Merge branch 'pm-cpufreq'

* pm-cpufreq: (53 commits)
  cpufreq: speedstep-lib: Use monotonic clock
  cpufreq: powernv: Increase the verbosity of OCC console messages
  cpufreq: sfi: use kmemdup rather than duplicating its implementation
  cpufreq: drop !cpufreq_driver check from cpufreq_parse_governor()
  cpufreq: rename cpufreq_real_policy as cpufreq_user_policy
  cpufreq: remove redundant 'policy' field from user_policy
  cpufreq: remove redundant 'governor' field from user_policy
  cpufreq: update user_policy.* on success
  cpufreq: use memcpy() to copy policy
  cpufreq: remove redundant CPUFREQ_INCOMPATIBLE notifier event
  cpufreq: mediatek: Add MT8173 cpufreq driver
  dt-bindings: mediatek: Add MT8173 CPU DVFS clock bindings
  intel_pstate: append more Oracle OEM table id to vendor bypass list
  intel_pstate: Add SKY-S support
  intel_pstate: Fix possible overflow complained by Coverity
  cpufreq: Correct a freq check in cpufreq_set_policy()
  cpufreq: Lock CPU online/offline in cpufreq_register_driver()
  cpufreq: Replace recover_policy with new_policy in cpufreq_online()
  cpufreq: Separate CPU device registration from CPU online
  cpufreq: powernv: Restore cpu frequency to policy->cur on unthrottling
  ...
This commit is contained in:
Rafael J. Wysocki 2015-09-01 15:52:35 +02:00
commit 4ffe18c255
28 changed files with 1280 additions and 458 deletions

View File

@ -55,16 +55,13 @@ transition notifiers.
----------------------------
These are notified when a new policy is intended to be set. Each
CPUFreq policy notifier is called three times for a policy transition:
CPUFreq policy notifier is called twice for a policy transition:
1.) During CPUFREQ_ADJUST all CPUFreq notifiers may change the limit if
they see a need for this - may it be thermal considerations or
hardware limitations.
2.) During CPUFREQ_INCOMPATIBLE only changes may be done in order to avoid
hardware failure.
3.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
2.) And during CPUFREQ_NOTIFY all notifiers are informed of the new policy
- if two hardware drivers failed to agree on a new policy before this
stage, the incompatible hardware shall be shut down, and the user
informed of this.

View File

@ -0,0 +1,83 @@
Device Tree Clock bindins for CPU DVFS of Mediatek MT8173 SoC
Required properties:
- clocks: A list of phandle + clock-specifier pairs for the clocks listed in clock names.
- clock-names: Should contain the following:
"cpu" - The multiplexer for clock input of CPU cluster.
"intermediate" - A parent of "cpu" clock which is used as "intermediate" clock
source (usually MAINPLL) when the original CPU PLL is under
transition and not stable yet.
Please refer to Documentation/devicetree/bindings/clk/clock-bindings.txt for
generic clock consumer properties.
- proc-supply: Regulator for Vproc of CPU cluster.
Optional properties:
- sram-supply: Regulator for Vsram of CPU cluster. When present, the cpufreq driver
needs to do "voltage tracking" to step by step scale up/down Vproc and
Vsram to fit SoC specific needs. When absent, the voltage scaling
flow is handled by hardware, hence no software "voltage tracking" is
needed.
Example:
--------
cpu0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x000>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
clocks = <&infracfg CLK_INFRA_CA53SEL>,
<&apmixedsys CLK_APMIXED_MAINPLL>;
clock-names = "cpu", "intermediate";
};
cpu1: cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a53";
reg = <0x001>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
clocks = <&infracfg CLK_INFRA_CA53SEL>,
<&apmixedsys CLK_APMIXED_MAINPLL>;
clock-names = "cpu", "intermediate";
};
cpu2: cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x100>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
clocks = <&infracfg CLK_INFRA_CA57SEL>,
<&apmixedsys CLK_APMIXED_MAINPLL>;
clock-names = "cpu", "intermediate";
};
cpu3: cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a57";
reg = <0x101>;
enable-method = "psci";
cpu-idle-states = <&CPU_SLEEP_0>;
clocks = <&infracfg CLK_INFRA_CA57SEL>,
<&apmixedsys CLK_APMIXED_MAINPLL>;
clock-names = "cpu", "intermediate";
};
&cpu0 {
proc-supply = <&mt6397_vpca15_reg>;
};
&cpu1 {
proc-supply = <&mt6397_vpca15_reg>;
};
&cpu2 {
proc-supply = <&da9211_vcpu_reg>;
sram-supply = <&mt6397_vsramca7_reg>;
};
&cpu3 {
proc-supply = <&da9211_vcpu_reg>;
sram-supply = <&mt6397_vsramca7_reg>;
};

View File

@ -361,6 +361,7 @@ enum opal_msg_type {
OPAL_MSG_HMI_EVT,
OPAL_MSG_DPO,
OPAL_MSG_PRD,
OPAL_MSG_OCC,
OPAL_MSG_TYPE_MAX,
};
@ -700,6 +701,17 @@ struct opal_prd_msg_header {
struct opal_prd_msg;
#define OCC_RESET 0
#define OCC_LOAD 1
#define OCC_THROTTLE 2
#define OCC_MAX_THROTTLE_STATUS 5
struct opal_occ_msg {
__be64 type;
__be64 chip;
__be64 throttle_status;
};
/*
* SG entries
*

View File

@ -83,7 +83,7 @@ static int acpi_processor_ppc_notifier(struct notifier_block *nb,
if (ignore_ppc)
return 0;
if (event != CPUFREQ_INCOMPATIBLE)
if (event != CPUFREQ_ADJUST)
return 0;
mutex_lock(&performance_mutex);
@ -780,9 +780,7 @@ acpi_processor_register_performance(struct acpi_processor_performance
EXPORT_SYMBOL(acpi_processor_register_performance);
void
acpi_processor_unregister_performance(struct acpi_processor_performance
*performance, unsigned int cpu)
void acpi_processor_unregister_performance(unsigned int cpu)
{
struct acpi_processor *pr;

View File

@ -130,6 +130,13 @@ config ARM_KIRKWOOD_CPUFREQ
This adds the CPUFreq driver for Marvell Kirkwood
SoCs.
config ARM_MT8173_CPUFREQ
bool "Mediatek MT8173 CPUFreq support"
depends on ARCH_MEDIATEK && REGULATOR
select PM_OPP
help
This adds the CPUFreq driver support for Mediatek MT8173 SoC.
config ARM_OMAP2PLUS_CPUFREQ
bool "TI OMAP2+"
depends on ARCH_OMAP2PLUS

View File

@ -62,6 +62,7 @@ obj-$(CONFIG_ARM_HISI_ACPU_CPUFREQ) += hisi-acpu-cpufreq.o
obj-$(CONFIG_ARM_IMX6Q_CPUFREQ) += imx6q-cpufreq.o
obj-$(CONFIG_ARM_INTEGRATOR) += integrator-cpufreq.o
obj-$(CONFIG_ARM_KIRKWOOD_CPUFREQ) += kirkwood-cpufreq.o
obj-$(CONFIG_ARM_MT8173_CPUFREQ) += mt8173-cpufreq.o
obj-$(CONFIG_ARM_OMAP2PLUS_CPUFREQ) += omap-cpufreq.o
obj-$(CONFIG_ARM_PXA2xx_CPUFREQ) += pxa2xx-cpufreq.o
obj-$(CONFIG_PXA3xx) += pxa3xx-cpufreq.o

