mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-14 15:54:15 +08:00
rcu-tasks: Refactor RCU-tasks to allow variants to be added
This commit splits out generic processing from RCU-tasks-specific processing in order to allow additional flavors to be added. It also adds a def_bool TASKS_RCU_GENERIC to enable the common RCU-tasks infrastructure code. This is primarily, but not entirely, a code-movement commit. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit is contained in:
parent
9cf8fc6fab
commit
5873b8a94e
@ -129,7 +129,7 @@ static inline void rcu_init_nohz(void) { }
|
||||
* Note a quasi-voluntary context switch for RCU-tasks's benefit.
|
||||
* This is a macro rather than an inline function to avoid #include hell.
|
||||
*/
|
||||
#ifdef CONFIG_TASKS_RCU
|
||||
#ifdef CONFIG_TASKS_RCU_GENERIC
|
||||
#define rcu_tasks_qs(t) \
|
||||
do { \
|
||||
if (READ_ONCE((t)->rcu_tasks_holdout)) \
|
||||
@ -140,14 +140,14 @@ void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
|
||||
void synchronize_rcu_tasks(void);
|
||||
void exit_tasks_rcu_start(void);
|
||||
void exit_tasks_rcu_finish(void);
|
||||
#else /* #ifdef CONFIG_TASKS_RCU */
|
||||
#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
|
||||
#define rcu_tasks_qs(t) do { } while (0)
|
||||
#define rcu_note_voluntary_context_switch(t) do { } while (0)
|
||||
#define call_rcu_tasks call_rcu
|
||||
#define synchronize_rcu_tasks synchronize_rcu
|
||||
static inline void exit_tasks_rcu_start(void) { }
|
||||
static inline void exit_tasks_rcu_finish(void) { }
|
||||
#endif /* #else #ifdef CONFIG_TASKS_RCU */
|
||||
#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
|
||||
|
||||
/**
|
||||
* cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
|
||||
|
@ -70,13 +70,19 @@ config TREE_SRCU
|
||||
help
|
||||
This option selects the full-fledged version of SRCU.
|
||||
|
||||
config TASKS_RCU_GENERIC
|
||||
def_bool TASKS_RCU
|
||||
select SRCU
|
||||
help
|
||||
This option enables generic infrastructure code supporting
|
||||
task-based RCU implementations. Not for manual selection.
|
||||
|
||||
config TASKS_RCU
|
||||
def_bool PREEMPTION
|
||||
select SRCU
|
||||
help
|
||||
This option enables a task-based RCU implementation that uses
|
||||
only voluntary context switch (not preemption!), idle, and
|
||||
user-mode execution as quiescent states.
|
||||
user-mode execution as quiescent states. Not for manual selection.
|
||||
|
||||
config RCU_STALL_COMMON
|
||||
def_bool TREE_RCU
|
||||
|
@ -5,7 +5,13 @@
|
||||
* Copyright (C) 2020 Paul E. McKenney
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_TASKS_RCU
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Generic data structures.
|
||||
|
||||
struct rcu_tasks;
|
||||
typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
|
||||
|
||||
/**
|
||||
* Definition for a Tasks-RCU-like mechanism.
|
||||
@ -14,6 +20,8 @@
|
||||
* @cbs_wq: Wait queue allowning new callback to get kthread's attention.
|
||||
* @cbs_lock: Lock protecting callback list.
|
||||
* @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
|
||||
* @gp_func: This flavor's grace-period-wait function.
|
||||
* @call_func: This flavor's call_rcu()-equivalent function.
