligned accesses.
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - dest
|
||||
* x1 - src
|
||||
* x2 - n
|
||||
* Returns:
|
||||
* x0 - dest
|
||||
*/
|
||||
.macro ldrb1 reg, ptr, val
|
||||
ldrb \reg, [\ptr], \val
|
||||
.endm
|
||||
|
||||
.macro strb1 reg, ptr, val
|
||||
strb \reg, [\ptr], \val
|
||||
.endm
|
||||
#define L(label) .L ## label
|
||||
|
||||
.macro ldrh1 reg, ptr, val
|
||||
ldrh \reg, [\ptr], \val
|
||||
.endm
|
||||
#define dstin x0
|
||||
#define src x1
|
||||
#define count x2
|
||||
#define dst x3
|
||||
#define srcend x4
|
||||
#define dstend x5
|
||||
#define A_l x6
|
||||
#define A_lw w6
|
||||
#define A_h x7
|
||||
#define B_l x8
|
||||
#define B_lw w8
|
||||
#define B_h x9
|
||||
#define C_l x10
|
||||
#define C_lw w10
|
||||
#define C_h x11
|
||||
#define D_l x12
|
||||
#define D_h x13
|
||||
#define E_l x14
|
||||
#define E_h x15
|
||||
#define F_l x16
|
||||
#define F_h x17
|
||||
#define G_l count
|
||||
#define G_h dst
|
||||
#define H_l src
|
||||
#define H_h srcend
|
||||
#define tmp1 x14
|
||||
|
||||
.macro strh1 reg, ptr, val
|
||||
strh \reg, [\ptr], \val
|
||||
.endm
|
||||
/* This implementation handles overlaps and supports both memcpy and memmove
|
||||
from a single entry point. It uses unaligned accesses and branchless
|
||||
sequences to keep the code small, simple and improve performance.
|
||||
|
||||
.macro ldr1 reg, ptr, val
|
||||
ldr \reg, [\ptr], \val
|
||||
.endm
|
||||
Copies are split into 3 main cases: small copies of up to 32 bytes, medium
|
||||
copies of up to 128 bytes, and large copies. The overhead of the overlap
|
||||
check is negligible since it is only required for large copies.
|
||||
|
||||
.macro str1 reg, ptr, val
|
||||
str \reg, [\ptr], \val
|
||||
.endm
|
||||
|
||||
.macro ldp1 reg1, reg2, ptr, val
|
||||
ldp \reg1, \reg2, [\ptr], \val
|
||||
.endm
|
||||
|
||||
.macro stp1 reg1, reg2, ptr, val
|
||||
stp \reg1, \reg2, [\ptr], \val
|
||||
.endm
|
||||
Large copies use a software pipelined loop processing 64 bytes per iteration.
|
||||
The destination pointer is 16-byte aligned to minimize unaligned accesses.
|
||||
The loop tail is handled by always copying 64 bytes from the end.
|
||||
*/
|
||||
|
||||
SYM_FUNC_START_ALIAS(__memmove)
|
||||
SYM_FUNC_START_WEAK_ALIAS_PI(memmove)
|
||||
SYM_FUNC_START_ALIAS(__memcpy)
|
||||
SYM_FUNC_START_WEAK_PI(memcpy)
|
||||
#include "copy_template.S"
|
||||
add srcend, src, count
|
||||
add dstend, dstin, count
|
||||
cmp count, 128
|
||||
b.hi L(copy_long)
|
||||
cmp count, 32
|
||||
b.hi L(copy32_128)
|
||||
|
||||
/* Small copies: 0..32 bytes. */
|
||||
cmp count, 16
|
||||
b.lo L(copy16)
|
||||
ldp A_l, A_h, [src]
|
||||
ldp D_l, D_h, [srcend, -16]
|
||||
stp A_l, A_h, [dstin]
|
||||
stp D_l, D_h, [dstend, -16]
|
||||
ret
|
||||
|
||||
/* Copy 8-15 bytes. */
|
||||
L(copy16):
|
||||
tbz count, 3, L(copy8)
|
||||
ldr A_l, [src]
|
||||
ldr A_h, [srcend, -8]
|
||||
str A_l, [dstin]
|
||||
str A_h, [dstend, -8]
|
||||
ret
|
||||
|
||||
.p2align 3
|
||||
/* Copy 4-7 bytes. */
|
||||
L(copy8):
|
||||
tbz count, 2, L(copy4)
|
||||
ldr A_lw, [src]
|
||||
ldr B_lw, [srcend, -4]
|
||||
str A_lw, [dstin]
|
||||
str B_lw, [dstend, -4]
|
||||
ret
|
||||
|
||||
/* Copy 0..3 bytes using a branchless sequence. */
|
||||
L(copy4):
|
||||
cbz count, L(copy0)
|
||||
lsr tmp1, count, 1
|
||||
ldrb A_lw, [src]
|
||||
ldrb C_lw, [srcend, -1]
|
||||
ldrb B_lw, [src, tmp1]
|
||||
strb A_lw, [dstin]
|
||||
strb B_lw, [dstin, tmp1]
|
||||
strb C_lw, [dstend, -1]
|
||||
L(copy0):
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
/* Medium copies: 33..128 bytes. */
|
||||
L(copy32_128):
|
||||
ldp A_l, A_h, [src]
|
||||
ldp B_l, B_h, [src, 16]
|
||||
ldp C_l, C_h, [srcend, -32]
|
||||
ldp D_l, D_h, [srcend, -16]
|
||||
cmp count, 64
|
||||
b.hi L(copy128)
|
||||
stp A_l, A_h, [dstin]
|
||||
stp B_l, B_h, [dstin, 16]
|
||||
stp C_l, C_h, [dstend, -32]
|
||||
stp D_l, D_h, [dstend, -16]
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
/* Copy 65..128 bytes. */
|
||||
L(copy128):
|
||||
ldp E_l, E_h, [src, 32]
|
||||
ldp F_l, F_h, [src, 48]
|
||||
cmp count, 96
|
||||
b.ls L(copy96)
|
||||
ldp G_l, G_h, [srcend, -64]
|
||||
ldp H_l, H_h, [srcend, -48]
|
||||
stp G_l, G_h, [dstend, -64]
|
||||
stp H_l, H_h, [dstend, -48]
|
||||
L(copy96):
|
||||
stp A_l, A_h, [dstin]
|
||||
stp B_l, B_h, [dstin, 16]
|
||||
stp E_l, E_h, [dstin, 32]
|
||||
stp F_l, F_h, [dstin, 48]
|
||||
stp C_l, C_h, [dstend, -32]
|
||||
stp D_l, D_h, [dstend, -16]
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
/* Copy more than 128 bytes. */
|
||||
L(copy_long):
|
||||
/* Use backwards copy if there is an overlap. */
|
||||
sub tmp1, dstin, src
|
||||
cbz tmp1, L(copy0)
|
||||
cmp tmp1, count
|
||||
b.lo L(copy_long_backwards)
|
||||
|
||||
/* Copy 16 bytes and then align dst to 16-byte alignment. */
|
||||
|
||||
ldp D_l, D_h, [src]
|
||||
and tmp1, dstin, 15
|
||||
bic dst, dstin, 15
|
||||
sub src, src, tmp1
|
||||
add count, count, tmp1 /* Count is now 16 too large. */
|
||||
ldp A_l, A_h, [src, 16]
|
||||
stp D_l, D_h, [dstin]
|
||||
ldp B_l, B_h, [src, 32]
|
||||
ldp C_l, C_h, [src, 48]
|
||||
ldp D_l, D_h, [src, 64]!