View File

@ -65,18 +65,21 @@ enum {
#define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
struct acpi_cpufreq_data {
struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
unsigned int cpu_feature;
unsigned int acpi_perf_cpu;
cpumask_var_t freqdomain_cpus;
};
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
/* acpi_perf_data is a pointer to percpu data. */
static struct acpi_processor_performance __percpu *acpi_perf_data;
static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
{
return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
}
static struct cpufreq_driver acpi_cpufreq_driver;
static unsigned int acpi_pstate_strict;
@ -144,7 +147,7 @@ static int _store_boost(int val)
static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
{
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
struct acpi_cpufreq_data *data = policy->driver_data;
return cpufreq_show_cpus(data->freqdomain_cpus, buf);
}
@ -202,7 +205,7 @@ static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
struct acpi_processor_performance *perf;
int i;
perf = data->acpi_data;
perf = to_perf_data(data);
for (i = 0; i < perf->state_count; i++) {
if (value == perf->states[i].status)
@ -221,7 +224,7 @@ static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
else
msr &= INTEL_MSR_RANGE;
perf = data->acpi_data;
perf = to_perf_data(data);
cpufreq_for_each_entry(pos, data->freq_table)
if (msr == perf->states[pos->driver_data].status)
@ -327,7 +330,8 @@ static void drv_write(struct drv_cmd *cmd)
put_cpu();
}
static u32 get_cur_val(const struct cpumask *mask)
static u32
get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
{
struct acpi_processor_performance *perf;
struct drv_cmd cmd;
@ -335,7 +339,7 @@ static u32 get_cur_val(const struct cpumask *mask)
if (unlikely(cpumask_empty(mask)))
return 0;
switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
switch (data->cpu_feature) {
case SYSTEM_INTEL_MSR_CAPABLE:
cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
@ -346,7 +350,7 @@ static u32 get_cur_val(const struct cpumask *mask)
break;
case SYSTEM_IO_CAPABLE:
cmd.type = SYSTEM_IO_CAPABLE;
perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
perf = to_perf_data(data);
cmd.addr.io.port = perf->control_register.address;
cmd.addr.io.bit_width = perf->control_register.bit_width;
break;
@ -364,19 +368,24 @@ static u32 get_cur_val(const struct cpumask *mask)
static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
{
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
struct acpi_cpufreq_data *data;
struct cpufreq_policy *policy;
unsigned int freq;
unsigned int cached_freq;
pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
if (unlikely(data == NULL ||
data->acpi_data == NULL || data->freq_table == NULL)) {
policy = cpufreq_cpu_get(cpu);
if (unlikely(!policy))
return 0;
}
cached_freq = data->freq_table[data->acpi_data->state].frequency;
freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
data = policy->driver_data;
cpufreq_cpu_put(policy);
if (unlikely(!data || !data->freq_table))
return 0;
cached_freq = data->freq_table[to_perf_data(data)->state].frequency;
freq = extract_freq(get_cur_val(cpumask_of(cpu), data), data);
if (freq != cached_freq) {
/*
* The dreaded BIOS frequency change behind our back.
@ -397,7 +406,7 @@ static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
unsigned int i;
for (i = 0; i < 100; i++) {
cur_freq = extract_freq(get_cur_val(mask), data);
cur_freq = extract_freq(get_cur_val(mask, data), data);
if (cur_freq == freq)
return 1;
udelay(10);
@ -408,18 +417,17 @@ static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
static int acpi_cpufreq_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
struct acpi_cpufreq_data *data = policy->driver_data;
struct acpi_processor_performance *perf;
struct drv_cmd cmd;
unsigned int next_perf_state = 0; /* Index into perf table */
int result = 0;
if (unlikely(data == NULL ||
data->acpi_data == NULL || data->freq_table == NULL)) {
if (unlikely(data == NULL || data->freq_table == NULL)) {
return -ENODEV;
}
perf = data->acpi_data;
perf = to_perf_data(data);
next_perf_state = data->freq_table[index].driver_data;
if (perf->state == next_perf_state) {
if (unlikely(data->resume)) {
@ -482,8 +490,9 @@ out:
static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
{
struct acpi_processor_performance *perf = data->acpi_data;
struct acpi_processor_performance *perf;
perf = to_perf_data(data);
if (cpu_khz) {
/* search the closest match to cpu_khz */
unsigned int i;
@ -672,17 +681,17 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
goto err_free;
}
data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
per_cpu(acfreq_data, cpu) = data;
perf = per_cpu_ptr(acpi_perf_data, cpu);
data->acpi_perf_cpu = cpu;
policy->driver_data = data;
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
result = acpi_processor_register_performance(data->acpi_data, cpu);
result = acpi_processor_register_performance(perf, cpu);
if (result)
goto err_free_mask;
perf = data->acpi_data;
policy->shared_type = perf->shared_type;
/*
@ -838,26 +847,25 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
err_freqfree:
kfree(data->freq_table);
err_unreg:
acpi_processor_unregister_performance(perf, cpu);
acpi_processor_unregister_performance(cpu);
err_free_mask:
free_cpumask_var(data->freqdomain_cpus);
err_free:
kfree(data);
per_cpu(acfreq_data, cpu) = NULL;
policy->driver_data = NULL;
return result;
}
static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
struct acpi_cpufreq_data *data = policy->driver_data;
pr_debug("acpi_cpufreq_cpu_exit\n");
if (data) {
per_cpu(acfreq_data, policy->cpu) = NULL;
acpi_processor_unregister_performance(data->acpi_data,
policy->cpu);
policy->driver_data = NULL;
acpi_processor_unregister_performance(data->acpi_perf_cpu);
free_cpumask_var(data->freqdomain_cpus);
kfree(data->freq_table);
kfree(data);
@ -868,7 +876,7 @@ static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
{
struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
struct acpi_cpufreq_data *data = policy->driver_data;
pr_debug("acpi_cpufreq_resume\n");
@ -880,7 +888,9 @@ static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
static struct freq_attr *acpi_cpufreq_attr[] = {
&cpufreq_freq_attr_scaling_available_freqs,
&freqdomain_cpus,
NULL, /* this is a placeholder for cpb, do not remove */
#ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
&cpb,
#endif
NULL,
};
@ -953,17 +963,16 @@ static int __init acpi_cpufreq_init(void)
* only if configured. This is considered legacy code, which
* will probably be removed at some point in the future.
*/
if (check_amd_hwpstate_cpu(0)) {
struct freq_attr **iter;
if (!check_amd_hwpstate_cpu(0)) {
struct freq_attr **attr;
pr_debug("adding sysfs entry for cpb\n");
pr_debug("CPB unsupported, do not expose it\n");
for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
;
/* make sure there is a terminator behind it */
if (iter[1] == NULL)
*iter = &cpb;
for (attr = acpi_cpufreq_attr; *attr; attr++)
if (*attr == &cpb) {
*attr = NULL;
break;
}
}
#endif
acpi_cpufreq_boost_init();

