mm: compaction: update comment in try_to_compact_pages

Allocation success rates have been far lower since 3.4 due to commit
fe2c2a1066 ("vmscan: reclaim at order 0 when compaction is enabled").
This commit was introduced for good reasons and it was known in advance
that the success rates would suffer but it was justified on the grounds
that the high allocation success rates were achieved by aggressive
reclaim.  Success rates are expected to suffer even more in 3.6 due to
commit 7db8889ab0 ("mm: have order > 0 compaction start off where it
left") which testing has shown to severely reduce allocation success
rates under load - to 0% in one case.

This series aims to improve the allocation success rates without
regressing the benefits of commit fe2c2a1066.  The series is based on
latest mmotm and takes into account the __GFP_NO_KSWAPD flag is going
away.

Patch 1 updates a stale comment seeing as I was in the general area.

Patch 2 updates reclaim/compaction to reclaim pages scaled on the number
	of recent failures.

Patch 3 captures suitable high-order pages freed by compaction to reduce
	races with parallel allocation requests.

Patch 4 fixes the upstream commit [7db8889a: mm: have order > 0 compaction
	start off where it left] to enable compaction again

Patch 5 identifies when compacion is taking too long due to contention
	and aborts.

STRESS-HIGHALLOC
		 3.6-rc1-akpm	  full-series
Pass 1          36.00 ( 0.00%)    51.00 (15.00%)
Pass 2          42.00 ( 0.00%)    63.00 (21.00%)
while Rested    86.00 ( 0.00%)    86.00 ( 0.00%)

From

  http://www.csn.ul.ie/~mel/postings/mmtests-20120424/global-dhp__stress-highalloc-performance-ext3/hydra/comparison.html

I know that the allocation success rates in 3.3.6 was 78% in comparison
to 36% in in the current akpm tree.  With the full series applied, the
success rates are up to around 51% with some variability in the results.
This is not as high a success rate but it does not reclaim excessively
which is a key point.

MMTests Statistics: vmstat
Page Ins                                     3050912     3078892
Page Outs                                    8033528     8039096
Swap Ins                                           0           0
Swap Outs                                          0           0

Note that swap in/out rates remain at 0. In 3.3.6 with 78% success rates
there were 71881 pages swapped out.

Direct pages scanned                           70942      122976
Kswapd pages scanned                         1366300     1520122
Kswapd pages reclaimed                       1366214     1484629
Direct pages reclaimed                         70936      105716
Kswapd efficiency                                99%         97%
Kswapd velocity                             1072.550    1182.615
Direct efficiency                                99%         85%
Direct velocity                               55.690      95.672

The kswapd velocity changes very little as expected.  kswapd velocity is
around the 1000 pages/sec mark where as in kernel 3.3.6 with the high
allocation success rates it was 8140 pages/second.  Direct velocity is
higher as a result of patch 2 of the series but this is expected and is
acceptable.  The direct reclaim and kswapd velocities change very little.

If these get accepted for merging then there is a difficulty in how they
should be handled.  7db8889a ("mm: have order > 0 compaction start off
where it left") is broken but it is already in 3.6-rc1 and needs to be
fixed.  However, if just patch 4 from this series is applied then Jim
Schutt's workload is known to break again as his workload also requires
patch 5.  While it would be preferred to have all these patches in 3.6 to
improve compaction in general, it would at least be acceptable if just
patches 4 and 5 were merged to 3.6 to fix a known problem without breaking
compaction completely.  On the face of it, that would force
__GFP_NO_KSWAPD patches to be merged at the same time but I can do a
version of this series with __GFP_NO_KSWAPD change reverted and then
rebase it on top of this series.  That might be best overall because I
note that the __GFP_NO_KSWAPD patch should have removed
deferred_compaction from page_alloc.c but it didn't but fixing that causes
collisions with this series.

This patch:

The comment about order applied when the check was order >
PAGE_ALLOC_COSTLY_ORDER which has not been the case since c5a73c3d ("thp:
use compaction for all allocation orders").  Fixing the comment while I'm
in the general area.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Mel Gorman 2012-10-08 16:29:09 -07:00 committed by Linus Torvalds
parent 6597d78339
commit 4ffb6335da

View File

@ -869,11 +869,7 @@ unsigned long try_to_compact_pages(struct zonelist *zonelist,
struct zone *zone; struct zone *zone;
int rc = COMPACT_SKIPPED; int rc = COMPACT_SKIPPED;
/* /* Check if the GFP flags allow compaction */
* Check whether it is worth even starting compaction. The order check is
* made because an assumption is made that the page allocator can satisfy
* the "cheaper" orders without taking special steps
*/
if (!order || !may_enter_fs || !may_perform_io) if (!order || !may_enter_fs || !may_perform_io)
return rc; return rc;