|
||||
subs count, count, 128 + 16 /* Test and readjust count. */
|
||||
b.ls L(copy64_from_end)
|
||||
|
||||
L(loop64):
|
||||
stp A_l, A_h, [dst, 16]
|
||||
ldp A_l, A_h, [src, 16]
|
||||
stp B_l, B_h, [dst, 32]
|
||||
ldp B_l, B_h, [src, 32]
|
||||
stp C_l, C_h, [dst, 48]
|
||||
ldp C_l, C_h, [src, 48]
|
||||
stp D_l, D_h, [dst, 64]!
|
||||
ldp D_l, D_h, [src, 64]!
|
||||
subs count, count, 64
|
||||
b.hi L(loop64)
|
||||
|
||||
/* Write the last iteration and copy 64 bytes from the end. */
|
||||
L(copy64_from_end):
|
||||
ldp E_l, E_h, [srcend, -64]
|
||||
stp A_l, A_h, [dst, 16]
|
||||
ldp A_l, A_h, [srcend, -48]
|
||||
stp B_l, B_h, [dst, 32]
|
||||
ldp B_l, B_h, [srcend, -32]
|
||||
stp C_l, C_h, [dst, 48]
|
||||
ldp C_l, C_h, [srcend, -16]
|
||||
stp D_l, D_h, [dst, 64]
|
||||
stp E_l, E_h, [dstend, -64]
|
||||
stp A_l, A_h, [dstend, -48]
|
||||
stp B_l, B_h, [dstend, -32]
|
||||
stp C_l, C_h, [dstend, -16]
|
||||
ret
|
||||
|
||||
.p2align 4
|
||||
|
||||
/* Large backwards copy for overlapping copies.
|
||||
Copy 16 bytes and then align dst to 16-byte alignment. */
|
||||
L(copy_long_backwards):
|
||||
ldp D_l, D_h, [srcend, -16]
|
||||
and tmp1, dstend, 15
|
||||
sub srcend, srcend, tmp1
|
||||
sub count, count, tmp1
|
||||
ldp A_l, A_h, [srcend, -16]
|
||||
stp D_l, D_h, [dstend, -16]
|
||||
ldp B_l, B_h, [srcend, -32]
|
||||
ldp C_l, C_h, [srcend, -48]
|
||||
ldp D_l, D_h, [srcend, -64]!
|
||||
sub dstend, dstend, tmp1
|
||||
subs count, count, 128
|
||||
b.ls L(copy64_from_start)
|
||||
|
||||
L(loop64_backwards):
|
||||
stp A_l, A_h, [dstend, -16]
|
||||
ldp A_l, A_h, [srcend, -16]
|
||||
stp B_l, B_h, [dstend, -32]
|
||||
ldp B_l, B_h, [srcend, -32]
|
||||
stp C_l, C_h, [dstend, -48]
|
||||
ldp C_l, C_h, [srcend, -48]
|
||||
stp D_l, D_h, [dstend, -64]!
|
||||
ldp D_l, D_h, [srcend, -64]!
|
||||
subs count, count, 64
|
||||
b.hi L(loop64_backwards)
|
||||
|
||||
/* Write the last iteration and copy 64 bytes from the start. */
|
||||
L(copy64_from_start):
|
||||
ldp G_l, G_h, [src, 48]
|
||||
stp A_l, A_h, [dstend, -16]
|
||||
ldp A_l, A_h, [src, 32]
|
||||
stp B_l, B_h, [dstend, -32]
|
||||
ldp B_l, B_h, [src, 16]
|
||||
stp C_l, C_h, [dstend, -48]
|
||||
ldp C_l, C_h, [src]
|
||||
stp D_l, D_h, [dstend, -64]
|
||||
stp G_l, G_h, [dstin, 48]
|
||||
stp A_l, A_h, [dstin, 32]
|
||||
stp B_l, B_h, [dstin, 16]
|
||||
stp C_l, C_h, [dstin]
|
||||
ret
|
||||
|
||||
SYM_FUNC_END_PI(memcpy)
|
||||
EXPORT_SYMBOL(memcpy)
|
||||
SYM_FUNC_END_ALIAS(__memcpy)
|
||||
EXPORT_SYMBOL(__memcpy)
|
||||
SYM_FUNC_END_ALIAS_PI(memmove)
|
||||
EXPORT_SYMBOL(memmove)
|
||||
SYM_FUNC_END_ALIAS(__memmove)
|
||||
EXPORT_SYMBOL(__memmove)
|
||||
|
@ -1,189 +0,0 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
#include <asm/cache.h>
|
||||
|
||||
/*
|
||||
* Move a buffer from src to test (alignment handled by the hardware).
|
||||
* If dest <= src, call memcpy, otherwise copy in reverse order.
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - dest
|
||||
* x1 - src
|
||||
* x2 - n
|
||||
* Returns:
|
||||
* x0 - dest
|
||||
*/
|
||||
dstin .req x0
|
||||
src .req x1
|
||||
count .req x2
|
||||
tmp1 .req x3
|
||||
tmp1w .req w3
|
||||
tmp2 .req x4
|
||||
tmp2w .req w4
|
||||
tmp3 .req x5
|
||||
tmp3w .req w5
|
||||
dst .req x6
|
||||
|
||||
A_l .req x7
|
||||
A_h .req x8
|
||||
B_l .req x9
|
||||
B_h .req x10
|
||||
C_l .req x11
|
||||
C_h .req x12
|
||||
D_l .req x13
|
||||
D_h .req x14
|
||||
|
||||
SYM_FUNC_START_ALIAS(__memmove)
|
||||
SYM_FUNC_START_WEAK_PI(memmove)
|
||||
cmp dstin, src
|
||||
b.lo __memcpy
|
||||
add tmp1, src, count
|
||||
cmp dstin, tmp1
|
||||
b.hs __memcpy /* No overlap. */
|
||||
|
||||
add dst, dstin, count
|
||||
add src, src, count
|
||||
cmp count, #16
|
||||
b.lo .Ltail15 /*probably non-alignment accesses.*/
|
||||
|
||||
ands tmp2, src, #15 /* Bytes to reach alignment. */
|
||||
b.eq .LSrcAligned
|
||||
sub count, count, tmp2
|
||||
/*
|
||||
* process the aligned offset length to make the src aligned firstly.
|
||||
* those extra instructions' cost is acceptable. It also make the
|
||||
* coming accesses are based on aligned address.
|
||||
*/
|
||||
tbz tmp2, #0, 1f
|
||||
ldrb tmp1w, [src, #-1]!
|
||||
strb tmp1w, [dst, #-1]!
|
||||
1:
|
||||
tbz tmp2, #1, 2f
|
||||
ldrh tmp1w, [src, #-2]!
|
||||
strh tmp1w, [dst, #-2]!
|
||||
2:
|
||||
tbz tmp2, #2, 3f
|
||||
ldr tmp1w, [src, #-4]!
|
||||
str tmp1w, [dst, #-4]!