View File

@ -112,12 +112,6 @@ static inline bool has_target(void)
return cpufreq_driver->target_index || cpufreq_driver->target;
}
/*
* rwsem to guarantee that cpufreq driver module doesn't unload during critical
* sections
*/
static DECLARE_RWSEM(cpufreq_rwsem);
/* internal prototypes */
static int __cpufreq_governor(struct cpufreq_policy *policy,
unsigned int event);
@ -277,10 +271,6 @@ EXPORT_SYMBOL_GPL(cpufreq_generic_get);
* If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
* freed as that depends on the kobj count.
*
* It also takes a read-lock of 'cpufreq_rwsem' and doesn't put it back if a
* valid policy is found. This is done to make sure the driver doesn't get
* unregistered while the policy is being used.
*
* Return: A valid policy on success, otherwise NULL on failure.
*/
struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
@ -291,9 +281,6 @@ struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
if (WARN_ON(cpu >= nr_cpu_ids))
return NULL;
if (!down_read_trylock(&cpufreq_rwsem))
return NULL;
/* get the cpufreq driver */
read_lock_irqsave(&cpufreq_driver_lock, flags);
@ -306,9 +293,6 @@ struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
if (!policy)
up_read(&cpufreq_rwsem);
return policy;
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
@ -320,13 +304,10 @@ EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
*
* This decrements the kobject reference count incremented earlier by calling
* cpufreq_cpu_get().
*
* It also drops the read-lock of 'cpufreq_rwsem' taken at cpufreq_cpu_get().
*/
void cpufreq_cpu_put(struct cpufreq_policy *policy)
{
kobject_put(&policy->kobj);
up_read(&cpufreq_rwsem);
}
EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
@ -539,9 +520,6 @@ static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
{
int err = -EINVAL;
if (!cpufreq_driver)
goto out;
if (cpufreq_driver->setpolicy) {
if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
*policy = CPUFREQ_POLICY_PERFORMANCE;
@ -576,7 +554,6 @@ static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
mutex_unlock(&cpufreq_governor_mutex);
}
out:
return err;
}
@ -625,9 +602,7 @@ static ssize_t store_##file_name \
int ret, temp; \
struct cpufreq_policy new_policy; \
\
ret = cpufreq_get_policy(&new_policy, policy->cpu); \
if (ret) \
return -EINVAL; \
memcpy(&new_policy, policy, sizeof(*policy)); \
\
ret = sscanf(buf, "%u", &new_policy.object); \
if (ret != 1) \
@ -681,9 +656,7 @@ static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
char str_governor[16];
struct cpufreq_policy new_policy;
ret = cpufreq_get_policy(&new_policy, policy->cpu);
if (ret)
return ret;
memcpy(&new_policy, policy, sizeof(*policy));
ret = sscanf(buf, "%15s", str_governor);
if (ret != 1)
@ -694,14 +667,7 @@ static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
return -EINVAL;
ret = cpufreq_set_policy(policy, &new_policy);
policy->user_policy.policy = policy->policy;
policy->user_policy.governor = policy->governor;
if (ret)
return ret;
else
return count;
return ret ? ret : count;
}
/**
@ -851,9 +817,6 @@ static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
struct freq_attr *fattr = to_attr(attr);
ssize_t ret;
if (!down_read_trylock(&cpufreq_rwsem))
return -EINVAL;
down_read(&policy->rwsem);
if (fattr->show)
@ -862,7 +825,6 @@ static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
ret = -EIO;
up_read(&policy->rwsem);
up_read(&cpufreq_rwsem);
return ret;
}
@ -879,9 +841,6 @@ static ssize_t store(struct kobject *kobj, struct attribute *attr,
if (!cpu_online(policy->cpu))
goto unlock;
if (!down_read_trylock(&cpufreq_rwsem))
goto unlock;
down_write(&policy->rwsem);
/* Updating inactive policies is invalid, so avoid doing that. */
@ -897,8 +856,6 @@ static ssize_t store(struct kobject *kobj, struct attribute *attr,
unlock_policy_rwsem:
up_write(&policy->rwsem);
up_read(&cpufreq_rwsem);
unlock:
put_online_cpus();
@ -1027,8 +984,7 @@ static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
}
}
static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
struct device *dev)
static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
{
struct freq_attr **drv_attr;
int ret = 0;
@ -1060,11 +1016,10 @@ static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
return cpufreq_add_dev_symlink(policy);
}
static void cpufreq_init_policy(struct cpufreq_policy *policy)
static int cpufreq_init_policy(struct cpufreq_policy *policy)
{
struct cpufreq_governor *gov = NULL;
struct cpufreq_policy new_policy;
int ret = 0;
memcpy(&new_policy, policy, sizeof(*policy));
@ -1083,16 +1038,10 @@ static void cpufreq_init_policy(struct cpufreq_policy *policy)
cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
/* set default policy */
ret = cpufreq_set_policy(policy, &new_policy);
if (ret) {
pr_debug("setting policy failed\n");
if (cpufreq_driver->exit)
cpufreq_driver->exit(policy);
}
return cpufreq_set_policy(policy, &new_policy);
}
static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
unsigned int cpu, struct device *dev)
static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
{
int ret = 0;
@ -1126,33 +1075,15 @@ static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
return 0;
}
static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
{
struct cpufreq_policy *policy;
unsigned long flags;
read_lock_irqsave(&cpufreq_driver_lock, flags);
policy = per_cpu(cpufreq_cpu_data, cpu);
read_unlock_irqrestore(&cpufreq_driver_lock, flags);
if (likely(policy)) {
/* Policy should be inactive here */
WARN_ON(!policy_is_inactive(policy));
down_write(&policy->rwsem);
policy->cpu = cpu;
policy->governor = NULL;
up_write(&policy->rwsem);
}
return policy;
}
static struct cpufreq_policy *cpufreq_policy_alloc(struct device *dev)
static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
{
struct device *dev = get_cpu_device(cpu);
struct cpufreq_policy *policy;
int ret;
if (WARN_ON(!dev))
return NULL;
policy = kzalloc(sizeof(*policy), GFP_KERNEL);
if (!policy)
return NULL;
@ -1180,10 +1111,10 @@ static struct cpufreq_policy *cpufreq_policy_alloc(struct device *dev)
init_completion(&policy->kobj_unregister);
INIT_WORK(&policy->update, handle_update);
policy->cpu = dev->id;
policy->cpu = cpu;
/* Set this once on allocation */
policy->kobj_cpu = dev->id;
policy->kobj_cpu = cpu;
return policy;
@ -1245,59 +1176,34 @@ static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
kfree(policy);
}
/**
* cpufreq_add_dev - add a CPU device
*
* Adds the cpufreq interface for a CPU device.
*
* The Oracle says: try running cpufreq registration/unregistration concurrently
* with with cpu hotplugging and all hell will break loose. Tried to clean this
* mess up, but more thorough testing is needed. - Mathieu
*/
static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
static int cpufreq_online(unsigned int cpu)
{
unsigned int j, cpu = dev->id;
int ret = -ENOMEM;
struct cpufreq_policy *policy;
bool new_policy;
unsigned long flags;
bool recover_policy = !sif;
unsigned int j;
int ret;
pr_debug("adding CPU %u\n", cpu);
if (cpu_is_offline(cpu)) {
/*
* Only possible if we are here from the subsys_interface add
* callback. A hotplug notifier will follow and we will handle
* it as CPU online then. For now, just create the sysfs link,
* unless there is no policy or the link is already present.
*/
policy = per_cpu(cpufreq_cpu_data, cpu);
return policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
? add_cpu_dev_symlink(policy, cpu) : 0;
}
if (!down_read_trylock(&cpufreq_rwsem))
return 0;
pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
/* Check if this CPU already has a policy to manage it */
policy = per_cpu(cpufreq_cpu_data, cpu);
if (policy && !policy_is_inactive(policy)) {
if (policy) {
WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
ret = cpufreq_add_policy_cpu(policy, cpu, dev);
up_read(&cpufreq_rwsem);
return ret;
}
if (!policy_is_inactive(policy))
return cpufreq_add_policy_cpu(policy, cpu);
/*
* Restore the saved policy when doing light-weight init and fall back
* to the full init if that fails.
*/
policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
if (!policy) {
recover_policy = false;
policy = cpufreq_policy_alloc(dev);
/* This is the only online CPU for the policy. Start over. */
new_policy = false;
down_write(&policy->rwsem);
policy->cpu = cpu;
policy->governor = NULL;
up_write(&policy->rwsem);
} else {
new_policy = true;
policy = cpufreq_policy_alloc(cpu);
if (!policy)
goto nomem_out;
return -ENOMEM;
}
cpumask_copy(policy->cpus, cpumask_of(cpu));
@ -1308,17 +1214,17 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
ret = cpufreq_driver->init(policy);
if (ret) {
pr_debug("initialization failed\n");
goto err_set_policy_cpu;
goto out_free_policy;
}
down_write(&policy->rwsem);
/* related cpus should atleast have policy->cpus */
cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
/* Remember which CPUs have been present at the policy creation time. */
if (!recover_policy)
if (new_policy) {
/* related_cpus should at least include policy->cpus. */
cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
/* Remember CPUs present at the policy creation time. */
cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
}
/*
* affected cpus must always be the one, which are online. We aren't
@ -1326,7 +1232,7 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
*/
cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
if (!recover_policy) {
if (new_policy) {
policy->user_policy.min = policy->min;
policy->user_policy.max = policy->max;
@ -1340,7 +1246,7 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
policy->cur = cpufreq_driver->get(policy->cpu);
if (!policy->cur) {
pr_err("%s: ->get() failed\n", __func__);
goto err_get_freq;
goto out_exit_policy;
}
}
@ -1387,10 +1293,10 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_START, policy);
if (!recover_policy) {
ret = cpufreq_add_dev_interface(policy, dev);
if (new_policy) {
ret = cpufreq_add_dev_interface(policy);
if (ret)
goto err_out_unregister;
goto out_exit_policy;
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_CREATE_POLICY, policy);
@ -1399,18 +1305,19 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
}
cpufreq_init_policy(policy);
if (!recover_policy) {
policy->user_policy.policy = policy->policy;
policy->user_policy.governor = policy->governor;
ret = cpufreq_init_policy(policy);
if (ret) {
pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
__func__, cpu, ret);
/* cpufreq_policy_free() will notify based on this */
new_policy = false;
goto out_exit_policy;
}
up_write(&policy->rwsem);
kobject_uevent(&policy->kobj, KOBJ_ADD);
up_read(&cpufreq_rwsem);
/* Callback for handling stuff after policy is ready */
if (cpufreq_driver->ready)
cpufreq_driver->ready(policy);
@ -1419,24 +1326,47 @@ static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
return 0;
err_out_unregister:
err_get_freq:
out_exit_policy:
up_write(&policy->rwsem);
if (cpufreq_driver->exit)
cpufreq_driver->exit(policy);
err_set_policy_cpu:
cpufreq_policy_free(policy, recover_policy);
nomem_out:
up_read(&cpufreq_rwsem);
out_free_policy:
cpufreq_policy_free(policy, !new_policy);
return ret;
}
/**
* cpufreq_add_dev - the cpufreq interface for a CPU device.
* @dev: CPU device.
* @sif: Subsystem interface structure pointer (not used)
*/
static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
{
unsigned cpu = dev->id;
int ret;
dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
if (cpu_online(cpu)) {
ret = cpufreq_online(cpu);
} else {
/*
* A hotplug notifier will follow and we will handle it as CPU
* online then. For now, just create the sysfs link, unless
* there is no policy or the link is already present.
*/
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
? add_cpu_dev_symlink(policy, cpu) : 0;
}
return ret;
}
static int __cpufreq_remove_dev_prepare(struct device *dev)
static void cpufreq_offline_prepare(unsigned int cpu)
{
unsigned int cpu = dev->id;
int ret = 0;
struct cpufreq_policy *policy;
pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
@ -1444,11 +1374,11 @@ static int __cpufreq_remove_dev_prepare(struct device *dev)
policy = cpufreq_cpu_get_raw(cpu);
if (!policy) {
pr_debug("%s: No cpu_data found\n", __func__);
return -EINVAL;
return;
}
if (has_target()) {
ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
if (ret)
pr_err("%s: Failed to stop governor\n", __func__);
}
@ -1469,7 +1399,7 @@ static int __cpufreq_remove_dev_prepare(struct device *dev)
/* Start governor again for active policy */
if (!policy_is_inactive(policy)) {
if (has_target()) {
ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
if (!ret)
ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
@ -1479,28 +1409,24 @@ static int __cpufreq_remove_dev_prepare(struct device *dev)
} else if (cpufreq_driver->stop_cpu) {
cpufreq_driver->stop_cpu(policy);
}
return ret;
}
static int __cpufreq_remove_dev_finish(struct device *dev)
static void cpufreq_offline_finish(unsigned int cpu)
{
unsigned int cpu = dev->id;
int ret;
struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
if (!policy) {
pr_debug("%s: No cpu_data found\n", __func__);
return -EINVAL;
return;
}
/* Only proceed for inactive policies */
if (!policy_is_inactive(policy))
return 0;
return;
/* If cpu is last user of policy, free policy */
if (has_target()) {
ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
if (ret)
pr_err("%s: Failed to exit governor\n", __func__);
}
@ -1512,8 +1438,6 @@ static int __cpufreq_remove_dev_finish(struct device *dev)
*/
if (cpufreq_driver->exit)
cpufreq_driver->exit(policy);
return 0;
}
/**
@ -1530,8 +1454,8 @@ static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
return 0;
if (cpu_online(cpu)) {
__cpufreq_remove_dev_prepare(dev);
__cpufreq_remove_dev_finish(dev);
cpufreq_offline_prepare(cpu);
cpufreq_offline_finish(cpu);
}
cpumask_clear_cpu(cpu, policy->real_cpus);
@ -2247,7 +2171,11 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
if (new_policy->min > policy->max || new_policy->max < policy->min)
/*
* This check works well when we store new min/max freq attributes,
* because new_policy is a copy of policy with one field updated.
*/
if (new_policy->min > new_policy->max)
return -EINVAL;
/* verify the cpu speed can be set within this limit */
@ -2259,10 +2187,6 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_ADJUST, new_policy);
/* adjust if necessary - hardware incompatibility*/
blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
CPUFREQ_INCOMPATIBLE, new_policy);
/*
* verify the cpu speed can be set within this limit, which might be
* different to the first one
@ -2296,16 +2220,31 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
old_gov = policy->governor;
/* end old governor */
if (old_gov) {
__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
if (ret) {
/* This can happen due to race with other operations */
pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
__func__, old_gov->name, ret);
return ret;
}
up_write(&policy->rwsem);
__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
down_write(&policy->rwsem);
if (ret) {
pr_err("%s: Failed to Exit Governor: %s (%d)\n",
__func__, old_gov->name, ret);
return ret;
}
}
/* start new governor */
policy->governor = new_policy->governor;
if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
if (!ret) {
ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
if (!ret)
goto out;
up_write(&policy->rwsem);
@ -2317,11 +2256,13 @@ static int cpufreq_set_policy(struct cpufreq_policy *policy,
pr_debug("starting governor %s failed\n", policy->governor->name);
if (old_gov) {
policy->governor = old_gov;
__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
__cpufreq_governor(policy, CPUFREQ_GOV_START);
if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
policy->governor = NULL;
else
__cpufreq_governor(policy, CPUFREQ_GOV_START);
}
return -EINVAL;
return ret;
out:
pr_debug("governor: change or update limits\n");
@ -2350,8 +2291,6 @@ int cpufreq_update_policy(unsigned int cpu)
memcpy(&new_policy, policy, sizeof(*policy));
new_policy.min = policy->user_policy.min;
new_policy.max = policy->user_policy.max;
new_policy.policy = policy->user_policy.policy;
new_policy.governor = policy->user_policy.governor;
/*
* BIOS might change freq behind our back
@ -2387,27 +2326,23 @@ static int cpufreq_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct device *dev;
dev = get_cpu_device(cpu);
if (dev) {
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
cpufreq_add_dev(dev, NULL);
break;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_ONLINE:
cpufreq_online(cpu);
break;
case CPU_DOWN_PREPARE:
__cpufreq_remove_dev_prepare(dev);
break;
case CPU_DOWN_PREPARE:
cpufreq_offline_prepare(cpu);
break;
case CPU_POST_DEAD:
__cpufreq_remove_dev_finish(dev);
break;
case CPU_POST_DEAD:
cpufreq_offline_finish(cpu);
break;
case CPU_DOWN_FAILED:
cpufreq_add_dev(dev, NULL);
break;
}
case CPU_DOWN_FAILED:
cpufreq_online(cpu);
break;
}
return NOTIFY_OK;
}
@ -2515,10 +2450,14 @@ int cpufreq_register_driver(struct cpufreq_driver *driver_data)
pr_debug("trying to register driver %s\n", driver_data->name);
/* Protect against concurrent CPU online/offline. */
get_online_cpus();
write_lock_irqsave(&cpufreq_driver_lock, flags);
if (cpufreq_driver) {
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
return -EEXIST;
ret = -EEXIST;
goto out;
}
cpufreq_driver = driver_data;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
@ -2557,7 +2496,10 @@ int cpufreq_register_driver(struct cpufreq_driver *driver_data)
register_hotcpu_notifier(&cpufreq_cpu_notifier);
pr_debug("driver %s up and running\n", driver_data->name);
return 0;
out:
put_online_cpus();
return ret;
err_if_unreg:
subsys_interface_unregister(&cpufreq_interface);
err_boost_unreg:
@ -2567,7 +2509,7 @@ err_null_driver:
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver = NULL;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
return ret;
goto out;
}
EXPORT_SYMBOL_GPL(cpufreq_register_driver);
@ -2588,19 +2530,20 @@ int cpufreq_unregister_driver(struct cpufreq_driver *driver)
pr_debug("unregistering driver %s\n", driver->name);
/* Protect against concurrent cpu hotplug */
get_online_cpus();
subsys_interface_unregister(&cpufreq_interface);
if (cpufreq_boost_supported())
cpufreq_sysfs_remove_file(&boost.attr);
unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
down_write(&cpufreq_rwsem);
write_lock_irqsave(&cpufreq_driver_lock, flags);
cpufreq_driver = NULL;
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
up_write(&cpufreq_rwsem);
put_online_cpus();
return 0;
}