|
||||
*/
|
||||
struct rcu_tasks {
|
||||
struct rcu_head *cbs_head;
|
||||
@ -21,29 +29,20 @@ struct rcu_tasks {
|
||||
struct wait_queue_head cbs_wq;
|
||||
raw_spinlock_t cbs_lock;
|
||||
struct task_struct *kthread_ptr;
|
||||
rcu_tasks_gp_func_t gp_func;
|
||||
call_rcu_func_t call_func;
|
||||
};
|
||||
|
||||
#define DEFINE_RCU_TASKS(name) \
|
||||
#define DEFINE_RCU_TASKS(name, gp, call) \
|
||||
static struct rcu_tasks name = \
|
||||
{ \
|
||||
.cbs_tail = &name.cbs_head, \
|
||||
.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(name.cbs_wq), \
|
||||
.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(name.cbs_lock), \
|
||||
.gp_func = gp, \
|
||||
.call_func = call, \
|
||||
}
|
||||
|
||||
/*
|
||||
* Simple variant of RCU whose quiescent states are voluntary context
|
||||
* switch, cond_resched_rcu_qs(), user-space execution, and idle.
|
||||
* As such, grace periods can take one good long time. There are no
|
||||
* read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
|
||||
* because this implementation is intended to get the system into a safe
|
||||
* state for some of the manipulations involved in tracing and the like.
|
||||
* Finally, this implementation does not support high call_rcu_tasks()
|
||||
* rates from multiple CPUs. If this is required, per-CPU callback lists
|
||||
* will be needed.
|
||||
*/
|
||||
DEFINE_RCU_TASKS(rcu_tasks);
|
||||
|
||||
/* Track exiting tasks in order to allow them to be waited for. */
|
||||
DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
|
||||
|
||||
@ -52,29 +51,16 @@ DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
|
||||
static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
|
||||
module_param(rcu_task_stall_timeout, int, 0644);
|
||||
|
||||
/**
|
||||
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
|
||||
* @rhp: structure to be used for queueing the RCU updates.
|
||||
* @func: actual callback function to be invoked after the grace period
|
||||
*
|
||||
* The callback function will be invoked some time after a full grace
|
||||
* period elapses, in other words after all currently executing RCU
|
||||
* read-side critical sections have completed. call_rcu_tasks() assumes
|
||||
* that the read-side critical sections end at a voluntary context
|
||||
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
|
||||
* or transition to usermode execution. As such, there are no read-side
|
||||
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
|
||||
* this primitive is intended to determine that all tasks have passed
|
||||
* through a safe state, not so much for data-strcuture synchronization.
|
||||
*
|
||||
* See the description of call_rcu() for more detailed information on
|
||||
* memory ordering guarantees.
|
||||
*/
|
||||
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Generic code.
|
||||
|
||||
// Enqueue a callback for the specified flavor of Tasks RCU.
|
||||
static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
|
||||
struct rcu_tasks *rtp)
|
||||
{
|
||||
unsigned long flags;
|
||||
bool needwake;
|
||||
struct rcu_tasks *rtp = &rcu_tasks;
|
||||
|
||||
rhp->next = NULL;
|
||||
rhp->func = func;
|
||||
@ -87,64 +73,130 @@ void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
|
||||
if (needwake && READ_ONCE(rtp->kthread_ptr))
|
||||
wake_up(&rtp->cbs_wq);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(call_rcu_tasks);
|
||||
|
||||
/**
|
||||
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
|
||||
*
|
||||
* Control will return to the caller some time after a full rcu-tasks
|
||||
* grace period has elapsed, in other words after all currently
|
||||
* executing rcu-tasks read-side critical sections have elapsed. These
|
||||
* read-side critical sections are delimited by calls to schedule(),
|
||||
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
|
||||
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
|
||||
*
|
||||
* This is a very specialized primitive, intended only for a few uses in
|
||||
* tracing and other situations requiring manipulation of function
|
||||
* preambles and profiling hooks. The synchronize_rcu_tasks() function
|
||||
* is not (yet) intended for heavy use from multiple CPUs.
|
||||
*
|
||||
* Note that this guarantee implies further memory-ordering guarantees.
|
||||
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
|
||||
* each CPU is guaranteed to have executed a full memory barrier since the
|
||||
* end of its last RCU-tasks read-side critical section whose beginning
|
||||
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
|
||||
* having an RCU-tasks read-side critical section that extends beyond
|
||||
* the return from synchronize_rcu_tasks() is guaranteed to have executed
|
||||
* a full memory barrier after the beginning of synchronize_rcu_tasks()
|
||||
* and before the beginning of that RCU-tasks read-side critical section.