|
||||
3:
|
||||
tbz tmp2, #3, .LSrcAligned
|
||||
ldr tmp1, [src, #-8]!
|
||||
str tmp1, [dst, #-8]!
|
||||
|
||||
.LSrcAligned:
|
||||
cmp count, #64
|
||||
b.ge .Lcpy_over64
|
||||
|
||||
/*
|
||||
* Deal with small copies quickly by dropping straight into the
|
||||
* exit block.
|
||||
*/
|
||||
.Ltail63:
|
||||
/*
|
||||
* Copy up to 48 bytes of data. At this point we only need the
|
||||
* bottom 6 bits of count to be accurate.
|
||||
*/
|
||||
ands tmp1, count, #0x30
|
||||
b.eq .Ltail15
|
||||
cmp tmp1w, #0x20
|
||||
b.eq 1f
|
||||
b.lt 2f
|
||||
ldp A_l, A_h, [src, #-16]!
|
||||
stp A_l, A_h, [dst, #-16]!
|
||||
1:
|
||||
ldp A_l, A_h, [src, #-16]!
|
||||
stp A_l, A_h, [dst, #-16]!
|
||||
2:
|
||||
ldp A_l, A_h, [src, #-16]!
|
||||
stp A_l, A_h, [dst, #-16]!
|
||||
|
||||
.Ltail15:
|
||||
tbz count, #3, 1f
|
||||
ldr tmp1, [src, #-8]!
|
||||
str tmp1, [dst, #-8]!
|
||||
1:
|
||||
tbz count, #2, 2f
|
||||
ldr tmp1w, [src, #-4]!
|
||||
str tmp1w, [dst, #-4]!
|
||||
2:
|
||||
tbz count, #1, 3f
|
||||
ldrh tmp1w, [src, #-2]!
|
||||
strh tmp1w, [dst, #-2]!
|
||||
3:
|
||||
tbz count, #0, .Lexitfunc
|
||||
ldrb tmp1w, [src, #-1]
|
||||
strb tmp1w, [dst, #-1]
|
||||
|
||||
.Lexitfunc:
|
||||
ret
|
||||
|
||||
.Lcpy_over64:
|
||||
subs count, count, #128
|
||||
b.ge .Lcpy_body_large
|
||||
/*
|
||||
* Less than 128 bytes to copy, so handle 64 bytes here and then jump
|
||||
* to the tail.
|
||||
*/
|
||||
ldp A_l, A_h, [src, #-16]
|
||||
stp A_l, A_h, [dst, #-16]
|
||||
ldp B_l, B_h, [src, #-32]
|
||||
ldp C_l, C_h, [src, #-48]
|
||||
stp B_l, B_h, [dst, #-32]
|
||||
stp C_l, C_h, [dst, #-48]
|
||||
ldp D_l, D_h, [src, #-64]!
|
||||
stp D_l, D_h, [dst, #-64]!
|
||||
|
||||
tst count, #0x3f
|
||||
b.ne .Ltail63
|
||||
ret
|
||||
|
||||
/*
|
||||
* Critical loop. Start at a new cache line boundary. Assuming
|
||||
* 64 bytes per line this ensures the entire loop is in one line.
|
||||
*/
|
||||
.p2align L1_CACHE_SHIFT
|
||||
.Lcpy_body_large:
|
||||
/* pre-load 64 bytes data. */
|
||||
ldp A_l, A_h, [src, #-16]
|
||||
ldp B_l, B_h, [src, #-32]
|
||||
ldp C_l, C_h, [src, #-48]
|
||||
ldp D_l, D_h, [src, #-64]!
|
||||
1:
|
||||
/*
|
||||
* interlace the load of next 64 bytes data block with store of the last
|
||||
* loaded 64 bytes data.
|
||||
*/
|
||||
stp A_l, A_h, [dst, #-16]
|
||||
ldp A_l, A_h, [src, #-16]
|
||||
stp B_l, B_h, [dst, #-32]
|
||||
ldp B_l, B_h, [src, #-32]
|
||||
stp C_l, C_h, [dst, #-48]
|
||||
ldp C_l, C_h, [src, #-48]
|
||||
stp D_l, D_h, [dst, #-64]!
|
||||
ldp D_l, D_h, [src, #-64]!
|
||||
subs count, count, #64
|
||||
b.ge 1b
|
||||
stp A_l, A_h, [dst, #-16]
|
||||
stp B_l, B_h, [dst, #-32]
|
||||
stp C_l, C_h, [dst, #-48]
|
||||
stp D_l, D_h, [dst, #-64]!
|
||||
|
||||
tst count, #0x3f
|
||||
b.ne .Ltail63
|
||||
ret
|
||||
SYM_FUNC_END_PI(memmove)
|
||||
EXPORT_SYMBOL(memmove)
|
||||
SYM_FUNC_END_ALIAS(__memmove)
|
||||
EXPORT_SYMBOL(__memmove)
|
@ -1,84 +1,123 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2012-2021, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/afd6244a1f8d9229/string/aarch64/strcmp.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* compare two strings
|
||||
/* Assumptions:
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const string 1 pointer
|
||||
* x1 - const string 2 pointer
|
||||
* Returns:
|
||||
* x0 - an integer less than, equal to, or greater than zero
|
||||
* if s1 is found, respectively, to be less than, to match,
|
||||
* or be greater than s2.
|
||||
* ARMv8-a, AArch64
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
#define REP8_80 0x8080808080808080
|
||||
|
||||
/* Parameters and result. */
|
||||
src1 .req x0
|
||||
src2 .req x1
|
||||
result .req x0
|
||||
#define src1 x0
|
||||
#define src2 x1
|
||||
#define result x0
|
||||
|
||||
/* Internal variables. */
|
||||
data1 .req x2
|
||||
data1w .req w2
|
||||
data2 .req x3
|
||||
data2w .req w3
|
||||
has_nul .req x4
|
||||
diff .req x5
|
||||
syndrome .req x6
|
||||
tmp1 .req x7
|
||||
tmp2 .req x8
|
||||
tmp3 .req x9
|
||||
zeroones .req x10
|
||||
pos .req x11
|
||||
#define data1 x2
|
||||
#define data1w w2
|
||||
#define data2 x3
|
||||
#define data2w w3
|
||||
#define has_nul x4
|
||||
#define diff x5
|
||||
#define syndrome x6
|
||||
#define tmp1 x7
|
||||
#define tmp2 x8
|
||||
#define tmp3 x9
|
||||
#define zeroones x10
|
||||
#define pos x11
|
||||
|
||||
/* Start of performance-critical section -- one 64B cache line. */
|
||||
.align 6
|
||||
SYM_FUNC_START_WEAK_PI(strcmp)
|
||||
eor tmp1, src1, src2
|
||||
mov zeroones, #REP8_01
|
||||
tst tmp1, #7
|
||||
b.ne .Lmisaligned8
|
||||
b.ne L(misaligned8)
|
||||
ands tmp1, src1, #7
|
||||
b.ne .Lmutual_align
|
||||
|
||||
/*
|
||||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
* can be done in parallel across the entire word.
