mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 04:18:39 +08:00
doc: Convert to rcubarrier.txt to ReST
Convert rcubarrier.txt to rcubarrier.rst and add it to index.rst. Format file according to reST - Add headings and sub-headings - Add code segments - Add cross-references to quizes and answers Signed-off-by: Amol Grover <frextrite@gmail.com> Tested-by: Phong Tran <tranmanphong@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit is contained in:
parent
b00aedf978
commit
4af498306f
@ -8,6 +8,7 @@ RCU concepts
|
||||
:maxdepth: 3
|
||||
|
||||
arrayRCU
|
||||
rcubarrier
|
||||
rcu_dereference
|
||||
whatisRCU
|
||||
rcu
|
||||
|
@ -1,4 +1,7 @@
|
||||
.. _rcu_barrier:
|
||||
|
||||
RCU and Unloadable Modules
|
||||
==========================
|
||||
|
||||
[Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/]
|
||||
|
||||
@ -21,7 +24,7 @@ given that readers might well leave absolutely no trace of their
|
||||
presence? There is a synchronize_rcu() primitive that blocks until all
|
||||
pre-existing readers have completed. An updater wishing to delete an
|
||||
element p from a linked list might do the following, while holding an
|
||||
appropriate lock, of course:
|
||||
appropriate lock, of course::
|
||||
|
||||
list_del_rcu(p);
|
||||
synchronize_rcu();
|
||||
@ -32,13 +35,13 @@ primitive must be used instead. This primitive takes a pointer to an
|
||||
rcu_head struct placed within the RCU-protected data structure and
|
||||
another pointer to a function that may be invoked later to free that
|
||||
structure. Code to delete an element p from the linked list from IRQ
|
||||
context might then be as follows:
|
||||
context might then be as follows::
|
||||
|
||||
list_del_rcu(p);
|
||||
call_rcu(&p->rcu, p_callback);
|
||||
|
||||
Since call_rcu() never blocks, this code can safely be used from within
|
||||
IRQ context. The function p_callback() might be defined as follows:
|
||||
IRQ context. The function p_callback() might be defined as follows::
|
||||
|
||||
static void p_callback(struct rcu_head *rp)
|
||||
{
|
||||
@ -49,6 +52,7 @@ IRQ context. The function p_callback() might be defined as follows:
|
||||
|
||||
|
||||
Unloading Modules That Use call_rcu()
|
||||
-------------------------------------
|
||||
|
||||
But what if p_callback is defined in an unloadable module?
|
||||
|
||||
@ -69,10 +73,11 @@ in realtime kernels in order to avoid excessive scheduling latencies.
|
||||
|
||||
|
||||
rcu_barrier()
|
||||
-------------
|
||||
|
||||
We instead need the rcu_barrier() primitive. Rather than waiting for
|
||||
a grace period to elapse, rcu_barrier() waits for all outstanding RCU
|
||||
callbacks to complete. Please note that rcu_barrier() does -not- imply
|
||||
callbacks to complete. Please note that rcu_barrier() does **not** imply
|
||||
synchronize_rcu(), in particular, if there are no RCU callbacks queued
|
||||
anywhere, rcu_barrier() is within its rights to return immediately,
|
||||
without waiting for a grace period to elapse.