|
||||
* Note that these guarantees include CPUs that are offline, idle, or
|
||||
* executing in user mode, as well as CPUs that are executing in the kernel.
|
||||
*
|
||||
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
|
||||
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
||||
* to have executed a full memory barrier during the execution of
|
||||
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
|
||||
* (but again only if the system has more than one CPU).
|
||||
*/
|
||||
void synchronize_rcu_tasks(void)
|
||||
// Wait for a grace period for the specified flavor of Tasks RCU.
|
||||
static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
|
||||
{
|
||||
/* Complain if the scheduler has not started. */
|
||||
RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
|
||||
"synchronize_rcu_tasks called too soon");
|
||||
|
||||
/* Wait for the grace period. */
|
||||
wait_rcu_gp(call_rcu_tasks);
|
||||
wait_rcu_gp(rtp->call_func);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
|
||||
|
||||
/**
|
||||
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
|
||||
*
|
||||
* Although the current implementation is guaranteed to wait, it is not
|
||||
* obligated to, for example, if there are no pending callbacks.
|
||||
*/
|
||||
void rcu_barrier_tasks(void)
|
||||
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
|
||||
static int __noreturn rcu_tasks_kthread(void *arg)
|
||||
{
|
||||
/* There is only one callback queue, so this is easy. ;-) */
|
||||
synchronize_rcu_tasks();
|
||||
unsigned long flags;
|
||||
struct rcu_head *list;
|
||||
struct rcu_head *next;
|
||||
struct rcu_tasks *rtp = arg;
|
||||
|
||||
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
|
||||
housekeeping_affine(current, HK_FLAG_RCU);
|
||||
WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
|
||||
|
||||
/*
|
||||
* Each pass through the following loop makes one check for
|
||||
* newly arrived callbacks, and, if there are some, waits for
|
||||
* one RCU-tasks grace period and then invokes the callbacks.
|
||||
* This loop is terminated by the system going down. ;-)
|
||||
*/
|
||||
for (;;) {
|
||||
|
||||
/* Pick up any new callbacks. */
|
||||
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
|
||||
list = rtp->cbs_head;
|
||||
rtp->cbs_head = NULL;
|
||||
rtp->cbs_tail = &rtp->cbs_head;
|
||||
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
|
||||
|
||||
/* If there were none, wait a bit and start over. */
|
||||
if (!list) {
|
||||
wait_event_interruptible(rtp->cbs_wq,
|
||||
READ_ONCE(rtp->cbs_head));
|
||||
if (!rtp->cbs_head) {
|
||||
WARN_ON(signal_pending(current));
|
||||
schedule_timeout_interruptible(HZ/10);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// Wait for one grace period.
|
||||
rtp->gp_func(rtp);
|
||||
|
||||
/* Invoke the callbacks. */
|
||||
while (list) {
|
||||
next = list->next;
|
||||
local_bh_disable();
|
||||
list->func(list);
|
||||
local_bh_enable();
|
||||
list = next;
|
||||
cond_resched();
|
||||
}
|
||||
/* Paranoid sleep to keep this from entering a tight loop */
|
||||
schedule_timeout_uninterruptible(HZ/10);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
|
||||
|
||||
/* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
|
||||
static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
|
||||
{
|
||||
struct task_struct *t;
|
||||
|
||||
t = kthread_run(rcu_tasks_kthread, rtp, "rcu_tasks_kthread");
|
||||
if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
|
||||
return;
|
||||
smp_mb(); /* Ensure others see full kthread. */
|
||||
}
|
||||
|
||||
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
|
||||
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
|
||||
{
|
||||
preempt_disable();
|
||||
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
|
||||
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
|
||||
{
|
||||
preempt_disable();
|
||||
__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
#ifndef CONFIG_TINY_RCU
|
||||
|
||||
/*
|
||||
* Print any non-default Tasks RCU settings.