|
||||
*/
|
||||
.Lloop_aligned:
|
||||
b.ne L(mutual_align)
|
||||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
can be done in parallel across the entire word. */
|
||||
L(loop_aligned):
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
.Lstart_realigned:
|
||||
L(start_realigned):
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, .Lloop_aligned
|
||||
b .Lcal_cmpresult
|
||||
cbz syndrome, L(loop_aligned)
|
||||
/* End of performance-critical section -- one 64B cache line. */
|
||||
|
||||
.Lmutual_align:
|
||||
/*
|
||||
* Sources are mutually aligned, but are not currently at an
|
||||
* alignment boundary. Round down the addresses and then mask off
|
||||
* the bytes that preceed the start point.
|
||||
*/
|
||||
L(end):
|
||||
#ifndef __AARCH64EB__
|
||||
rev syndrome, syndrome
|
||||
rev data1, data1
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
clz pos, syndrome
|
||||
rev data2, data2
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#else
|
||||
/* For big-endian we cannot use the trick with the syndrome value
|
||||
as carry-propagation can corrupt the upper bits if the trailing
|
||||
bytes in the string contain 0x01. */
|
||||
/* However, if there is no NUL byte in the dword, we can generate
|
||||
the result directly. We can't just subtract the bytes as the
|
||||
MSB might be significant. */
|
||||
cbnz has_nul, 1f
|
||||
cmp data1, data2
|
||||
cset result, ne
|
||||
cneg result, result, lo
|
||||
ret
|
||||
1:
|
||||
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
|
||||
rev tmp3, data1
|
||||
sub tmp1, tmp3, zeroones
|
||||
orr tmp2, tmp3, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
rev has_nul, has_nul
|
||||
orr syndrome, diff, has_nul
|
||||
clz pos, syndrome
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#endif
|
||||
|
||||
L(mutual_align):
|
||||
/* Sources are mutually aligned, but are not currently at an
|
||||
alignment boundary. Round down the addresses and then mask off
|
||||
the bytes that preceed the start point. */
|
||||
bic src1, src1, #7
|
||||
bic src2, src2, #7
|
||||
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
|
||||
@ -86,138 +125,52 @@ SYM_FUNC_START_WEAK_PI(strcmp)
|
||||
neg tmp1, tmp1 /* Bits to alignment -64. */
|
||||
ldr data2, [src2], #8
|
||||
mov tmp2, #~0
|
||||
#ifdef __AARCH64EB__
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
lsl tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
|
||||
#else
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
|
||||
lsr tmp2, tmp2, tmp1 /* Shift (tmp1 & 63). */
|
||||
#endif
|
||||
orr data1, data1, tmp2
|
||||
orr data2, data2, tmp2
|
||||
b .Lstart_realigned
|
||||
b L(start_realigned)
|
||||
|
||||
.Lmisaligned8:
|
||||
/*
|
||||
* Get the align offset length to compare per byte first.
|
||||
* After this process, one string's address will be aligned.
|
||||
*/
|
||||
and tmp1, src1, #7
|
||||
neg tmp1, tmp1
|
||||
add tmp1, tmp1, #8
|
||||
and tmp2, src2, #7
|
||||
neg tmp2, tmp2
|
||||
add tmp2, tmp2, #8
|
||||
subs tmp3, tmp1, tmp2
|
||||
csel pos, tmp1, tmp2, hi /*Choose the maximum. */
|
||||
.Ltinycmp:
|
||||
L(misaligned8):
|
||||
/* Align SRC1 to 8 bytes and then compare 8 bytes at a time, always
|
||||
checking to make sure that we don't access beyond page boundary in
|
||||
SRC2. */
|
||||
tst src1, #7
|
||||
b.eq L(loop_misaligned)
|
||||
L(do_misaligned):
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs pos, pos, #1
|
||||
ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.eq .Ltinycmp
|
||||
cbnz pos, 1f /*find the null or unequal...*/
|
||||
cmp data1w, #1
|
||||
ccmp data1w, data2w, #0, cs
|
||||
b.eq .Lstart_align /*the last bytes are equal....*/
|
||||
1:
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.ne L(done)
|
||||
tst src1, #7
|
||||
b.ne L(do_misaligned)
|
||||
|
||||
L(loop_misaligned):
|
||||
/* Test if we are within the last dword of the end of a 4K page. If
|
||||
yes then jump back to the misaligned loop to copy a byte at a time. */
|
||||
and tmp1, src2, #0xff8
|
||||
eor tmp1, tmp1, #0xff8
|
||||
cbz tmp1, L(do_misaligned)
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bic has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, L(loop_misaligned)
|
||||
b L(end)
|
||||
|
||||
L(done):
|
||||
sub result, data1, data2
|
||||
ret
|
||||
|
||||
.Lstart_align:
|
||||
ands xzr, src1, #7
|
||||
b.eq .Lrecal_offset
|
||||
/*process more leading bytes to make str1 aligned...*/
|
||||
add src1, src1, tmp3
|
||||
add src2, src2, tmp3
|
||||
/*load 8 bytes from aligned str1 and non-aligned str2..*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbnz syndrome, .Lcal_cmpresult
|
||||
/*How far is the current str2 from the alignment boundary...*/
|
||||
and tmp3, tmp3, #7
|
||||
.Lrecal_offset:
|
||||
neg pos, tmp3
|
||||
.Lloopcmp_proc:
|
||||
/*
|
||||
* Divide the eight bytes into two parts. First,backwards the src2
|
||||
* to an alignment boundary,load eight bytes from the SRC2 alignment
|
||||
* boundary,then compare with the relative bytes from SRC1.
|
||||
* If all 8 bytes are equal,then start the second part's comparison.
|
||||
* Otherwise finish the comparison.
|
||||
* This special handle can garantee all the accesses are in the
|
||||
* thread/task space in avoid to overrange access.
|
||||
*/
|
||||
ldr data1, [src1,pos]
|
||||
ldr data2, [src2,pos]
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbnz syndrome, .Lcal_cmpresult
|
||||
|
||||
/*The second part process*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, .Lloopcmp_proc
|
||||
|
||||
.Lcal_cmpresult:
|
||||
/*
|
||||
* reversed the byte-order as big-endian,then CLZ can find the most
|
||||
* significant zero bits.
|
||||
*/
|
||||
CPU_LE( rev syndrome, syndrome )
|
||||
CPU_LE( rev data1, data1 )
|
||||
CPU_LE( rev data2, data2 )
|
||||
|
||||
/*
|
||||
* For big-endian we cannot use the trick with the syndrome value
|
||||
* as carry-propagation can corrupt the upper bits if the trailing
|
||||
* bytes in the string contain 0x01.
|
||||
* However, if there is no NUL byte in the dword, we can generate
|
||||
* the result directly. We cannot just subtract the bytes as the
|
||||
* MSB might be significant.
|
||||
*/
|
||||
CPU_BE( cbnz has_nul, 1f )
|
||||
CPU_BE( cmp data1, data2 )
|
||||
CPU_BE( cset result, ne )
|
||||
CPU_BE( cneg result, result, lo )
|
||||
CPU_BE( ret )
|
||||
CPU_BE( 1: )
|
||||
/*Re-compute the NUL-byte detection, using a byte-reversed value. */
|
||||
CPU_BE( rev tmp3, data1 )
|
||||
CPU_BE( sub tmp1, tmp3, zeroones )
|
||||
CPU_BE( orr tmp2, tmp3, #REP8_7f )
|
||||
CPU_BE( bic has_nul, tmp1, tmp2 )
|
||||
CPU_BE( rev has_nul, has_nul )
|
||||
CPU_BE( orr syndrome, diff, has_nul )
|
||||
|
||||
clz pos, syndrome
|
||||
/*
|
||||
* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
* that is different, or the top bit of the first zero byte.