View File

@ -47,7 +47,7 @@ static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
static void cs_check_cpu(int cpu, unsigned int load)
{
struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
struct dbs_data *dbs_data = policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
@ -102,26 +102,15 @@ static void cs_check_cpu(int cpu, unsigned int load)
}
}
static void cs_dbs_timer(struct work_struct *work)
static unsigned int cs_dbs_timer(struct cpu_dbs_info *cdbs,
struct dbs_data *dbs_data, bool modify_all)
{
struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
struct cs_cpu_dbs_info_s, cdbs.work.work);
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
cpu);
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
bool modify_all = true;
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
modify_all = false;
else
dbs_check_cpu(dbs_data, cpu);
if (modify_all)
dbs_check_cpu(dbs_data, cdbs->shared->policy->cpu);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
return delay_for_sampling_rate(cs_tuners->sampling_rate);
}
static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
@ -135,7 +124,7 @@ static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
if (!dbs_info->enable)
return 0;
policy = dbs_info->cdbs.cur_policy;
policy = dbs_info->cdbs.shared->policy;
/*
* we only care if our internally tracked freq moves outside the 'valid'

View File

@ -32,10 +32,10 @@ static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
{
struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
struct cpufreq_policy *policy;
struct cpufreq_policy *policy = cdbs->shared->policy;
unsigned int sampling_rate;
unsigned int max_load = 0;
unsigned int ignore_nice;
@ -60,11 +60,9 @@ void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
ignore_nice = cs_tuners->ignore_nice_load;
}
policy = cdbs->cur_policy;
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_common_info *j_cdbs;
struct cpu_dbs_info *j_cdbs;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load;
@ -163,9 +161,9 @@ EXPORT_SYMBOL_GPL(dbs_check_cpu);
static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
unsigned int delay)
{
struct cpu_dbs_common_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
mod_delayed_work_on(cpu, system_wq, &cdbs->work, delay);
mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
}
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
@ -199,33 +197,63 @@ EXPORT_SYMBOL_GPL(gov_queue_work);
static inline void gov_cancel_work(struct dbs_data *dbs_data,
struct cpufreq_policy *policy)
{
struct cpu_dbs_common_info *cdbs;
struct cpu_dbs_info *cdbs;
int i;
for_each_cpu(i, policy->cpus) {
cdbs = dbs_data->cdata->get_cpu_cdbs(i);
cancel_delayed_work_sync(&cdbs->work);
cancel_delayed_work_sync(&cdbs->dwork);
}
}
/* Will return if we need to evaluate cpu load again or not */
bool need_load_eval(struct cpu_dbs_common_info *cdbs,
unsigned int sampling_rate)
static bool need_load_eval(struct cpu_common_dbs_info *shared,
unsigned int sampling_rate)
{
if (policy_is_shared(cdbs->cur_policy)) {
if (policy_is_shared(shared->policy)) {
ktime_t time_now = ktime_get();
s64 delta_us = ktime_us_delta(time_now, cdbs->time_stamp);
s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
/* Do nothing if we recently have sampled */
if (delta_us < (s64)(sampling_rate / 2))
return false;
else
cdbs->time_stamp = time_now;
shared->time_stamp = time_now;
}
return true;
}
EXPORT_SYMBOL_GPL(need_load_eval);
static void dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
dwork.work);
struct cpu_common_dbs_info *shared = cdbs->shared;
struct cpufreq_policy *policy = shared->policy;
struct dbs_data *dbs_data = policy->governor_data;
unsigned int sampling_rate, delay;
bool modify_all = true;
mutex_lock(&shared->timer_mutex);
if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
sampling_rate = cs_tuners->sampling_rate;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
sampling_rate = od_tuners->sampling_rate;
}
if (!need_load_eval(cdbs->shared, sampling_rate))
modify_all = false;
delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
gov_queue_work(dbs_data, policy, delay, modify_all);
mutex_unlock(&shared->timer_mutex);
}
static void set_sampling_rate(struct dbs_data *dbs_data,
unsigned int sampling_rate)
@ -239,6 +267,37 @@ static void set_sampling_rate(struct dbs_data *dbs_data,
}
}
static int alloc_common_dbs_info(struct cpufreq_policy *policy,
struct common_dbs_data *cdata)
{
struct cpu_common_dbs_info *shared;
int j;
/* Allocate memory for the common information for policy->cpus */
shared = kzalloc(sizeof(*shared), GFP_KERNEL);
if (!shared)
return -ENOMEM;
/* Set shared for all CPUs, online+offline */
for_each_cpu(j, policy->related_cpus)
cdata->get_cpu_cdbs(j)->shared = shared;
return 0;
}
static void free_common_dbs_info(struct cpufreq_policy *policy,
struct common_dbs_data *cdata)
{
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
int j;
for_each_cpu(j, policy->cpus)
cdata->get_cpu_cdbs(j)->shared = NULL;
kfree(shared);
}
static int cpufreq_governor_init(struct cpufreq_policy *policy,
struct dbs_data *dbs_data,
struct common_dbs_data *cdata)
@ -246,9 +305,18 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy,
unsigned int latency;
int ret;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
if (dbs_data) {
if (WARN_ON(have_governor_per_policy()))
return -EINVAL;
ret = alloc_common_dbs_info(policy, cdata);
if (ret)
return ret;
dbs_data->usage_count++;
policy->governor_data = dbs_data;
return 0;
@ -258,12 +326,16 @@ static int cpufreq_governor_init(struct cpufreq_policy *policy,
if (!dbs_data)
return -ENOMEM;
ret = alloc_common_dbs_info(policy, cdata);
if (ret)
goto free_dbs_data;
dbs_data->cdata = cdata;
dbs_data->usage_count = 1;
ret = cdata->init(dbs_data, !policy->governor->initialized);
if (ret)
goto free_dbs_data;
goto free_common_dbs_info;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
@ -300,15 +372,22 @@ put_kobj:
}
cdata_exit:
cdata->exit(dbs_data, !policy->governor->initialized);
free_common_dbs_info:
free_common_dbs_info(policy, cdata);
free_dbs_data:
kfree(dbs_data);
return ret;
}
static void cpufreq_governor_exit(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
static int cpufreq_governor_exit(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
/* State should be equivalent to INIT */
if (!cdbs->shared || cdbs->shared->policy)
return -EBUSY;
policy->governor_data = NULL;
if (!--dbs_data->usage_count) {
@ -323,6 +402,9 @@ static void cpufreq_governor_exit(struct cpufreq_policy *policy,
cdata->exit(dbs_data, policy->governor->initialized == 1);
kfree(dbs_data);
}
free_common_dbs_info(policy, cdata);
return 0;
}
static int cpufreq_governor_start(struct cpufreq_policy *policy,
@ -330,12 +412,17 @@ static int cpufreq_governor_start(struct cpufreq_policy *policy,
{
struct common_dbs_data *cdata = dbs_data->cdata;
unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
int io_busy = 0;
if (!policy->cur)
return -EINVAL;
/* State should be equivalent to INIT */
if (!shared || shared->policy)
return -EBUSY;
if (cdata->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
@ -349,12 +436,14 @@ static int cpufreq_governor_start(struct cpufreq_policy *policy,
io_busy = od_tuners->io_is_busy;
}
shared->policy = policy;
shared->time_stamp = ktime_get();
mutex_init(&shared->timer_mutex);
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_common_info *j_cdbs = cdata->get_cpu_cdbs(j);
struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
unsigned int prev_load;
j_cdbs->cpu = j;
j_cdbs->cur_policy = policy;
j_cdbs->prev_cpu_idle =
get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
@ -366,8 +455,7 @@ static int cpufreq_governor_start(struct cpufreq_policy *policy,
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
mutex_init(&j_cdbs->timer_mutex);
INIT_DEFERRABLE_WORK(&j_cdbs->work, cdata->gov_dbs_timer);
INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
}
if (cdata->governor == GOV_CONSERVATIVE) {
@ -386,20 +474,24 @@ static int cpufreq_governor_start(struct cpufreq_policy *policy,
od_ops->powersave_bias_init_cpu(cpu);
}
/* Initiate timer time stamp */
cpu_cdbs->time_stamp = ktime_get();
gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
true);
return 0;
}
static void cpufreq_governor_stop(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
static int cpufreq_governor_stop(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
unsigned int cpu = policy->cpu;
struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_common_dbs_info *shared = cdbs->shared;
/* State should be equivalent to START */
if (!shared || !shared->policy)
return -EBUSY;
gov_cancel_work(dbs_data, policy);
if (cdata->governor == GOV_CONSERVATIVE) {
struct cs_cpu_dbs_info_s *cs_dbs_info =
@ -408,38 +500,40 @@ static void cpufreq_governor_stop(struct cpufreq_policy *policy,
cs_dbs_info->enable = 0;
}
gov_cancel_work(dbs_data, policy);
mutex_destroy(&cpu_cdbs->timer_mutex);
cpu_cdbs->cur_policy = NULL;
shared->policy = NULL;
mutex_destroy(&shared->timer_mutex);
return 0;
}
static void cpufreq_governor_limits(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
static int cpufreq_governor_limits(struct cpufreq_policy *policy,
struct dbs_data *dbs_data)
{
struct common_dbs_data *cdata = dbs_data->cdata;
unsigned int cpu = policy->cpu;
struct cpu_dbs_common_info *cpu_cdbs = cdata->get_cpu_cdbs(cpu);
struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
if (!cpu_cdbs->cur_policy)
return;
/* State should be equivalent to START */
if (!cdbs->shared || !cdbs->shared->policy)
return -EBUSY;
mutex_lock(&cpu_cdbs->timer_mutex);
if (policy->max < cpu_cdbs->cur_policy->cur)
__cpufreq_driver_target(cpu_cdbs->cur_policy, policy->max,
mutex_lock(&cdbs->shared->timer_mutex);
if (policy->max < cdbs->shared->policy->cur)
__cpufreq_driver_target(cdbs->shared->policy, policy->max,
CPUFREQ_RELATION_H);
else if (policy->min > cpu_cdbs->cur_policy->cur)
__cpufreq_driver_target(cpu_cdbs->cur_policy, policy->min,
else if (policy->min > cdbs->shared->policy->cur)
__cpufreq_driver_target(cdbs->shared->policy, policy->min,
CPUFREQ_RELATION_L);
dbs_check_cpu(dbs_data, cpu);
mutex_unlock(&cpu_cdbs->timer_mutex);
mutex_unlock(&cdbs->shared->timer_mutex);
return 0;
}
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
struct common_dbs_data *cdata, unsigned int event)
{
struct dbs_data *dbs_data;
int ret = 0;
int ret;
/* Lock governor to block concurrent initialization of governor */
mutex_lock(&cdata->mutex);
@ -449,7 +543,7 @@ int cpufreq_governor_dbs(struct cpufreq_policy *policy,
else
dbs_data = cdata->gdbs_data;
if (WARN_ON(!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT))) {
if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
ret = -EINVAL;
goto unlock;
}
@ -459,17 +553,19 @@ int cpufreq_governor_dbs(struct cpufreq_policy *policy,
ret = cpufreq_governor_init(policy, dbs_data, cdata);
break;
case CPUFREQ_GOV_POLICY_EXIT:
cpufreq_governor_exit(policy, dbs_data);
ret = cpufreq_governor_exit(policy, dbs_data);
break;
case CPUFREQ_GOV_START:
ret = cpufreq_governor_start(policy, dbs_data);
break;
case CPUFREQ_GOV_STOP:
cpufreq_governor_stop(policy, dbs_data);
ret = cpufreq_governor_stop(policy, dbs_data);
break;
case CPUFREQ_GOV_LIMITS:
cpufreq_governor_limits(policy, dbs_data);
ret = cpufreq_governor_limits(policy, dbs_data);
break;
default:
ret = -EINVAL;
}
unlock:

View File

@ -109,7 +109,7 @@ store_one(_gov, file_name)
/* create helper routines */
#define define_get_cpu_dbs_routines(_dbs_info) \
static struct cpu_dbs_common_info *get_cpu_cdbs(int cpu) \
static struct cpu_dbs_info *get_cpu_cdbs(int cpu) \
{ \
return &per_cpu(_dbs_info, cpu).cdbs; \
} \
@ -128,9 +128,20 @@ static void *get_cpu_dbs_info_s(int cpu) \
* cs_*: Conservative governor
*/
/* Common to all CPUs of a policy */
struct cpu_common_dbs_info {
struct cpufreq_policy *policy;
/*
* percpu mutex that serializes governor limit change with dbs_timer
* invocation. We do not want dbs_timer to run when user is changing
* the governor or limits.
*/
struct mutex timer_mutex;
ktime_t time_stamp;
};
/* Per cpu structures */
struct cpu_dbs_common_info {
int cpu;
struct cpu_dbs_info {
u64 prev_cpu_idle;
u64 prev_cpu_wall;
u64 prev_cpu_nice;
@ -141,19 +152,12 @@ struct cpu_dbs_common_info {
* wake-up from idle.
*/
unsigned int prev_load;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
/*
* percpu mutex that serializes governor limit change with gov_dbs_timer
* invocation. We do not want gov_dbs_timer to run when user is changing
* the governor or limits.
*/
struct mutex timer_mutex;
ktime_t time_stamp;
struct delayed_work dwork;
struct cpu_common_dbs_info *shared;
};
struct od_cpu_dbs_info_s {
struct cpu_dbs_common_info cdbs;
struct cpu_dbs_info cdbs;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_jiffies;
@ -163,7 +167,7 @@ struct od_cpu_dbs_info_s {
};
struct cs_cpu_dbs_info_s {
struct cpu_dbs_common_info cdbs;
struct cpu_dbs_info cdbs;
unsigned int down_skip;
unsigned int requested_freq;
unsigned int enable:1;
@ -204,9 +208,11 @@ struct common_dbs_data {
*/
struct dbs_data *gdbs_data;
struct cpu_dbs_common_info *(*get_cpu_cdbs)(int cpu);
struct cpu_dbs_info *(*get_cpu_cdbs)(int cpu);
void *(*get_cpu_dbs_info_s)(int cpu);
void (*gov_dbs_timer)(struct work_struct *work);
unsigned int (*gov_dbs_timer)(struct cpu_dbs_info *cdbs,
struct dbs_data *dbs_data,
bool modify_all);
void (*gov_check_cpu)(int cpu, unsigned int load);
int (*init)(struct dbs_data *dbs_data, bool notify);
void (*exit)(struct dbs_data *dbs_data, bool notify);
@ -265,8 +271,6 @@ static ssize_t show_sampling_rate_min_gov_pol \
extern struct mutex cpufreq_governor_lock;
void dbs_check_cpu(struct dbs_data *dbs_data, int cpu);
bool need_load_eval(struct cpu_dbs_common_info *cdbs,
unsigned int sampling_rate);
int cpufreq_governor_dbs(struct cpufreq_policy *policy,
struct common_dbs_data *cdata, unsigned int event);
void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,

View File

@ -155,7 +155,7 @@ static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
static void od_check_cpu(int cpu, unsigned int load)
{
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
@ -191,46 +191,40 @@ static void od_check_cpu(int cpu, unsigned int load)
}
}
static void od_dbs_timer(struct work_struct *work)
static unsigned int od_dbs_timer(struct cpu_dbs_info *cdbs,
struct dbs_data *dbs_data, bool modify_all)
{
struct od_cpu_dbs_info_s *dbs_info =
container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
struct cpufreq_policy *policy = cdbs->shared->policy;
unsigned int cpu = policy->cpu;
struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
cpu);
struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
int delay = 0, sample_type = core_dbs_info->sample_type;
bool modify_all = true;
int delay = 0, sample_type = dbs_info->sample_type;
mutex_lock(&core_dbs_info->cdbs.timer_mutex);
if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
modify_all = false;
if (!modify_all)
goto max_delay;
}
/* Common NORMAL_SAMPLE setup */
core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
dbs_info->sample_type = OD_NORMAL_SAMPLE;
if (sample_type == OD_SUB_SAMPLE) {
delay = core_dbs_info->freq_lo_jiffies;
__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
delay = dbs_info->freq_lo_jiffies;
__cpufreq_driver_target(policy, dbs_info->freq_lo,
CPUFREQ_RELATION_H);
} else {
dbs_check_cpu(dbs_data, cpu);
if (core_dbs_info->freq_lo) {
if (dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
core_dbs_info->sample_type = OD_SUB_SAMPLE;
delay = core_dbs_info->freq_hi_jiffies;
dbs_info->sample_type = OD_SUB_SAMPLE;
delay = dbs_info->freq_hi_jiffies;
}
}
max_delay:
if (!delay)
delay = delay_for_sampling_rate(od_tuners->sampling_rate
* core_dbs_info->rate_mult);
* dbs_info->rate_mult);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
return delay;
}
/************************** sysfs interface ************************/
@ -273,27 +267,27 @@ static void update_sampling_rate(struct dbs_data *dbs_data,
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->cdbs.timer_mutex);
mutex_lock(&dbs_info->cdbs.shared->timer_mutex);
if (!delayed_work_pending(&dbs_info->cdbs.work)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
if (!delayed_work_pending(&dbs_info->cdbs.dwork)) {
mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->cdbs.work.timer.expires;
appointed_at = dbs_info->cdbs.dwork.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->cdbs.timer_mutex);
cancel_delayed_work_sync(&dbs_info->cdbs.work);
mutex_lock(&dbs_info->cdbs.timer_mutex);
mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
cancel_delayed_work_sync(&dbs_info->cdbs.dwork);
mutex_lock(&dbs_info->cdbs.shared->timer_mutex);
gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
usecs_to_jiffies(new_rate), true);
gov_queue_work(dbs_data, policy,
usecs_to_jiffies(new_rate), true);
}
mutex_unlock(&dbs_info->cdbs.timer_mutex);
mutex_unlock(&dbs_info->cdbs.shared->timer_mutex);
}
}
@ -556,13 +550,16 @@ static void od_set_powersave_bias(unsigned int powersave_bias)
get_online_cpus();
for_each_online_cpu(cpu) {
struct cpu_common_dbs_info *shared;
if (cpumask_test_cpu(cpu, &done))
continue;
policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
if (!policy)
shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
if (!shared)
continue;
policy = shared->policy;
cpumask_or(&done, &done, policy->cpus);
if (policy->governor != &cpufreq_gov_ondemand)

View File

@ -78,7 +78,7 @@ static int eps_acpi_init(void)
static int eps_acpi_exit(struct cpufreq_policy *policy)
{
if (eps_acpi_cpu_perf) {
acpi_processor_unregister_performance(eps_acpi_cpu_perf, 0);
acpi_processor_unregister_performance(0);
free_cpumask_var(eps_acpi_cpu_perf->shared_cpu_map);
kfree(eps_acpi_cpu_perf);
eps_acpi_cpu_perf = NULL;

View File

@ -29,7 +29,6 @@ MODULE_LICENSE("GPL");
struct cpufreq_acpi_io {
struct acpi_processor_performance acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int resume;
};
@ -221,6 +220,7 @@ acpi_cpufreq_cpu_init (
unsigned int cpu = policy->cpu;
struct cpufreq_acpi_io *data;
unsigned int result = 0;
struct cpufreq_frequency_table *freq_table;
pr_debug("acpi_cpufreq_cpu_init\n");
@ -254,10 +254,10 @@ acpi_cpufreq_cpu_init (
}
/* alloc freq_table */
data->freq_table = kzalloc(sizeof(*data->freq_table) *
freq_table = kzalloc(sizeof(*freq_table) *
(data->acpi_data.state_count + 1),
GFP_KERNEL);
if (!data->freq_table) {
if (!freq_table) {
result = -ENOMEM;
goto err_unreg;
}
@ -276,14 +276,14 @@ acpi_cpufreq_cpu_init (
for (i = 0; i <= data->acpi_data.state_count; i++)
{
if (i < data->acpi_data.state_count) {
data->freq_table[i].frequency =
freq_table[i].frequency =
data->acpi_data.states[i].core_frequency * 1000;
} else {
data->freq_table[i].frequency = CPUFREQ_TABLE_END;
freq_table[i].frequency = CPUFREQ_TABLE_END;
}
}
result = cpufreq_table_validate_and_show(policy, data->freq_table);
result = cpufreq_table_validate_and_show(policy, freq_table);
if (result) {
goto err_freqfree;
}
@ -311,9 +311,9 @@ acpi_cpufreq_cpu_init (
return (result);
err_freqfree:
kfree(data->freq_table);
kfree(freq_table);
err_unreg:
acpi_processor_unregister_performance(&data->acpi_data, cpu);
acpi_processor_unregister_performance(cpu);
err_free:
kfree(data);
acpi_io_data[cpu] = NULL;
@ -332,8 +332,8 @@ acpi_cpufreq_cpu_exit (
if (data) {
acpi_io_data[policy->cpu] = NULL;
acpi_processor_unregister_performance(&data->acpi_data,
policy->cpu);
acpi_processor_unregister_performance(policy->cpu);
kfree(policy->freq_table);
kfree(data);
}