|
||||
*/
|
||||
static void __init rcu_tasks_bootup_oddness(void)
|
||||
{
|
||||
#ifdef CONFIG_TASKS_RCU
|
||||
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
|
||||
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
|
||||
else
|
||||
pr_info("\tTasks RCU enabled.\n");
|
||||
#endif /* #ifdef CONFIG_TASKS_RCU */
|
||||
}
|
||||
|
||||
#endif /* #ifndef CONFIG_TINY_RCU */
|
||||
|
||||
#ifdef CONFIG_TASKS_RCU
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Simple variant of RCU whose quiescent states are voluntary context
|
||||
// switch, cond_resched_rcu_qs(), user-space execution, and idle.
|
||||
// As such, grace periods can take one good long time. There are no
|
||||
// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
|
||||
// because this implementation is intended to get the system into a safe
|
||||
// state for some of the manipulations involved in tracing and the like.
|
||||
// Finally, this implementation does not support high call_rcu_tasks()
|
||||
// rates from multiple CPUs. If this is required, per-CPU callback lists
|
||||
// will be needed.
|
||||
|
||||
/* See if tasks are still holding out, complain if so. */
|
||||
static void check_holdout_task(struct task_struct *t,
|
||||
@ -178,212 +230,183 @@ static void check_holdout_task(struct task_struct *t,
|
||||
sched_show_task(t);
|
||||
}
|
||||
|
||||
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
|
||||
static int __noreturn rcu_tasks_kthread(void *arg)
|
||||
/* Wait for one RCU-tasks grace period. */
|
||||
static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct task_struct *g, *t;
|
||||
unsigned long lastreport;
|
||||
struct rcu_head *list;
|
||||
struct rcu_head *next;
|
||||
LIST_HEAD(rcu_tasks_holdouts);
|
||||
struct rcu_tasks *rtp = arg;
|
||||
int fract;
|
||||
|
||||
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
|
||||
housekeeping_affine(current, HK_FLAG_RCU);
|
||||
WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
|
||||
/*
|
||||
* Wait for all pre-existing t->on_rq and t->nvcsw transitions
|
||||
* to complete. Invoking synchronize_rcu() suffices because all
|
||||
* these transitions occur with interrupts disabled. Without this
|
||||
* synchronize_rcu(), a read-side critical section that started
|
||||
* before the grace period might be incorrectly seen as having
|
||||
* started after the grace period.
|
||||
*
|
||||
* This synchronize_rcu() also dispenses with the need for a
|
||||
* memory barrier on the first store to t->rcu_tasks_holdout,
|
||||
* as it forces the store to happen after the beginning of the
|
||||
* grace period.
|
||||
*/
|
||||
synchronize_rcu();
|
||||
|
||||
/*
|
||||
* Each pass through the following loop makes one check for
|
||||
* newly arrived callbacks, and, if there are some, waits for
|
||||
* one RCU-tasks grace period and then invokes the callbacks.
|
||||
* This loop is terminated by the system going down. ;-)
|
||||
* There were callbacks, so we need to wait for an RCU-tasks
|
||||
* grace period. Start off by scanning the task list for tasks
|
||||
* that are not already voluntarily blocked. Mark these tasks
|
||||
* and make a list of them in rcu_tasks_holdouts.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
for_each_process_thread(g, t) {
|
||||
if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
|
||||
get_task_struct(t);
|
||||
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
|
||||
WRITE_ONCE(t->rcu_tasks_holdout, true);
|
||||
list_add(&t->rcu_tasks_holdout_list,
|
||||
&rcu_tasks_holdouts);
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
/*
|
||||
* Wait for tasks that are in the process of exiting. This
|
||||
* does only part of the job, ensuring that all tasks that were
|
||||
* previously exiting reach the point where they have disabled
|
||||
* preemption, allowing the later synchronize_rcu() to finish
|
||||
* the job.
|
||||
*/
|
||||
synchronize_srcu(&tasks_rcu_exit_srcu);
|
||||
|
||||
/*
|
||||
* Each pass through the following loop scans the list of holdout
|
||||
* tasks, removing any that are no longer holdouts. When the list
|
||||
* is empty, we are done.