|
||||
* Shifting left now will bring the critical information into the
|
||||
* top bits.
|
||||
*/
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/*
|
||||
* But we need to zero-extend (char is unsigned) the value and then
|
||||
* perform a signed 32-bit subtraction.
|
||||
*/
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
SYM_FUNC_END_PI(strcmp)
|
||||
EXPORT_SYMBOL_NOKASAN(strcmp)
|
||||
|
@ -1,115 +1,203 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2013-2021, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/98e4d6a5c13c8e54/string/aarch64/strlen.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* calculate the length of a string
|
||||
/* Assumptions:
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const string pointer
|
||||
* Returns:
|
||||
* x0 - the return length of specific string
|
||||
* ARMv8-a, AArch64, unaligned accesses, min page size 4k.
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
/* Arguments and results. */
|
||||
srcin .req x0
|
||||
len .req x0
|
||||
#define srcin x0
|
||||
#define len x0
|
||||
|
||||
/* Locals and temporaries. */
|
||||
src .req x1
|
||||
data1 .req x2
|
||||
data2 .req x3
|
||||
data2a .req x4
|
||||
has_nul1 .req x5
|
||||
has_nul2 .req x6
|
||||
tmp1 .req x7
|
||||
tmp2 .req x8
|
||||
tmp3 .req x9
|
||||
tmp4 .req x10
|
||||
zeroones .req x11
|
||||
pos .req x12
|
||||
#define src x1
|
||||
#define data1 x2
|
||||
#define data2 x3
|
||||
#define has_nul1 x4
|
||||
#define has_nul2 x5
|
||||
#define tmp1 x4
|
||||
#define tmp2 x5
|
||||
#define tmp3 x6
|
||||
#define tmp4 x7
|
||||
#define zeroones x8
|
||||
|
||||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
can be done in parallel across the entire word. A faster check
|
||||
(X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives
|
||||
false hits for characters 129..255. */
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
#define REP8_80 0x8080808080808080
|
||||
|
||||
#define MIN_PAGE_SIZE 4096
|
||||
|
||||
/* Since strings are short on average, we check the first 16 bytes
|
||||
of the string for a NUL character. In order to do an unaligned ldp
|
||||
safely we have to do a page cross check first. If there is a NUL
|
||||
byte we calculate the length from the 2 8-byte words using
|
||||
conditional select to reduce branch mispredictions (it is unlikely
|
||||
strlen will be repeatedly called on strings with the same length).
|
||||
|
||||
If the string is longer than 16 bytes, we align src so don't need
|
||||
further page cross checks, and process 32 bytes per iteration
|
||||
using the fast NUL check. If we encounter non-ASCII characters,
|
||||
fallback to a second loop using the full NUL check.
|
||||
|
||||
If the page cross check fails, we read 16 bytes from an aligned
|
||||
address, remove any characters before the string, and continue
|
||||
in the main loop using aligned loads. Since strings crossing a
|
||||
page in the first 16 bytes are rare (probability of
|
||||
16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
|
||||
|
||||
AArch64 systems have a minimum page size of 4k. We don't bother
|
||||
checking for larger page sizes - the cost of setting up the correct
|
||||
page size is just not worth the extra gain from a small reduction in
|
||||
the cases taking the slow path. Note that we only care about
|
||||
whether the first fetch, which may be misaligned, crosses a page
|
||||
boundary. */
|
||||
|
||||
SYM_FUNC_START_WEAK_PI(strlen)
|
||||
mov zeroones, #REP8_01
|
||||
bic src, srcin, #15
|
||||
ands tmp1, srcin, #15
|
||||
b.ne .Lmisaligned
|
||||
/*
|
||||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
* can be done in parallel across the entire word.
|
||||
*/
|
||||
/*
|
||||
* The inner loop deals with two Dwords at a time. This has a
|
||||
* slightly higher start-up cost, but we should win quite quickly,
|
||||
* especially on cores with a high number of issue slots per
|
||||
* cycle, as we get much better parallelism out of the operations.
|
||||
*/
|
||||
.Lloop:
|
||||
ldp data1, data2, [src], #16
|
||||
.Lrealigned:
|
||||
and tmp1, srcin, MIN_PAGE_SIZE - 1
|
||||
mov zeroones, REP8_01
|
||||
cmp tmp1, MIN_PAGE_SIZE - 16
|
||||
b.gt L(page_cross)
|
||||
ldp data1, data2, [srcin]
|
||||
#ifdef __AARCH64EB__
|
||||
/* For big-endian, carry propagation (if the final byte in the
|
||||
string is 0x01) means we cannot use has_nul1/2 directly.
|
||||
Since we expect strings to be small and early-exit,
|
||||
byte-swap the data now so has_null1/2 will be correct. */
|
||||
rev data1, data1
|
||||
rev data2, data2
|
||||
#endif
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, #REP8_7f
|
||||
bic has_nul1, tmp1, tmp2
|
||||
bics has_nul2, tmp3, tmp4
|
||||
ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */
|
||||
b.eq .Lloop
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(main_loop_entry)
|
||||
|
||||
sub len, src, srcin
|
||||
cbz has_nul1, .Lnul_in_data2
|
||||
CPU_BE( mov data2, data1 ) /*prepare data to re-calculate the syndrome*/
|
||||
sub len, len, #8
|
||||
mov has_nul2, has_nul1
|
||||
.Lnul_in_data2:
|
||||
/*
|
||||
* For big-endian, carry propagation (if the final byte in the
|
||||
* string is 0x01) means we cannot use has_nul directly. The
|
||||
* easiest way to get the correct byte is to byte-swap the data
|
||||
* and calculate the syndrome a second time.
|
||||
*/
|
||||
CPU_BE( rev data2, data2 )
|
||||
CPU_BE( sub tmp1, data2, zeroones )
|
||||
CPU_BE( orr tmp2, data2, #REP8_7f )
|
||||
CPU_BE( bic has_nul2, tmp1, tmp2 )
|
||||
|
||||
sub len, len, #8
|
||||
rev has_nul2, has_nul2
|
||||
clz pos, has_nul2
|
||||
add len, len, pos, lsr #3 /* Bits to bytes. */
|
||||
/* Enter with C = has_nul1 == 0. */
|
||||
csel has_nul1, has_nul1, has_nul2, cc
|
||||
mov len, 8
|
||||
rev has_nul1, has_nul1
|
||||
clz tmp1, has_nul1
|
||||
csel len, xzr, len, cc
|
||||
add len, len, tmp1, lsr 3
|
||||
ret
|
||||
|
||||
.Lmisaligned:
|
||||
cmp tmp1, #8
|
||||
neg tmp1, tmp1
|
||||
ldp data1, data2, [src], #16
|
||||
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
|
||||
mov tmp2, #~0
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
/* The inner loop processes 32 bytes per iteration and uses the fast
|
||||
NUL check. If we encounter non-ASCII characters, use a second
|
||||
loop with the accurate NUL check. */
|
||||
.p2align 4
|
||||
L(main_loop_entry):
|
||||
bic src, srcin, 15
|
||||
sub src, src, 16
|
||||
L(main_loop):
|
||||
ldp data1, data2, [src, 32]!