|
||||
@ -88,79 +93,79 @@ must match the flavor of rcu_barrier() with that of call_rcu(). If your
|
||||
module uses multiple flavors of call_rcu(), then it must also use multiple
|
||||
flavors of rcu_barrier() when unloading that module. For example, if
|
||||
it uses call_rcu(), call_srcu() on srcu_struct_1, and call_srcu() on
|
||||
srcu_struct_2(), then the following three lines of code will be required
|
||||
when unloading:
|
||||
srcu_struct_2, then the following three lines of code will be required
|
||||
when unloading::
|
||||
|
||||
1 rcu_barrier();
|
||||
2 srcu_barrier(&srcu_struct_1);
|
||||
3 srcu_barrier(&srcu_struct_2);
|
||||
|
||||
The rcutorture module makes use of rcu_barrier() in its exit function
|
||||
as follows:
|
||||
as follows::
|
||||
|
||||
1 static void
|
||||
2 rcu_torture_cleanup(void)
|
||||
3 {
|
||||
4 int i;
|
||||
1 static void
|
||||
2 rcu_torture_cleanup(void)
|
||||
3 {
|
||||
4 int i;
|
||||
5
|
||||
6 fullstop = 1;
|
||||
7 if (shuffler_task != NULL) {
|
||||
6 fullstop = 1;
|
||||
7 if (shuffler_task != NULL) {
|
||||
8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task");
|
||||
9 kthread_stop(shuffler_task);
|
||||
10 }
|
||||
11 shuffler_task = NULL;
|
||||
12
|
||||
13 if (writer_task != NULL) {
|
||||
14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task");
|
||||
15 kthread_stop(writer_task);
|
||||
16 }
|
||||
17 writer_task = NULL;
|
||||
18
|
||||
19 if (reader_tasks != NULL) {
|
||||
20 for (i = 0; i < nrealreaders; i++) {
|
||||
21 if (reader_tasks[i] != NULL) {
|
||||
22 VERBOSE_PRINTK_STRING(
|
||||
23 "Stopping rcu_torture_reader task");
|
||||
24 kthread_stop(reader_tasks[i]);
|
||||
25 }
|
||||
26 reader_tasks[i] = NULL;
|
||||
27 }
|
||||
28 kfree(reader_tasks);
|
||||
29 reader_tasks = NULL;
|
||||
30 }
|
||||
31 rcu_torture_current = NULL;
|
||||
32
|
||||
33 if (fakewriter_tasks != NULL) {
|
||||
34 for (i = 0; i < nfakewriters; i++) {
|
||||
35 if (fakewriter_tasks[i] != NULL) {
|
||||
36 VERBOSE_PRINTK_STRING(
|
||||
37 "Stopping rcu_torture_fakewriter task");
|
||||
38 kthread_stop(fakewriter_tasks[i]);
|
||||
39 }
|
||||
40 fakewriter_tasks[i] = NULL;
|
||||
41 }
|
||||
42 kfree(fakewriter_tasks);
|
||||
43 fakewriter_tasks = NULL;
|
||||
44 }
|
||||
45
|
||||
46 if (stats_task != NULL) {
|
||||
47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task");
|
||||
48 kthread_stop(stats_task);
|
||||
49 }
|
||||
50 stats_task = NULL;
|
||||
51
|
||||
52 /* Wait for all RCU callbacks to fire. */
|
||||
53 rcu_barrier();
|
||||
54
|
||||
55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
|
||||
56
|
||||
57 if (cur_ops->cleanup != NULL)
|
||||
58 cur_ops->cleanup();
|
||||
59 if (atomic_read(&n_rcu_torture_error))
|
||||
60 rcu_torture_print_module_parms("End of test: FAILURE");
|
||||
61 else
|
||||
62 rcu_torture_print_module_parms("End of test: SUCCESS");
|
||||
63 }
|
||||
10 }
|
||||
11 shuffler_task = NULL;
|
||||
12
|
||||
13 if (writer_task != NULL) {
|
||||
14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task");
|
||||
15 kthread_stop(writer_task);
|
||||
16 }
|
||||
17 writer_task = NULL;
|
||||
18
|
||||
19 if (reader_tasks != NULL) {
|
||||
20 for (i = 0; i < nrealreaders; i++) {
|
||||
21 if (reader_tasks[i] != NULL) {
|
||||
22 VERBOSE_PRINTK_STRING(
|
||||
23 "Stopping rcu_torture_reader task");
|
||||
24 kthread_stop(reader_tasks[i]);
|
||||
25 }
|
||||
26 reader_tasks[i] = NULL;
|
||||
27 }
|
||||
28 kfree(reader_tasks);
|
||||
29 reader_tasks = NULL;
|
||||
30 }
|
||||
31 rcu_torture_current = NULL;
|
||||
32
|
||||
33 if (fakewriter_tasks != NULL) {
|
||||
34 for (i = 0; i < nfakewriters; i++) {
|
||||
35 if (fakewriter_tasks[i] != NULL) {
|
||||
36 VERBOSE_PRINTK_STRING(
|
||||
37 "Stopping rcu_torture_fakewriter task");
|
||||
38 kthread_stop(fakewriter_tasks[i]);
|
||||
39 }
|
||||
40 fakewriter_tasks[i] = NULL;
|
||||
41 }
|
||||
42 kfree(fakewriter_tasks);
|
||||
43 fakewriter_tasks = NULL;
|
||||
44 }
|
||||
45
|
||||
46 if (stats_task != NULL) {
|
||||
47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task");
|
||||
48 kthread_stop(stats_task);
|
||||
49 }
|
||||
50 stats_task = NULL;
|
||||
51
|
||||
52 /* Wait for all RCU callbacks to fire. */
|
||||
53 rcu_barrier();
|
||||
54
|
||||
55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
|
||||
56
|
||||
57 if (cur_ops->cleanup != NULL)
|
||||
58 cur_ops->cleanup();
|
||||
59 if (atomic_read(&n_rcu_torture_error))
|
||||
60 rcu_torture_print_module_parms("End of test: FAILURE");
|
||||
61 else
|
||||
62 rcu_torture_print_module_parms("End of test: SUCCESS");
|
||||
63 }
|
||||
|
||||
Line 6 sets a global variable that prevents any RCU callbacks from
|
||||
re-posting themselves. This will not be necessary in most cases, since
|
||||
@ -176,9 +181,14 @@ for any pre-existing callbacks to complete.