|
||||
*/
|
||||
lastreport = jiffies;
|
||||
|
||||
/* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
|
||||
fract = 10;
|
||||
|
||||
for (;;) {
|
||||
bool firstreport;
|
||||
bool needreport;
|
||||
int rtst;
|
||||
struct task_struct *t1;
|
||||
|
||||
/* Pick up any new callbacks. */
|
||||
raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
|
||||
list = rtp->cbs_head;
|
||||
rtp->cbs_head = NULL;
|
||||
rtp->cbs_tail = &rtp->cbs_head;
|
||||
raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
|
||||
if (list_empty(&rcu_tasks_holdouts))
|
||||
break;
|
||||
|
||||
/* If there were none, wait a bit and start over. */
|
||||
if (!list) {
|
||||
wait_event_interruptible(rtp->cbs_wq,
|
||||
READ_ONCE(rtp->cbs_head));
|
||||
if (!rtp->cbs_head) {
|
||||
WARN_ON(signal_pending(current));
|
||||
schedule_timeout_interruptible(HZ/10);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
/* Slowly back off waiting for holdouts */
|
||||
schedule_timeout_interruptible(HZ/fract);
|
||||
|
||||
/*
|
||||
* Wait for all pre-existing t->on_rq and t->nvcsw
|
||||
* transitions to complete. Invoking synchronize_rcu()
|
||||
* suffices because all these transitions occur with
|
||||
* interrupts disabled. Without this synchronize_rcu(),
|
||||
* a read-side critical section that started before the
|
||||
* grace period might be incorrectly seen as having started
|
||||
* after the grace period.
|
||||
*
|
||||
* This synchronize_rcu() also dispenses with the
|
||||
* need for a memory barrier on the first store to
|
||||
* t->rcu_tasks_holdout, as it forces the store to happen
|
||||
* after the beginning of the grace period.
|
||||
*/
|
||||
synchronize_rcu();
|
||||
if (fract > 1)
|
||||
fract--;
|
||||
|
||||
/*
|
||||
* There were callbacks, so we need to wait for an
|
||||
* RCU-tasks grace period. Start off by scanning
|
||||
* the task list for tasks that are not already
|
||||
* voluntarily blocked. Mark these tasks and make
|
||||
* a list of them in rcu_tasks_holdouts.
|
||||
*/
|
||||
rcu_read_lock();
|
||||
for_each_process_thread(g, t) {
|
||||
if (t != current && READ_ONCE(t->on_rq) &&
|
||||
!is_idle_task(t)) {
|
||||
get_task_struct(t);
|
||||
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
|
||||
WRITE_ONCE(t->rcu_tasks_holdout, true);
|
||||
list_add(&t->rcu_tasks_holdout_list,
|
||||
&rcu_tasks_holdouts);
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
/*
|
||||
* Wait for tasks that are in the process of exiting.
|
||||
* This does only part of the job, ensuring that all
|
||||
* tasks that were previously exiting reach the point
|
||||
* where they have disabled preemption, allowing the
|
||||
* later synchronize_rcu() to finish the job.
|
||||
*/
|
||||
synchronize_srcu(&tasks_rcu_exit_srcu);
|
||||
|
||||
/*
|
||||
* Each pass through the following loop scans the list
|
||||
* of holdout tasks, removing any that are no longer
|
||||
* holdouts. When the list is empty, we are done.
|
||||
*/
|
||||
lastreport = jiffies;
|
||||
|
||||
/* Start off with HZ/10 wait and slowly back off to 1 HZ wait*/
|
||||
fract = 10;
|
||||
|
||||
for (;;) {
|
||||
bool firstreport;
|
||||
bool needreport;
|
||||
int rtst;
|
||||
struct task_struct *t1;
|
||||
|
||||
if (list_empty(&rcu_tasks_holdouts))
|
||||
break;
|
||||
|
||||
/* Slowly back off waiting for holdouts */
|
||||
schedule_timeout_interruptible(HZ/fract);
|
||||
|
||||
if (fract > 1)
|
||||
fract--;
|
||||
|
||||
rtst = READ_ONCE(rcu_task_stall_timeout);
|
||||
needreport = rtst > 0 &&
|
||||
time_after(jiffies, lastreport + rtst);
|
||||
if (needreport)
|
||||
lastreport = jiffies;
|
||||
firstreport = true;
|
||||
WARN_ON(signal_pending(current));
|
||||
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
|
||||
rcu_tasks_holdout_list) {
|
||||
check_holdout_task(t, needreport, &firstreport);
|
||||
cond_resched();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Because ->on_rq and ->nvcsw are not guaranteed
|
||||
* to have a full memory barriers prior to them in the
|
||||
* schedule() path, memory reordering on other CPUs could
|
||||
* cause their RCU-tasks read-side critical sections to
|
||||
* extend past the end of the grace period. However,
|
||||
* because these ->nvcsw updates are carried out with
|
||||
* interrupts disabled, we can use synchronize_rcu()
|
||||
* to force the needed ordering on all such CPUs.