View File

@ -98,11 +98,10 @@ static int integrator_set_target(struct cpufreq_policy *policy,
/* get current setting */
cm_osc = __raw_readl(cm_base + INTEGRATOR_HDR_OSC_OFFSET);
if (machine_is_integrator()) {
if (machine_is_integrator())
vco.s = (cm_osc >> 8) & 7;
} else if (machine_is_cintegrator()) {
else if (machine_is_cintegrator())
vco.s = 1;
}
vco.v = cm_osc & 255;
vco.r = 22;
freqs.old = icst_hz(&cclk_params, vco) / 1000;
@ -163,11 +162,10 @@ static unsigned int integrator_get(unsigned int cpu)
/* detect memory etc. */
cm_osc = __raw_readl(cm_base + INTEGRATOR_HDR_OSC_OFFSET);
if (machine_is_integrator()) {
if (machine_is_integrator())
vco.s = (cm_osc >> 8) & 7;
} else {
else
vco.s = 1;
}
vco.v = cm_osc & 255;
vco.r = 22;
@ -203,7 +201,7 @@ static int __init integrator_cpufreq_probe(struct platform_device *pdev)
struct resource *res;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
if (!res)
return -ENODEV;
cm_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
@ -234,6 +232,6 @@ static struct platform_driver integrator_cpufreq_driver = {
module_platform_driver_probe(integrator_cpufreq_driver,
integrator_cpufreq_probe);
MODULE_AUTHOR ("Russell M. King");
MODULE_DESCRIPTION ("cpufreq driver for ARM Integrator CPUs");
MODULE_LICENSE ("GPL");
MODULE_AUTHOR("Russell M. King");
MODULE_DESCRIPTION("cpufreq driver for ARM Integrator CPUs");
MODULE_LICENSE("GPL");

View File

@ -484,12 +484,11 @@ static void __init intel_pstate_sysfs_expose_params(void)
}
/************************** sysfs end ************************/
static void intel_pstate_hwp_enable(void)
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
{
hwp_active++;
pr_info("intel_pstate: HWP enabled\n");
wrmsrl( MSR_PM_ENABLE, 0x1);
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
}
static int byt_get_min_pstate(void)
@ -522,7 +521,7 @@ static void byt_set_pstate(struct cpudata *cpudata, int pstate)
int32_t vid_fp;
u32 vid;
val = pstate << 8;
val = (u64)pstate << 8;
if (limits.no_turbo && !limits.turbo_disabled)
val |= (u64)1 << 32;
@ -611,7 +610,7 @@ static void core_set_pstate(struct cpudata *cpudata, int pstate)
{
u64 val;
val = pstate << 8;
val = (u64)pstate << 8;
if (limits.no_turbo && !limits.turbo_disabled)
val |= (u64)1 << 32;
@ -909,6 +908,7 @@ static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
ICPU(0x4c, byt_params),
ICPU(0x4e, core_params),
ICPU(0x4f, core_params),
ICPU(0x5e, core_params),
ICPU(0x56, core_params),
ICPU(0x57, knl_params),
{}
@ -933,6 +933,10 @@ static int intel_pstate_init_cpu(unsigned int cpunum)
cpu = all_cpu_data[cpunum];
cpu->cpu = cpunum;
if (hwp_active)
intel_pstate_hwp_enable(cpu);
intel_pstate_get_cpu_pstates(cpu);
init_timer_deferrable(&cpu->timer);
@ -1170,6 +1174,10 @@ static struct hw_vendor_info vendor_info[] = {
{1, "ORACLE", "X4270M3 ", PPC},
{1, "ORACLE", "X4270M2 ", PPC},
{1, "ORACLE", "X4170M2 ", PPC},
{1, "ORACLE", "X4170 M3", PPC},
{1, "ORACLE", "X4275 M3", PPC},
{1, "ORACLE", "X6-2 ", PPC},
{1, "ORACLE", "Sudbury ", PPC},
{0, "", ""},
};
@ -1246,7 +1254,7 @@ static int __init intel_pstate_init(void)
return -ENOMEM;
if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
intel_pstate_hwp_enable();
hwp_active++;
if (!hwp_active && hwp_only)
goto out;