|
||||
Then lines 55-62 print status and do operation-specific cleanup, and
|
||||
then return, permitting the module-unload operation to be completed.
|
||||
|
||||
Quick Quiz #1: Is there any other situation where rcu_barrier() might
|
||||
.. _rcubarrier_quiz_1:
|
||||
|
||||
Quick Quiz #1:
|
||||
Is there any other situation where rcu_barrier() might
|
||||
be required?
|
||||
|
||||
:ref:`Answer to Quick Quiz #1 <answer_rcubarrier_quiz_1>`
|
||||
|
||||
Your module might have additional complications. For example, if your
|
||||
module invokes call_rcu() from timers, you will need to first cancel all
|
||||
the timers, and only then invoke rcu_barrier() to wait for any remaining
|
||||
@ -188,11 +198,12 @@ Of course, if you module uses call_rcu(), you will need to invoke
|
||||
rcu_barrier() before unloading. Similarly, if your module uses
|
||||
call_srcu(), you will need to invoke srcu_barrier() before unloading,
|
||||
and on the same srcu_struct structure. If your module uses call_rcu()
|
||||
-and- call_srcu(), then you will need to invoke rcu_barrier() -and-
|
||||
**and** call_srcu(), then you will need to invoke rcu_barrier() **and**
|
||||
srcu_barrier().
|
||||
|
||||
|
||||
Implementing rcu_barrier()
|
||||
--------------------------
|
||||
|
||||
Dipankar Sarma's implementation of rcu_barrier() makes use of the fact
|
||||
that RCU callbacks are never reordered once queued on one of the per-CPU
|
||||
@ -200,19 +211,19 @@ queues. His implementation queues an RCU callback on each of the per-CPU
|
||||
callback queues, and then waits until they have all started executing, at
|
||||
which point, all earlier RCU callbacks are guaranteed to have completed.
|
||||
|
||||
The original code for rcu_barrier() was as follows:
|
||||
The original code for rcu_barrier() was as follows::
|
||||
|
||||
1 void rcu_barrier(void)
|
||||
2 {
|
||||
3 BUG_ON(in_interrupt());
|
||||
4 /* Take cpucontrol mutex to protect against CPU hotplug */
|
||||
5 mutex_lock(&rcu_barrier_mutex);
|
||||
6 init_completion(&rcu_barrier_completion);
|
||||
7 atomic_set(&rcu_barrier_cpu_count, 0);
|
||||
8 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
|
||||
9 wait_for_completion(&rcu_barrier_completion);
|
||||
10 mutex_unlock(&rcu_barrier_mutex);
|
||||
11 }
|
||||
1 void rcu_barrier(void)
|
||||
2 {
|
||||
3 BUG_ON(in_interrupt());
|
||||
4 /* Take cpucontrol mutex to protect against CPU hotplug */
|
||||
5 mutex_lock(&rcu_barrier_mutex);
|
||||
6 init_completion(&rcu_barrier_completion);
|
||||
7 atomic_set(&rcu_barrier_cpu_count, 0);
|
||||
8 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
|
||||
9 wait_for_completion(&rcu_barrier_completion);
|
||||
10 mutex_unlock(&rcu_barrier_mutex);
|
||||
11 }
|
||||
|
||||
Line 3 verifies that the caller is in process context, and lines 5 and 10
|
||||
use rcu_barrier_mutex to ensure that only one rcu_barrier() is using the
|
||||
@ -226,18 +237,18 @@ This code was rewritten in 2008 and several times thereafter, but this
|
||||
still gives the general idea.