|
||||
*
|
||||
* This synchronize_rcu() also confines all
|
||||
* ->rcu_tasks_holdout accesses to be within the grace
|
||||
* period, avoiding the need for memory barriers for
|
||||
* ->rcu_tasks_holdout accesses.
|
||||
*
|
||||
* In addition, this synchronize_rcu() waits for exiting
|
||||
* tasks to complete their final preempt_disable() region
|
||||
* of execution, cleaning up after the synchronize_srcu()
|
||||
* above.
|
||||
*/
|
||||
synchronize_rcu();
|
||||
|
||||
/* Invoke the callbacks. */
|
||||
while (list) {
|
||||
next = list->next;
|
||||
local_bh_disable();
|
||||
list->func(list);
|
||||
local_bh_enable();
|
||||
list = next;
|
||||
rtst = READ_ONCE(rcu_task_stall_timeout);
|
||||
needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
|
||||
if (needreport)
|
||||
lastreport = jiffies;
|
||||
firstreport = true;
|
||||
WARN_ON(signal_pending(current));
|
||||
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
|
||||
rcu_tasks_holdout_list) {
|
||||
check_holdout_task(t, needreport, &firstreport);
|
||||
cond_resched();
|
||||
}
|
||||
/* Paranoid sleep to keep this from entering a tight loop */
|
||||
schedule_timeout_uninterruptible(HZ/10);
|
||||
}
|
||||
|
||||
/*
|
||||
* Because ->on_rq and ->nvcsw are not guaranteed to have a full
|
||||
* memory barriers prior to them in the schedule() path, memory
|
||||
* reordering on other CPUs could cause their RCU-tasks read-side
|
||||
* critical sections to extend past the end of the grace period.
|
||||
* However, because these ->nvcsw updates are carried out with
|
||||
* interrupts disabled, we can use synchronize_rcu() to force the
|
||||
* needed ordering on all such CPUs.
|
||||
*
|
||||
* This synchronize_rcu() also confines all ->rcu_tasks_holdout
|
||||
* accesses to be within the grace period, avoiding the need for
|
||||
* memory barriers for ->rcu_tasks_holdout accesses.
|
||||
*
|
||||
* In addition, this synchronize_rcu() waits for exiting tasks
|
||||
* to complete their final preempt_disable() region of execution,
|
||||
* cleaning up after the synchronize_srcu() above.
|
||||
*/
|
||||
synchronize_rcu();
|
||||
}
|
||||
|
||||
/* Spawn rcu_tasks_kthread() at core_initcall() time. */
|
||||
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
|
||||
DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks);
|
||||
|
||||
/**
|
||||
* call_rcu_tasks() - Queue an RCU for invocation task-based grace period
|
||||
* @rhp: structure to be used for queueing the RCU updates.
|
||||
* @func: actual callback function to be invoked after the grace period
|
||||
*
|
||||
* The callback function will be invoked some time after a full grace
|
||||
* period elapses, in other words after all currently executing RCU
|
||||
* read-side critical sections have completed. call_rcu_tasks() assumes
|
||||
* that the read-side critical sections end at a voluntary context
|
||||
* switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
|
||||
* or transition to usermode execution. As such, there are no read-side
|
||||
* primitives analogous to rcu_read_lock() and rcu_read_unlock() because
|
||||
* this primitive is intended to determine that all tasks have passed
|
||||
* through a safe state, not so much for data-strcuture synchronization.