|
||||
L(page_cross_entry):
|
||||
sub tmp1, data1, zeroones
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp2, tmp1, tmp3
|
||||
tst tmp2, zeroones, lsl 7
|
||||
bne 1f
|
||||
ldp data1, data2, [src, 16]
|
||||
sub tmp1, data1, zeroones
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp2, tmp1, tmp3
|
||||
tst tmp2, zeroones, lsl 7
|
||||
beq L(main_loop)
|
||||
add src, src, 16
|
||||
1:
|
||||
/* The fast check failed, so do the slower, accurate NUL check. */
|
||||
orr tmp2, data1, REP8_7f
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(nonascii_loop)
|
||||
|
||||
/* Enter with C = has_nul1 == 0. */
|
||||
L(tail):
|
||||
#ifdef __AARCH64EB__
|
||||
/* For big-endian, carry propagation (if the final byte in the
|
||||
string is 0x01) means we cannot use has_nul1/2 directly. The
|
||||
easiest way to get the correct byte is to byte-swap the data
|
||||
and calculate the syndrome a second time. */
|
||||
csel data1, data1, data2, cc
|
||||
rev data1, data1
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
bic has_nul1, tmp1, tmp2
|
||||
#else
|
||||
csel has_nul1, has_nul1, has_nul2, cc
|
||||
#endif
|
||||
sub len, src, srcin
|
||||
rev has_nul1, has_nul1
|
||||
add tmp2, len, 8
|
||||
clz tmp1, has_nul1
|
||||
csel len, len, tmp2, cc
|
||||
add len, len, tmp1, lsr 3
|
||||
ret
|
||||
|
||||
L(nonascii_loop):
|
||||
ldp data1, data2, [src, 16]!
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
bne L(tail)
|
||||
ldp data1, data2, [src, 16]!
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(nonascii_loop)
|
||||
b L(tail)
|
||||
|
||||
/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
|
||||
srcin to 0x7f, so we ignore any NUL bytes before the string.
|
||||
Then continue in the aligned loop. */
|
||||
L(page_cross):
|
||||
bic src, srcin, 15
|
||||
ldp data1, data2, [src]
|
||||
lsl tmp1, srcin, 3
|
||||
mov tmp4, -1
|
||||
#ifdef __AARCH64EB__
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
lsr tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
|
||||
#else
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
lsl tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
|
||||
#endif
|
||||
orr tmp1, tmp1, REP8_80
|
||||
orn data1, data1, tmp1
|
||||
orn tmp2, data2, tmp1
|
||||
tst srcin, 8
|
||||
csel data1, data1, tmp4, eq
|
||||
csel data2, data2, tmp2, eq
|
||||
b L(page_cross_entry)
|
||||
|
||||
orr data1, data1, tmp2
|
||||
orr data2a, data2, tmp2
|
||||
csinv data1, data1, xzr, le
|
||||
csel data2, data2, data2a, le
|
||||
b .Lrealigned
|
||||
SYM_FUNC_END_PI(strlen)
|
||||
EXPORT_SYMBOL_NOKASAN(strlen)
|
||||
|
@ -1,299 +1,261 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2013-2021, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/e823e3abf5f89ecb/string/aarch64/strncmp.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* compare two strings
|
||||
/* Assumptions:
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const string 1 pointer
|
||||
* x1 - const string 2 pointer
|
||||
* x2 - the maximal length to be compared
|
||||
* Returns:
|
||||
* x0 - an integer less than, equal to, or greater than zero if s1 is found,
|
||||
* respectively, to be less than, to match, or be greater than s2.
|
||||
* ARMv8-a, AArch64
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
#define REP8_80 0x8080808080808080
|
||||
|
||||
/* Parameters and result. */
|
||||
src1 .req x0
|
||||
src2 .req x1
|
||||
limit .req x2
|
||||
result .req x0
|
||||
#define src1 x0
|
||||
#define src2 x1
|
||||
#define limit x2
|
||||
#define result x0
|
||||
|
||||
/* Internal variables. */
|
||||
data1 .req x3
|
||||
data1w .req w3
|
||||
data2 .req x4
|
||||
data2w .req w4
|
||||
has_nul .req x5
|
||||
diff .req x6
|
||||
syndrome .req x7
|
||||
tmp1 .req x8
|
||||
tmp2 .req x9
|
||||
tmp3 .req x10
|
||||
zeroones .req x11
|
||||
pos .req x12
|
||||
limit_wd .req x13
|
||||
mask .req x14
|
||||
endloop .req x15
|
||||
#define data1 x3
|
||||
#define data1w w3
|
||||
#define data2 x4
|
||||
#define data2w w4
|
||||
#define has_nul x5
|
||||
#define diff x6
|
||||
#define syndrome x7
|
||||
#define tmp1 x8
|
||||
#define tmp2 x9
|
||||
#define tmp3 x10
|
||||
#define zeroones x11
|
||||
#define pos x12
|
||||
#define limit_wd x13
|
||||
#define mask x14
|
||||
#define endloop x15
|
||||
#define count mask
|
||||
|
||||
SYM_FUNC_START_WEAK_PI(strncmp)
|
||||
cbz limit, .Lret0
|
||||
cbz limit, L(ret0)
|
||||
eor tmp1, src1, src2
|
||||
mov zeroones, #REP8_01
|
||||
tst tmp1, #7
|
||||
b.ne .Lmisaligned8
|
||||
ands tmp1, src1, #7
|
||||
b.ne .Lmutual_align
|
||||
and count, src1, #7
|
||||
b.ne L(misaligned8)
|
||||
cbnz count, L(mutual_align)
|
||||
/* Calculate the number of full and partial words -1. */
|
||||
/*
|
||||
* when limit is mulitply of 8, if not sub 1,
|
||||
* the judgement of last dword will wrong.
|
||||
*/
|
||||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
|
||||
lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
|
||||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
|
||||
lsr limit_wd, limit_wd, #3 /* Convert to Dwords. */
|
||||
|
||||
/*
|
||||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
* can be done in parallel across the entire word.