View File

@ -0,0 +1,527 @@
/*
* Copyright (c) 2015 Linaro Ltd.
* Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpu_cooling.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#define MIN_VOLT_SHIFT (100000)
#define MAX_VOLT_SHIFT (200000)
#define MAX_VOLT_LIMIT (1150000)
#define VOLT_TOL (10000)
/*
* The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
* on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
* Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
* voltage inputs need to be controlled under a hardware limitation:
* 100mV < Vsram - Vproc < 200mV
*
* When scaling the clock frequency of a CPU clock domain, the clock source
* needs to be switched to another stable PLL clock temporarily until
* the original PLL becomes stable at target frequency.
*/
struct mtk_cpu_dvfs_info {
struct device *cpu_dev;
struct regulator *proc_reg;
struct regulator *sram_reg;
struct clk *cpu_clk;
struct clk *inter_clk;
struct thermal_cooling_device *cdev;
int intermediate_voltage;
bool need_voltage_tracking;
};
static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
int new_vproc)
{
struct regulator *proc_reg = info->proc_reg;
struct regulator *sram_reg = info->sram_reg;
int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
old_vproc = regulator_get_voltage(proc_reg);
old_vsram = regulator_get_voltage(sram_reg);
/* Vsram should not exceed the maximum allowed voltage of SoC. */
new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
if (old_vproc < new_vproc) {
/*
* When scaling up voltages, Vsram and Vproc scale up step
* by step. At each step, set Vsram to (Vproc + 200mV) first,
* then set Vproc to (Vsram - 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
old_vsram = regulator_get_voltage(sram_reg);
old_vproc = regulator_get_voltage(proc_reg);
vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
vproc = new_vproc;
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
vproc = vsram - MIN_VOLT_SHIFT;
}
if (ret)
return ret;
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret) {
regulator_set_voltage(sram_reg, old_vsram,
old_vsram);
return ret;
}
} while (vproc < new_vproc || vsram < new_vsram);
} else if (old_vproc > new_vproc) {
/*
* When scaling down voltages, Vsram and Vproc scale down step
* by step. At each step, set Vproc to (Vsram - 200mV) first,
* then set Vproc to (Vproc + 100mV).
* Keep doing it until Vsram and Vproc hit target voltages.
*/
do {
old_vproc = regulator_get_voltage(proc_reg);
old_vsram = regulator_get_voltage(sram_reg);
vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
ret = regulator_set_voltage(proc_reg, vproc,
vproc + VOLT_TOL);
if (ret)
return ret;
if (vproc == new_vproc)
vsram = new_vsram;
else
vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
vsram = MAX_VOLT_LIMIT;
/*
* If the target Vsram hits the maximum voltage,
* try to set the exact voltage value first.
*/
ret = regulator_set_voltage(sram_reg, vsram,
vsram);
if (ret)
ret = regulator_set_voltage(sram_reg,
vsram - VOLT_TOL,
vsram);
} else {
ret = regulator_set_voltage(sram_reg, vsram,
vsram + VOLT_TOL);
}
if (ret) {
regulator_set_voltage(proc_reg, old_vproc,
old_vproc);
return ret;
}
} while (vproc > new_vproc + VOLT_TOL ||
vsram > new_vsram + VOLT_TOL);
}
return 0;
}
static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
{
if (info->need_voltage_tracking)
return mtk_cpufreq_voltage_tracking(info, vproc);
else
return regulator_set_voltage(info->proc_reg, vproc,
vproc + VOLT_TOL);
}
static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct cpufreq_frequency_table *freq_table = policy->freq_table;
struct clk *cpu_clk = policy->clk;
struct clk *armpll = clk_get_parent(cpu_clk);
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device *cpu_dev = info->cpu_dev;
struct dev_pm_opp *opp;
long freq_hz, old_freq_hz;
int vproc, old_vproc, inter_vproc, target_vproc, ret;
inter_vproc = info->intermediate_voltage;
old_freq_hz = clk_get_rate(cpu_clk);
old_vproc = regulator_get_voltage(info->proc_reg);
freq_hz = freq_table[index].frequency * 1000;
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
if (IS_ERR(opp)) {
rcu_read_unlock();
pr_err("cpu%d: failed to find OPP for %ld\n",
policy->cpu, freq_hz);
return PTR_ERR(opp);
}
vproc = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
/*
* If the new voltage or the intermediate voltage is higher than the
* current voltage, scale up voltage first.
*/
target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
if (old_vproc < target_vproc) {
ret = mtk_cpufreq_set_voltage(info, target_vproc);
if (ret) {
pr_err("cpu%d: failed to scale up voltage!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, old_vproc);
return ret;
}
}
/* Reparent the CPU clock to intermediate clock. */
ret = clk_set_parent(cpu_clk, info->inter_clk);
if (ret) {
pr_err("cpu%d: failed to re-parent cpu clock!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, old_vproc);
WARN_ON(1);
return ret;
}
/* Set the original PLL to target rate. */
ret = clk_set_rate(armpll, freq_hz);
if (ret) {
pr_err("cpu%d: failed to scale cpu clock rate!\n",
policy->cpu);
clk_set_parent(cpu_clk, armpll);
mtk_cpufreq_set_voltage(info, old_vproc);
return ret;
}
/* Set parent of CPU clock back to the original PLL. */
ret = clk_set_parent(cpu_clk, armpll);
if (ret) {
pr_err("cpu%d: failed to re-parent cpu clock!\n",
policy->cpu);
mtk_cpufreq_set_voltage(info, inter_vproc);
WARN_ON(1);
return ret;
}
/*
* If the new voltage is lower than the intermediate voltage or the
* original voltage, scale down to the new voltage.
*/
if (vproc < inter_vproc || vproc < old_vproc) {
ret = mtk_cpufreq_set_voltage(info, vproc);
if (ret) {
pr_err("cpu%d: failed to scale down voltage!\n",
policy->cpu);
clk_set_parent(cpu_clk, info->inter_clk);
clk_set_rate(armpll, old_freq_hz);
clk_set_parent(cpu_clk, armpll);
return ret;
}
}
return 0;
}
static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
struct device_node *np = of_node_get(info->cpu_dev->of_node);
if (WARN_ON(!np))
return;
if (of_find_property(np, "#cooling-cells", NULL)) {
info->cdev = of_cpufreq_cooling_register(np,
policy->related_cpus);
if (IS_ERR(info->cdev)) {
dev_err(info->cpu_dev,
"running cpufreq without cooling device: %ld\n",
PTR_ERR(info->cdev));
info->cdev = NULL;
}
}
of_node_put(np);
}
static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
{
struct device *cpu_dev;
struct regulator *proc_reg = ERR_PTR(-ENODEV);
struct regulator *sram_reg = ERR_PTR(-ENODEV);
struct clk *cpu_clk = ERR_PTR(-ENODEV);
struct clk *inter_clk = ERR_PTR(-ENODEV);
struct dev_pm_opp *opp;
unsigned long rate;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("failed to get cpu%d device\n", cpu);
return -ENODEV;
}
cpu_clk = clk_get(cpu_dev, "cpu");
if (IS_ERR(cpu_clk)) {
if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
else
pr_err("failed to get cpu clk for cpu%d\n", cpu);
ret = PTR_ERR(cpu_clk);
return ret;
}
inter_clk = clk_get(cpu_dev, "intermediate");
if (IS_ERR(inter_clk)) {
if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
pr_warn("intermediate clk for cpu%d not ready, retry.\n",
cpu);
else
pr_err("failed to get intermediate clk for cpu%d\n",
cpu);
ret = PTR_ERR(inter_clk);
goto out_free_resources;
}
proc_reg = regulator_get_exclusive(cpu_dev, "proc");
if (IS_ERR(proc_reg)) {
if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
pr_warn("proc regulator for cpu%d not ready, retry.\n",
cpu);
else
pr_err("failed to get proc regulator for cpu%d\n",
cpu);
ret = PTR_ERR(proc_reg);
goto out_free_resources;
}
/* Both presence and absence of sram regulator are valid cases. */
sram_reg = regulator_get_exclusive(cpu_dev, "sram");
ret = of_init_opp_table(cpu_dev);
if (ret) {
pr_warn("no OPP table for cpu%d\n", cpu);
goto out_free_resources;
}
/* Search a safe voltage for intermediate frequency. */
rate = clk_get_rate(inter_clk);
rcu_read_lock();
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp)) {
rcu_read_unlock();
pr_err("failed to get intermediate opp for cpu%d\n", cpu);
ret = PTR_ERR(opp);
goto out_free_opp_table;
}
info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
rcu_read_unlock();
info->cpu_dev = cpu_dev;
info->proc_reg = proc_reg;
info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
info->cpu_clk = cpu_clk;
info->inter_clk = inter_clk;
/*
* If SRAM regulator is present, software "voltage tracking" is needed
* for this CPU power domain.
*/
info->need_voltage_tracking = !IS_ERR(sram_reg);
return 0;
out_free_opp_table:
of_free_opp_table(cpu_dev);
out_free_resources:
if (!IS_ERR(proc_reg))
regulator_put(proc_reg);
if (!IS_ERR(sram_reg))
regulator_put(sram_reg);
if (!IS_ERR(cpu_clk))
clk_put(cpu_clk);
if (!IS_ERR(inter_clk))
clk_put(inter_clk);
return ret;
}
static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
{
if (!IS_ERR(info->proc_reg))
regulator_put(info->proc_reg);
if (!IS_ERR(info->sram_reg))
regulator_put(info->sram_reg);
if (!IS_ERR(info->cpu_clk))
clk_put(info->cpu_clk);
if (!IS_ERR(info->inter_clk))
clk_put(info->inter_clk);
of_free_opp_table(info->cpu_dev);
}
static int mtk_cpufreq_init(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info;
struct cpufreq_frequency_table *freq_table;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
ret = mtk_cpu_dvfs_info_init(info, policy->cpu);
if (ret) {
pr_err("%s failed to initialize dvfs info for cpu%d\n",
__func__, policy->cpu);
goto out_free_dvfs_info;
}
ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
if (ret) {
pr_err("failed to init cpufreq table for cpu%d: %d\n",
policy->cpu, ret);
goto out_release_dvfs_info;
}
ret = cpufreq_table_validate_and_show(policy, freq_table);
if (ret) {
pr_err("%s: invalid frequency table: %d\n", __func__, ret);
goto out_free_cpufreq_table;
}
/* CPUs in the same cluster share a clock and power domain. */
cpumask_copy(policy->cpus, &cpu_topology[policy->cpu].core_sibling);
policy->driver_data = info;
policy->clk = info->cpu_clk;
return 0;
out_free_cpufreq_table:
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table);
out_release_dvfs_info:
mtk_cpu_dvfs_info_release(info);
out_free_dvfs_info:
kfree(info);
return ret;
}
static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
{
struct mtk_cpu_dvfs_info *info = policy->driver_data;
cpufreq_cooling_unregister(info->cdev);
dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
mtk_cpu_dvfs_info_release(info);
kfree(info);
return 0;
}
static struct cpufreq_driver mt8173_cpufreq_driver = {
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = mtk_cpufreq_set_target,
.get = cpufreq_generic_get,
.init = mtk_cpufreq_init,
.exit = mtk_cpufreq_exit,
.ready = mtk_cpufreq_ready,
.name = "mtk-cpufreq",
.attr = cpufreq_generic_attr,
};
static int mt8173_cpufreq_probe(struct platform_device *pdev)
{
int ret;
ret = cpufreq_register_driver(&mt8173_cpufreq_driver);
if (ret)
pr_err("failed to register mtk cpufreq driver\n");
return ret;
}
static struct platform_driver mt8173_cpufreq_platdrv = {
.driver = {
.name = "mt8173-cpufreq",
},
.probe = mt8173_cpufreq_probe,
};
static int mt8173_cpufreq_driver_init(void)
{
struct platform_device *pdev;
int err;
if (!of_machine_is_compatible("mediatek,mt8173"))
return -ENODEV;
err = platform_driver_register(&mt8173_cpufreq_platdrv);
if (err)
return err;
/*
* Since there's no place to hold device registration code and no
* device tree based way to match cpufreq driver yet, both the driver
* and the device registration codes are put here to handle defer
* probing.
*/
pdev = platform_device_register_simple("mt8173-cpufreq", -1, NULL, 0);
if (IS_ERR(pdev)) {
pr_err("failed to register mtk-cpufreq platform device\n");
return PTR_ERR(pdev);
}
return 0;
}
device_initcall(mt8173_cpufreq_driver_init);

View File

@ -421,7 +421,7 @@ static int powernow_acpi_init(void)
return 0;
err2:
acpi_processor_unregister_performance(acpi_processor_perf, 0);
acpi_processor_unregister_performance(0);
err1:
free_cpumask_var(acpi_processor_perf->shared_cpu_map);
err05:
@ -661,7 +661,7 @@ static int powernow_cpu_exit(struct cpufreq_policy *policy)
{
#ifdef CONFIG_X86_POWERNOW_K7_ACPI
if (acpi_processor_perf) {
acpi_processor_unregister_performance(acpi_processor_perf, 0);
acpi_processor_unregister_performance(0);
free_cpumask_var(acpi_processor_perf->shared_cpu_map);
kfree(acpi_processor_perf);
}

View File

@ -795,7 +795,7 @@ err_out_mem:
kfree(powernow_table);
err_out:
acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
acpi_processor_unregister_performance(data->cpu);
/* data->acpi_data.state_count informs us at ->exit()
* whether ACPI was used */
@ -863,8 +863,7 @@ static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
{
if (data->acpi_data.state_count)
acpi_processor_unregister_performance(&data->acpi_data,
data->cpu);
acpi_processor_unregister_performance(data->cpu);
free_cpumask_var(data->acpi_data.shared_cpu_map);
}