|
||||
|
||||
The rcu_barrier_func() runs on each CPU, where it invokes call_rcu()
|
||||
to post an RCU callback, as follows:
|
||||
to post an RCU callback, as follows::
|
||||
|
||||
1 static void rcu_barrier_func(void *notused)
|
||||
2 {
|
||||
3 int cpu = smp_processor_id();
|
||||
4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
|
||||
5 struct rcu_head *head;
|
||||
1 static void rcu_barrier_func(void *notused)
|
||||
2 {
|
||||
3 int cpu = smp_processor_id();
|
||||
4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
|
||||
5 struct rcu_head *head;
|
||||
6
|
||||
7 head = &rdp->barrier;
|
||||
8 atomic_inc(&rcu_barrier_cpu_count);
|
||||
9 call_rcu(head, rcu_barrier_callback);
|
||||
10 }
|
||||
7 head = &rdp->barrier;
|
||||
8 atomic_inc(&rcu_barrier_cpu_count);
|
||||
9 call_rcu(head, rcu_barrier_callback);
|
||||
10 }
|
||||
|
||||
Lines 3 and 4 locate RCU's internal per-CPU rcu_data structure,
|
||||
which contains the struct rcu_head that needed for the later call to
|
||||
@ -248,20 +259,25 @@ the current CPU's queue.
|
||||
|
||||
The rcu_barrier_callback() function simply atomically decrements the
|
||||
rcu_barrier_cpu_count variable and finalizes the completion when it
|
||||
reaches zero, as follows:
|
||||
reaches zero, as follows::
|
||||
|
||||
1 static void rcu_barrier_callback(struct rcu_head *notused)
|
||||
2 {
|
||||
3 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
|
||||
4 complete(&rcu_barrier_completion);
|
||||
3 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
|
||||
4 complete(&rcu_barrier_completion);
|
||||
5 }
|
||||
|
||||
Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes
|
||||
.. _rcubarrier_quiz_2:
|
||||
|
||||
Quick Quiz #2:
|
||||
What happens if CPU 0's rcu_barrier_func() executes
|
||||
immediately (thus incrementing rcu_barrier_cpu_count to the
|
||||
value one), but the other CPU's rcu_barrier_func() invocations
|
||||
are delayed for a full grace period? Couldn't this result in
|
||||
rcu_barrier() returning prematurely?
|
||||
|
||||
:ref:`Answer to Quick Quiz #2 <answer_rcubarrier_quiz_2>`
|
||||
|
||||
The current rcu_barrier() implementation is more complex, due to the need
|
||||
to avoid disturbing idle CPUs (especially on battery-powered systems)
|
||||
and the need to minimally disturb non-idle CPUs in real-time systems.
|
||||
@ -269,6 +285,7 @@ However, the code above illustrates the concepts.
|
||||
|
||||
|
||||
rcu_barrier() Summary
|
||||
---------------------
|
||||
|
||||
The rcu_barrier() primitive has seen relatively little use, since most
|
||||
code using RCU is in the core kernel rather than in modules. However, if
|
||||
@ -277,8 +294,12 @@ so that your module may be safely unloaded.
|
||||
|
||||
|
||||
Answers to Quick Quizzes
|
||||
------------------------
|
||||
|
||||
Quick Quiz #1: Is there any other situation where rcu_barrier() might
|
||||
.. _answer_rcubarrier_quiz_1:
|
||||
|
||||
Quick Quiz #1:
|
||||
Is there any other situation where rcu_barrier() might
|
||||
be required?
|
||||
|
||||
Answer: Interestingly enough, rcu_barrier() was not originally
|
||||
@ -292,7 +313,12 @@ Answer: Interestingly enough, rcu_barrier() was not originally
|
||||
implementing rcutorture, and found that rcu_barrier() solves
|
||||
this problem as well.
|
||||
|
||||
Quick Quiz #2: What happens if CPU 0's rcu_barrier_func() executes
|
||||
:ref:`Back to Quick Quiz #1 <rcubarrier_quiz_1>`
|
||||
|
||||
.. _answer_rcubarrier_quiz_2:
|
||||
|
||||
Quick Quiz #2:
|
||||
What happens if CPU 0's rcu_barrier_func() executes
|
||||
immediately (thus incrementing rcu_barrier_cpu_count to the
|
||||
value one), but the other CPU's rcu_barrier_func() invocations
|
||||
are delayed for a full grace period? Couldn't this result in
|
||||
@ -323,3 +349,5 @@ Answer: This cannot happen. The reason is that on_each_cpu() has its last
|
||||
is to add an rcu_read_lock() before line 8 of rcu_barrier()
|
||||
and an rcu_read_unlock() after line 8 of this same function. If
|
||||
you can think of a better change, please let me know!
|
||||
|
||||
:ref:`Back to Quick Quiz #2 <rcubarrier_quiz_2>`
|
Loading…
Reference in New Issue
Block a user