|
||||
*/
|
||||
.Lloop_aligned:
|
||||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
can be done in parallel across the entire word. */
|
||||
.p2align 4
|
||||
L(loop_aligned):
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
.Lstart_realigned:
|
||||
L(start_realigned):
|
||||
subs limit_wd, limit_wd, #1
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, pl /* Last Dword or differences.*/
|
||||
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, pl /* Last Dword or differences. */
|
||||
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
ccmp endloop, #0, #0, eq
|
||||
b.eq .Lloop_aligned
|
||||
b.eq L(loop_aligned)
|
||||
/* End of main loop */
|
||||
|
||||
/*Not reached the limit, must have found the end or a diff. */
|
||||
tbz limit_wd, #63, .Lnot_limit
|
||||
/* Not reached the limit, must have found the end or a diff. */
|
||||
tbz limit_wd, #63, L(not_limit)
|
||||
|
||||
/* Limit % 8 == 0 => all bytes significant. */
|
||||
ands limit, limit, #7
|
||||
b.eq .Lnot_limit
|
||||
b.eq L(not_limit)
|
||||
|
||||
lsl limit, limit, #3 /* Bits -> bytes. */
|
||||
lsl limit, limit, #3 /* Bits -> bytes. */
|
||||
mov mask, #~0
|
||||
CPU_BE( lsr mask, mask, limit )
|
||||
CPU_LE( lsl mask, mask, limit )
|
||||
#ifdef __AARCH64EB__
|
||||
lsr mask, mask, limit
|
||||
#else
|
||||
lsl mask, mask, limit
|
||||
#endif
|
||||
bic data1, data1, mask
|
||||
bic data2, data2, mask
|
||||
|
||||
/* Make sure that the NUL byte is marked in the syndrome. */
|
||||
orr has_nul, has_nul, mask
|
||||
|
||||
.Lnot_limit:
|
||||
L(not_limit):
|
||||
orr syndrome, diff, has_nul
|
||||
b .Lcal_cmpresult
|
||||
|
||||
.Lmutual_align:
|
||||
/*
|
||||
* Sources are mutually aligned, but are not currently at an
|
||||
* alignment boundary. Round down the addresses and then mask off
|
||||
* the bytes that precede the start point.
|
||||
* We also need to adjust the limit calculations, but without
|
||||
* overflowing if the limit is near ULONG_MAX.
|
||||
*/
|
||||
bic src1, src1, #7
|
||||
bic src2, src2, #7
|
||||
ldr data1, [src1], #8
|
||||
neg tmp3, tmp1, lsl #3 /* 64 - bits(bytes beyond align). */
|
||||
ldr data2, [src2], #8
|
||||
mov tmp2, #~0
|
||||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
CPU_BE( lsl tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp3 ) /* Shift (tmp1 & 63). */
|
||||
|
||||
and tmp3, limit_wd, #7
|
||||
lsr limit_wd, limit_wd, #3
|
||||
/* Adjust the limit. Only low 3 bits used, so overflow irrelevant.*/
|
||||
add limit, limit, tmp1
|
||||
add tmp3, tmp3, tmp1
|
||||
orr data1, data1, tmp2
|
||||
orr data2, data2, tmp2
|
||||
add limit_wd, limit_wd, tmp3, lsr #3
|
||||
b .Lstart_realigned
|
||||
|
||||
/*when src1 offset is not equal to src2 offset...*/
|
||||
.Lmisaligned8:
|
||||
cmp limit, #8
|
||||
b.lo .Ltiny8proc /*limit < 8... */
|
||||
/*
|
||||
* Get the align offset length to compare per byte first.
|
||||
* After this process, one string's address will be aligned.*/
|
||||
and tmp1, src1, #7
|
||||
neg tmp1, tmp1
|
||||
add tmp1, tmp1, #8
|
||||
and tmp2, src2, #7
|
||||
neg tmp2, tmp2
|
||||
add tmp2, tmp2, #8
|
||||
subs tmp3, tmp1, tmp2
|
||||
csel pos, tmp1, tmp2, hi /*Choose the maximum. */
|
||||
/*
|
||||
* Here, limit is not less than 8, so directly run .Ltinycmp
|
||||
* without checking the limit.*/
|
||||
sub limit, limit, pos
|
||||
.Ltinycmp:
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs pos, pos, #1
|
||||
ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.eq .Ltinycmp
|
||||
cbnz pos, 1f /*find the null or unequal...*/
|
||||
cmp data1w, #1
|
||||
ccmp data1w, data2w, #0, cs
|
||||
b.eq .Lstart_align /*the last bytes are equal....*/
|
||||
1:
|
||||
sub result, data1, data2
|
||||
ret
|
||||
|
||||
.Lstart_align:
|
||||
lsr limit_wd, limit, #3
|
||||
cbz limit_wd, .Lremain8
|
||||
/*process more leading bytes to make str1 aligned...*/
|
||||
ands xzr, src1, #7
|
||||
b.eq .Lrecal_offset
|
||||
add src1, src1, tmp3 /*tmp3 is positive in this branch.*/
|
||||
add src2, src2, tmp3
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
|
||||
sub limit, limit, tmp3
|
||||
lsr limit_wd, limit, #3
|
||||
subs limit_wd, limit_wd, #1
|
||||
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
|
||||
bics has_nul, tmp1, tmp2
|
||||
ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
|
||||
b.ne .Lunequal_proc
|
||||
/*How far is the current str2 from the alignment boundary...*/
|
||||
and tmp3, tmp3, #7
|
||||
.Lrecal_offset:
|
||||
neg pos, tmp3
|
||||
.Lloopcmp_proc:
|
||||
/*
|
||||
* Divide the eight bytes into two parts. First,backwards the src2
|
||||
* to an alignment boundary,load eight bytes from the SRC2 alignment
|
||||
* boundary,then compare with the relative bytes from SRC1.
|
||||
* If all 8 bytes are equal,then start the second part's comparison.
|
||||
* Otherwise finish the comparison.
|
||||
* This special handle can garantee all the accesses are in the
|
||||
* thread/task space in avoid to overrange access.
|
||||
*/
|
||||
ldr data1, [src1,pos]
|
||||
ldr data2, [src2,pos]
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, eq
|
||||
cbnz endloop, .Lunequal_proc
|
||||
|
||||
/*The second part process*/
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
subs limit_wd, limit_wd, #1
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
csinv endloop, diff, xzr, ne/*if limit_wd is 0,will finish the cmp*/
|
||||
bics has_nul, tmp1, tmp2
|
||||
ccmp endloop, #0, #0, eq /*has_null is ZERO: no null byte*/
|
||||
b.eq .Lloopcmp_proc
|
||||
|
||||
.Lunequal_proc:
|
||||
orr syndrome, diff, has_nul
|
||||
cbz syndrome, .Lremain8
|
||||
.Lcal_cmpresult:
|
||||
/*
|
||||
* reversed the byte-order as big-endian,then CLZ can find the most
|
||||
* significant zero bits.
|
||||
*/
|
||||
CPU_LE( rev syndrome, syndrome )
|
||||
CPU_LE( rev data1, data1 )
|
||||
CPU_LE( rev data2, data2 )
|
||||
/*
|
||||
* For big-endian we cannot use the trick with the syndrome value
|
||||
* as carry-propagation can corrupt the upper bits if the trailing
|
||||
* bytes in the string contain 0x01.
|
||||
* However, if there is no NUL byte in the dword, we can generate
|
||||
* the result directly. We can't just subtract the bytes as the
|
||||
* MSB might be significant.
|
||||
*/
|
||||
CPU_BE( cbnz has_nul, 1f )
|
||||
CPU_BE( cmp data1, data2 )
|
||||
CPU_BE( cset result, ne )
|
||||
CPU_BE( cneg result, result, lo )
|
||||
CPU_BE( ret )
|
||||
CPU_BE( 1: )
|
||||
/* Re-compute the NUL-byte detection, using a byte-reversed value.*/
|
||||
CPU_BE( rev tmp3, data1 )
|
||||
CPU_BE( sub tmp1, tmp3, zeroones )
|
||||
CPU_BE( orr tmp2, tmp3, #REP8_7f )
|
||||
CPU_BE( bic has_nul, tmp1, tmp2 )
|
||||
CPU_BE( rev has_nul, has_nul )
|
||||
CPU_BE( orr syndrome, diff, has_nul )
|
||||
/*
|
||||
* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
* that is different, or the top bit of the first zero byte.