View File

@ -27,20 +27,31 @@
#include <linux/smp.h>
#include <linux/of.h>
#include <linux/reboot.h>
#include <linux/slab.h>
#include <asm/cputhreads.h>
#include <asm/firmware.h>
#include <asm/reg.h>
#include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
#include <asm/opal.h>
#define POWERNV_MAX_PSTATES 256
#define PMSR_PSAFE_ENABLE (1UL << 30)
#define PMSR_SPR_EM_DISABLE (1UL << 31)
#define PMSR_MAX(x) ((x >> 32) & 0xFF)
#define PMSR_LP(x) ((x >> 48) & 0xFF)
static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
static bool rebooting, throttled;
static bool rebooting, throttled, occ_reset;
static struct chip {
unsigned int id;
bool throttled;
cpumask_t mask;
struct work_struct throttle;
bool restore;
} *chips;
static int nr_chips;
/*
* Note: The set of pstates consists of contiguous integers, the
@ -298,28 +309,35 @@ static inline unsigned int get_nominal_index(void)
return powernv_pstate_info.max - powernv_pstate_info.nominal;
}
static void powernv_cpufreq_throttle_check(unsigned int cpu)
static void powernv_cpufreq_throttle_check(void *data)
{
unsigned int cpu = smp_processor_id();
unsigned long pmsr;
int pmsr_pmax, pmsr_lp;
int pmsr_pmax, i;
pmsr = get_pmspr(SPRN_PMSR);
for (i = 0; i < nr_chips; i++)
if (chips[i].id == cpu_to_chip_id(cpu))
break;
/* Check for Pmax Capping */
pmsr_pmax = (s8)PMSR_MAX(pmsr);
if (pmsr_pmax != powernv_pstate_info.max) {
throttled = true;
pr_info("CPU %d Pmax is reduced to %d\n", cpu, pmsr_pmax);
pr_info("Max allowed Pstate is capped\n");
if (chips[i].throttled)
goto next;
chips[i].throttled = true;
pr_info("CPU %d on Chip %u has Pmax reduced to %d\n", cpu,
chips[i].id, pmsr_pmax);
} else if (chips[i].throttled) {
chips[i].throttled = false;
pr_info("CPU %d on Chip %u has Pmax restored to %d\n", cpu,
chips[i].id, pmsr_pmax);
}
/*
* Check for Psafe by reading LocalPstate
* or check if Psafe_mode_active is set in PMSR.
*/
pmsr_lp = (s8)PMSR_LP(pmsr);
if ((pmsr_lp < powernv_pstate_info.min) ||
(pmsr & PMSR_PSAFE_ENABLE)) {
/* Check if Psafe_mode_active is set in PMSR. */
next:
if (pmsr & PMSR_PSAFE_ENABLE) {
throttled = true;
pr_info("Pstate set to safe frequency\n");
}
@ -350,7 +368,7 @@ static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
return 0;
if (!throttled)
powernv_cpufreq_throttle_check(smp_processor_id());
powernv_cpufreq_throttle_check(NULL);
freq_data.pstate_id = powernv_freqs[new_index].driver_data;
@ -395,6 +413,119 @@ static struct notifier_block powernv_cpufreq_reboot_nb = {
.notifier_call = powernv_cpufreq_reboot_notifier,
};
void powernv_cpufreq_work_fn(struct work_struct *work)
{
struct chip *chip = container_of(work, struct chip, throttle);
unsigned int cpu;
cpumask_var_t mask;
smp_call_function_any(&chip->mask,
powernv_cpufreq_throttle_check, NULL, 0);
if (!chip->restore)
return;
chip->restore = false;
cpumask_copy(mask, &chip->mask);
for_each_cpu_and(cpu, mask, cpu_online_mask) {
int index, tcpu;
struct cpufreq_policy policy;
cpufreq_get_policy(&policy, cpu);
cpufreq_frequency_table_target(&policy, policy.freq_table,
policy.cur,
CPUFREQ_RELATION_C, &index);
powernv_cpufreq_target_index(&policy, index);
for_each_cpu(tcpu, policy.cpus)
cpumask_clear_cpu(tcpu, mask);
}
}
static char throttle_reason[][30] = {
"No throttling",
"Power Cap",
"Processor Over Temperature",
"Power Supply Failure",
"Over Current",
"OCC Reset"
};
static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
unsigned long msg_type, void *_msg)
{
struct opal_msg *msg = _msg;
struct opal_occ_msg omsg;
int i;
if (msg_type != OPAL_MSG_OCC)
return 0;
omsg.type = be64_to_cpu(msg->params[0]);
switch (omsg.type) {
case OCC_RESET:
occ_reset = true;
pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
/*
* powernv_cpufreq_throttle_check() is called in
* target() callback which can detect the throttle state
* for governors like ondemand.
* But static governors will not call target() often thus
* report throttling here.
*/
if (!throttled) {
throttled = true;
pr_crit("CPU frequency is throttled for duration\n");
}
break;
case OCC_LOAD:
pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
break;
case OCC_THROTTLE:
omsg.chip = be64_to_cpu(msg->params[1]);
omsg.throttle_status = be64_to_cpu(msg->params[2]);
if (occ_reset) {
occ_reset = false;
throttled = false;
pr_info("OCC Active, CPU frequency is no longer throttled\n");
for (i = 0; i < nr_chips; i++) {
chips[i].restore = true;
schedule_work(&chips[i].throttle);
}
return 0;
}
if (omsg.throttle_status &&
omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS)
pr_info("OCC: Chip %u Pmax reduced due to %s\n",
(unsigned int)omsg.chip,
throttle_reason[omsg.throttle_status]);
else if (!omsg.throttle_status)
pr_info("OCC: Chip %u %s\n", (unsigned int)omsg.chip,
throttle_reason[omsg.throttle_status]);
else
return 0;
for (i = 0; i < nr_chips; i++)
if (chips[i].id == omsg.chip) {
if (!omsg.throttle_status)
chips[i].restore = true;
schedule_work(&chips[i].throttle);
}
}
return 0;
}
static struct notifier_block powernv_cpufreq_opal_nb = {
.notifier_call = powernv_cpufreq_occ_msg,
.next = NULL,
.priority = 0,
};
static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{
struct powernv_smp_call_data freq_data;
@ -414,6 +545,36 @@ static struct cpufreq_driver powernv_cpufreq_driver = {
.attr = powernv_cpu_freq_attr,
};
static int init_chip_info(void)
{
unsigned int chip[256];
unsigned int cpu, i;
unsigned int prev_chip_id = UINT_MAX;
for_each_possible_cpu(cpu) {
unsigned int id = cpu_to_chip_id(cpu);
if (prev_chip_id != id) {
prev_chip_id = id;
chip[nr_chips++] = id;
}
}
chips = kmalloc_array(nr_chips, sizeof(struct chip), GFP_KERNEL);
if (!chips)
return -ENOMEM;
for (i = 0; i < nr_chips; i++) {
chips[i].id = chip[i];
chips[i].throttled = false;
cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
chips[i].restore = false;
}
return 0;
}
static int __init powernv_cpufreq_init(void)
{
int rc = 0;
@ -429,7 +590,13 @@ static int __init powernv_cpufreq_init(void)
return rc;
}
/* Populate chip info */
rc = init_chip_info();
if (rc)
return rc;
register_reboot_notifier(&powernv_cpufreq_reboot_nb);
opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
return cpufreq_register_driver(&powernv_cpufreq_driver);
}
module_init(powernv_cpufreq_init);
@ -437,6 +604,8 @@ module_init(powernv_cpufreq_init);
static void __exit powernv_cpufreq_exit(void)
{
unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
opal_message_notifier_unregister(OPAL_MSG_OCC,
&powernv_cpufreq_opal_nb);
cpufreq_unregister_driver(&powernv_cpufreq_driver);
}
module_exit(powernv_cpufreq_exit);

View File

@ -97,8 +97,8 @@ static int pmi_notifier(struct notifier_block *nb,
struct cpufreq_frequency_table *cbe_freqs;
u8 node;
/* Should this really be called for CPUFREQ_ADJUST, CPUFREQ_INCOMPATIBLE
* and CPUFREQ_NOTIFY policy events?)
/* Should this really be called for CPUFREQ_ADJUST and CPUFREQ_NOTIFY
* policy events?)
*/
if (event == CPUFREQ_START)
return 0;

View File

@ -45,12 +45,10 @@ static int sfi_parse_freq(struct sfi_table_header *table)
pentry = (struct sfi_freq_table_entry *)sb->pentry;
totallen = num_freq_table_entries * sizeof(*pentry);
sfi_cpufreq_array = kzalloc(totallen, GFP_KERNEL);
sfi_cpufreq_array = kmemdup(pentry, totallen, GFP_KERNEL);
if (!sfi_cpufreq_array)
return -ENOMEM;
memcpy(sfi_cpufreq_array, pentry, totallen);
return 0;
}

View File

@ -386,7 +386,7 @@ unsigned int speedstep_get_freqs(enum speedstep_processor processor,
unsigned int prev_speed;
unsigned int ret = 0;
unsigned long flags;
struct timeval tv1, tv2;
ktime_t tv1, tv2;
if ((!processor) || (!low_speed) || (!high_speed) || (!set_state))
return -EINVAL;
@ -415,14 +415,14 @@ unsigned int speedstep_get_freqs(enum speedstep_processor processor,
/* start latency measurement */
if (transition_latency)
do_gettimeofday(&tv1);
tv1 = ktime_get();
/* switch to high state */
set_state(SPEEDSTEP_HIGH);
/* end latency measurement */
if (transition_latency)
do_gettimeofday(&tv2);
tv2 = ktime_get();
*high_speed = speedstep_get_frequency(processor);
if (!*high_speed) {
@ -442,8 +442,7 @@ unsigned int speedstep_get_freqs(enum speedstep_processor processor,
set_state(SPEEDSTEP_LOW);
if (transition_latency) {
*transition_latency = (tv2.tv_sec - tv1.tv_sec) * USEC_PER_SEC +
tv2.tv_usec - tv1.tv_usec;
*transition_latency = ktime_to_us(ktime_sub(tv2, tv1));
pr_debug("transition latency is %u uSec\n", *transition_latency);
/* convert uSec to nSec and add 20% for safety reasons */

View File

@ -1668,7 +1668,6 @@ pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
pr_debug("min dma period: %d ps, "
"new clock %d kHz\n", pxafb_display_dma_period(var),
policy->max);

View File

@ -1042,7 +1042,6 @@ sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
dev_dbg(fbi->dev, "min dma period: %d ps, "
"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
policy->max);

View File

@ -560,11 +560,9 @@ static int __init xen_acpi_processor_init(void)
return 0;
err_unregister:
for_each_possible_cpu(i) {
struct acpi_processor_performance *perf;
perf = per_cpu_ptr(acpi_perf_data, i);
acpi_processor_unregister_performance(perf, i);
}
for_each_possible_cpu(i)
acpi_processor_unregister_performance(i);
err_out:
/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
free_acpi_perf_data();
@ -579,11 +577,9 @@ static void __exit xen_acpi_processor_exit(void)
kfree(acpi_ids_done);
kfree(acpi_id_present);
kfree(acpi_id_cst_present);
for_each_possible_cpu(i) {
struct acpi_processor_performance *perf;
perf = per_cpu_ptr(acpi_perf_data, i);
acpi_processor_unregister_performance(perf, i);
}
for_each_possible_cpu(i)
acpi_processor_unregister_performance(i);
free_acpi_perf_data();
}

View File

@ -228,10 +228,7 @@ extern int acpi_processor_preregister_performance(struct
extern int acpi_processor_register_performance(struct acpi_processor_performance
*performance, unsigned int cpu);
extern void acpi_processor_unregister_performance(struct
acpi_processor_performance
*performance,
unsigned int cpu);
extern void acpi_processor_unregister_performance(unsigned int cpu);
/* note: this locks both the calling module and the processor module
if a _PPC object exists, rmmod is disallowed then */

View File

@ -51,11 +51,9 @@ struct cpufreq_cpuinfo {
unsigned int transition_latency;
};
struct cpufreq_real_policy {
struct cpufreq_user_policy {
unsigned int min; /* in kHz */
unsigned int max; /* in kHz */
unsigned int policy; /* see above */
struct cpufreq_governor *governor; /* see below */
};
struct cpufreq_policy {
@ -88,7 +86,7 @@ struct cpufreq_policy {
struct work_struct update; /* if update_policy() needs to be
* called, but you're in IRQ context */
struct cpufreq_real_policy user_policy;
struct cpufreq_user_policy user_policy;
struct cpufreq_frequency_table *freq_table;
struct list_head policy_list;
@ -369,11 +367,10 @@ static inline void cpufreq_resume(void) {}
/* Policy Notifiers */
#define CPUFREQ_ADJUST (0)
#define CPUFREQ_INCOMPATIBLE (1)
#define CPUFREQ_NOTIFY (2)
#define CPUFREQ_START (3)
#define CPUFREQ_CREATE_POLICY (4)
#define CPUFREQ_REMOVE_POLICY (5)
#define CPUFREQ_NOTIFY (1)
#define CPUFREQ_START (2)
#define CPUFREQ_CREATE_POLICY (3)
#define CPUFREQ_REMOVE_POLICY (4)
#ifdef CONFIG_CPU_FREQ
int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list);