|
||||
*
|
||||
* See the description of call_rcu() for more detailed information on
|
||||
* memory ordering guarantees.
|
||||
*/
|
||||
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
|
||||
{
|
||||
call_rcu_tasks_generic(rhp, func, &rcu_tasks);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(call_rcu_tasks);
|
||||
|
||||
/**
|
||||
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
|
||||
*
|
||||
* Control will return to the caller some time after a full rcu-tasks
|
||||
* grace period has elapsed, in other words after all currently
|
||||
* executing rcu-tasks read-side critical sections have elapsed. These
|
||||
* read-side critical sections are delimited by calls to schedule(),
|
||||
* cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
|
||||
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
|
||||
*
|
||||
* This is a very specialized primitive, intended only for a few uses in
|
||||
* tracing and other situations requiring manipulation of function
|
||||
* preambles and profiling hooks. The synchronize_rcu_tasks() function
|
||||
* is not (yet) intended for heavy use from multiple CPUs.
|
||||
*
|
||||
* See the description of synchronize_rcu() for more detailed information
|
||||
* on memory ordering guarantees.
|
||||
*/
|
||||
void synchronize_rcu_tasks(void)
|
||||
{
|
||||
synchronize_rcu_tasks_generic(&rcu_tasks);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
|
||||
|
||||
/**
|
||||
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
|
||||
*
|
||||
* Although the current implementation is guaranteed to wait, it is not
|
||||
* obligated to, for example, if there are no pending callbacks.
|
||||
*/
|
||||
void rcu_barrier_tasks(void)
|
||||
{
|
||||
/* There is only one callback queue, so this is easy. ;-) */
|
||||
synchronize_rcu_tasks();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
|
||||
|
||||
static int __init rcu_spawn_tasks_kthread(void)
|
||||
{
|
||||
struct task_struct *t;
|
||||
|
||||
t = kthread_run(rcu_tasks_kthread, &rcu_tasks, "rcu_tasks_kthread");
|
||||
if (WARN_ONCE(IS_ERR(t), "%s: Could not start Tasks-RCU grace-period kthread, OOM is now expected behavior\n", __func__))
|
||||
return 0;
|
||||
smp_mb(); /* Ensure others see full kthread. */
|
||||
rcu_spawn_tasks_kthread_generic(&rcu_tasks);
|
||||
return 0;
|
||||
}
|
||||
core_initcall(rcu_spawn_tasks_kthread);
|
||||
|
||||
/* Do the srcu_read_lock() for the above synchronize_srcu(). */
|
||||
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
|
||||
{
|
||||
preempt_disable();
|
||||
current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
|
||||
void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
|
||||
{
|
||||
preempt_disable();
|
||||
__srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
#endif /* #ifdef CONFIG_TASKS_RCU */
|
||||
|
||||
#ifndef CONFIG_TINY_RCU
|
||||
|
||||
/*
|
||||
* Print any non-default Tasks RCU settings.
|
||||
*/
|
||||
static void __init rcu_tasks_bootup_oddness(void)
|
||||
{
|
||||
#ifdef CONFIG_TASKS_RCU
|
||||
if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
|
||||
pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
|
||||
else
|
||||
pr_info("\tTasks RCU enabled.\n");
|
||||
#endif /* #ifdef CONFIG_TASKS_RCU */
|
||||
}
|
||||
|
||||
#endif /* #ifndef CONFIG_TINY_RCU */
|
||||
|
@ -584,7 +584,11 @@ late_initcall(rcu_verify_early_boot_tests);
|
||||
void rcu_early_boot_tests(void) {}
|
||||
#endif /* CONFIG_PROVE_RCU */
|
||||
|
||||
#ifdef CONFIG_TASKS_RCU_GENERIC
|
||||
#include "tasks.h"
|
||||
#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
|
||||
static inline void rcu_tasks_bootup_oddness(void) {}
|
||||
#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
|
||||
|
||||
#ifndef CONFIG_TINY_RCU
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user