|
||||
* Shifting left now will bring the critical information into the
|
||||
* top bits.
|
||||
*/
|
||||
#ifndef __AARCH64EB__
|
||||
rev syndrome, syndrome
|
||||
rev data1, data1
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
clz pos, syndrome
|
||||
rev data2, data2
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/*
|
||||
* But we need to zero-extend (char is unsigned) the value and then
|
||||
* perform a signed 32-bit subtraction.
|
||||
*/
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#else
|
||||
/* For big-endian we cannot use the trick with the syndrome value
|
||||
as carry-propagation can corrupt the upper bits if the trailing
|
||||
bytes in the string contain 0x01. */
|
||||
/* However, if there is no NUL byte in the dword, we can generate
|
||||
the result directly. We can't just subtract the bytes as the
|
||||
MSB might be significant. */
|
||||
cbnz has_nul, 1f
|
||||
cmp data1, data2
|
||||
cset result, ne
|
||||
cneg result, result, lo
|
||||
ret
|
||||
1:
|
||||
/* Re-compute the NUL-byte detection, using a byte-reversed value. */
|
||||
rev tmp3, data1
|
||||
sub tmp1, tmp3, zeroones
|
||||
orr tmp2, tmp3, #REP8_7f
|
||||
bic has_nul, tmp1, tmp2
|
||||
rev has_nul, has_nul
|
||||
orr syndrome, diff, has_nul
|
||||
clz pos, syndrome
|
||||
/* The MS-non-zero bit of the syndrome marks either the first bit
|
||||
that is different, or the top bit of the first zero byte.
|
||||
Shifting left now will bring the critical information into the
|
||||
top bits. */
|
||||
lsl data1, data1, pos
|
||||
lsl data2, data2, pos
|
||||
/* But we need to zero-extend (char is unsigned) the value and then
|
||||
perform a signed 32-bit subtraction. */
|
||||
lsr data1, data1, #56
|
||||
sub result, data1, data2, lsr #56
|
||||
ret
|
||||
#endif
|
||||
|
||||
.Lremain8:
|
||||
/* Limit % 8 == 0 => all bytes significant. */
|
||||
ands limit, limit, #7
|
||||
b.eq .Lret0
|
||||
.Ltiny8proc:
|
||||
L(mutual_align):
|
||||
/* Sources are mutually aligned, but are not currently at an
|
||||
alignment boundary. Round down the addresses and then mask off
|
||||
the bytes that precede the start point.
|
||||
We also need to adjust the limit calculations, but without
|
||||
overflowing if the limit is near ULONG_MAX. */
|
||||
bic src1, src1, #7
|
||||
bic src2, src2, #7
|
||||
ldr data1, [src1], #8
|
||||
neg tmp3, count, lsl #3 /* 64 - bits(bytes beyond align). */
|
||||
ldr data2, [src2], #8
|
||||
mov tmp2, #~0
|
||||
sub limit_wd, limit, #1 /* limit != 0, so no underflow. */
|
||||
#ifdef __AARCH64EB__
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
lsl tmp2, tmp2, tmp3 /* Shift (count & 63). */
|
||||
#else
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
lsr tmp2, tmp2, tmp3 /* Shift (count & 63). */
|
||||
#endif
|
||||
and tmp3, limit_wd, #7
|
||||
lsr limit_wd, limit_wd, #3
|
||||
/* Adjust the limit. Only low 3 bits used, so overflow irrelevant. */
|
||||
add limit, limit, count
|
||||
add tmp3, tmp3, count
|
||||
orr data1, data1, tmp2
|
||||
orr data2, data2, tmp2
|
||||
add limit_wd, limit_wd, tmp3, lsr #3
|
||||
b L(start_realigned)
|
||||
|
||||
.p2align 4
|
||||
/* Don't bother with dwords for up to 16 bytes. */
|
||||
L(misaligned8):
|
||||
cmp limit, #16
|
||||
b.hs L(try_misaligned_words)
|
||||
|
||||
L(byte_loop):
|
||||
/* Perhaps we can do better than this. */
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
subs limit, limit, #1
|
||||
|
||||
ccmp data1w, #1, #0, ne /* NZCV = 0b0000. */
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.eq .Ltiny8proc
|
||||
ccmp data1w, #1, #0, hi /* NZCV = 0b0000. */
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.eq L(byte_loop)
|
||||
L(done):
|
||||
sub result, data1, data2
|
||||
ret
|
||||
/* Align the SRC1 to a dword by doing a bytewise compare and then do
|
||||
the dword loop. */
|
||||
L(try_misaligned_words):
|
||||
lsr limit_wd, limit, #3
|
||||
cbz count, L(do_misaligned)
|
||||
|
||||
.Lret0:
|
||||
neg count, count
|
||||
and count, count, #7
|
||||
sub limit, limit, count
|
||||
lsr limit_wd, limit, #3
|
||||
|
||||
L(page_end_loop):
|
||||
ldrb data1w, [src1], #1
|
||||
ldrb data2w, [src2], #1
|
||||
cmp data1w, #1
|
||||
ccmp data1w, data2w, #0, cs /* NZCV = 0b0000. */
|
||||
b.ne L(done)
|
||||
subs count, count, #1
|
||||
b.hi L(page_end_loop)
|
||||
|
||||
L(do_misaligned):
|
||||
/* Prepare ourselves for the next page crossing. Unlike the aligned
|
||||
loop, we fetch 1 less dword because we risk crossing bounds on
|
||||
SRC2. */
|
||||
mov count, #8
|
||||
subs limit_wd, limit_wd, #1
|
||||
b.lo L(done_loop)
|
||||
L(loop_misaligned):
|
||||
and tmp2, src2, #0xff8
|
||||
eor tmp2, tmp2, #0xff8
|
||||
cbz tmp2, L(page_end_loop)
|
||||
|
||||
ldr data1, [src1], #8
|
||||
ldr data2, [src2], #8
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
ccmp diff, #0, #0, eq
|
||||
b.ne L(not_limit)
|
||||
subs limit_wd, limit_wd, #1
|
||||
b.pl L(loop_misaligned)
|
||||
|
||||
L(done_loop):
|
||||
/* We found a difference or a NULL before the limit was reached. */
|
||||
and limit, limit, #7
|
||||
cbz limit, L(not_limit)
|
||||
/* Read the last word. */
|
||||
sub src1, src1, 8
|
||||
sub src2, src2, 8
|
||||
ldr data1, [src1, limit]
|
||||
ldr data2, [src2, limit]
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
eor diff, data1, data2 /* Non-zero if differences found. */
|
||||
bics has_nul, tmp1, tmp2 /* Non-zero if NUL terminator. */
|
||||
ccmp diff, #0, #0, eq
|
||||
b.ne L(not_limit)
|
||||
|
||||
L(ret0):
|
||||
mov result, #0
|
||||
ret
|
||||
|
||||
SYM_FUNC_END_PI(strncmp)
|
||||
EXPORT_SYMBOL_NOKASAN(strncmp)
|
||||
|
Loading…
Reference in New Issue
Block a user