This commit is contained in:
Stephen Rothwell 2024-08-29 08:33:14 +10:00
commit 4a2730bf07
8 changed files with 33 additions and 32 deletions

View File

@ -145,32 +145,32 @@ This is how a well-documented Rust function may look like:
This example showcases a few ``rustdoc`` features and some conventions followed
in the kernel:
- The first paragraph must be a single sentence briefly describing what
the documented item does. Further explanations must go in extra paragraphs.
- The first paragraph must be a single sentence briefly describing what
the documented item does. Further explanations must go in extra paragraphs.
- Unsafe functions must document their safety preconditions under
a ``# Safety`` section.
- Unsafe functions must document their safety preconditions under
a ``# Safety`` section.
- While not shown here, if a function may panic, the conditions under which
that happens must be described under a ``# Panics`` section.
- While not shown here, if a function may panic, the conditions under which
that happens must be described under a ``# Panics`` section.
Please note that panicking should be very rare and used only with a good
reason. In almost all cases, a fallible approach should be used, typically
returning a ``Result``.
Please note that panicking should be very rare and used only with a good
reason. In almost all cases, a fallible approach should be used, typically
returning a ``Result``.
- If providing examples of usage would help readers, they must be written in
a section called ``# Examples``.
- If providing examples of usage would help readers, they must be written in
a section called ``# Examples``.
- Rust items (functions, types, constants...) must be linked appropriately
(``rustdoc`` will create a link automatically).
- Rust items (functions, types, constants...) must be linked appropriately
(``rustdoc`` will create a link automatically).
- Any ``unsafe`` block must be preceded by a ``// SAFETY:`` comment
describing why the code inside is sound.
- Any ``unsafe`` block must be preceded by a ``// SAFETY:`` comment
describing why the code inside is sound.
While sometimes the reason might look trivial and therefore unneeded,
writing these comments is not just a good way of documenting what has been
taken into account, but most importantly, it provides a way to know that
there are no *extra* implicit constraints.
While sometimes the reason might look trivial and therefore unneeded,
writing these comments is not just a good way of documenting what has been
taken into account, but most importantly, it provides a way to know that
there are no *extra* implicit constraints.
To learn more about how to write documentation for Rust and extra features,
please take a look at the ``rustdoc`` book at:

View File

@ -305,7 +305,7 @@ If GDB/Binutils is used and Rust symbols are not getting demangled, the reason
is the toolchain does not support Rust's new v0 mangling scheme yet.
There are a few ways out:
- Install a newer release (GDB >= 10.2, Binutils >= 2.36).
- Install a newer release (GDB >= 10.2, Binutils >= 2.36).
- Some versions of GDB (e.g. vanilla GDB 10.1) are able to use
the pre-demangled names embedded in the debug info (``CONFIG_DEBUG_INFO``).
- Some versions of GDB (e.g. vanilla GDB 10.1) are able to use
the pre-demangled names embedded in the debug info (``CONFIG_DEBUG_INFO``).

View File

@ -445,6 +445,7 @@ KBUILD_USERLDFLAGS := $(USERLDFLAGS)
# host programs.
export rust_common_flags := --edition=2021 \
-Zbinary_dep_depinfo=y \
-Astable_features \
-Dunsafe_op_in_unsafe_fn \
-Dnon_ascii_idents \
-Wrust_2018_idioms \

View File

@ -305,7 +305,7 @@ $(obj)/bindings/bindings_helpers_generated.rs: $(src)/helpers.c FORCE
quiet_cmd_exports = EXPORTS $@
cmd_exports = \
$(NM) -p --defined-only $< \
| awk '/ (T|R|D) / {printf "EXPORT_SYMBOL_RUST_GPL(%s);\n",$$3}' > $@
| awk '/ (T|R|D|B) / {printf "EXPORT_SYMBOL_RUST_GPL(%s);\n",$$3}' > $@
$(obj)/exports_core_generated.h: $(obj)/core.o FORCE
$(call if_changed,exports)

View File

@ -21,8 +21,10 @@ pub trait BoxExt<T>: Sized {
impl<T> BoxExt<T> for Box<T> {
fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
let b = <Self as BoxExt<_>>::new_uninit(flags)?;
Ok(Box::write(b, x))
let mut b = <Self as BoxExt<_>>::new_uninit(flags)?;
b.write(x);
// SAFETY: We just wrote to it.
Ok(unsafe { b.assume_init() })
}
#[cfg(any(test, testlib))]

View File

@ -6,8 +6,8 @@
//! C header: [`include/linux/blk_mq.h`](srctree/include/linux/blk_mq.h)
use crate::block::mq::{raw_writer::RawWriter, Operations, TagSet};
use crate::error;
use crate::{bindings, error::from_err_ptr, error::Result, sync::Arc};
use crate::{error, static_lock_class};
use core::fmt::{self, Write};
/// A builder for [`GenDisk`].
@ -93,8 +93,6 @@ impl GenDiskBuilder {
name: fmt::Arguments<'_>,
tagset: Arc<TagSet<T>>,
) -> Result<GenDisk<T>> {
let lock_class_key = crate::sync::LockClassKey::new();
// SAFETY: `bindings::queue_limits` contain only fields that are valid when zeroed.
let mut lim: bindings::queue_limits = unsafe { core::mem::zeroed() };
@ -110,7 +108,7 @@ impl GenDiskBuilder {
tagset.raw_tag_set(),
&mut lim,
core::ptr::null_mut(),
lock_class_key.as_ptr(),
static_lock_class!().as_ptr(),
)
})?;

View File

@ -145,7 +145,7 @@
//! }
//! }
//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data
//! // struct. This is important to ensure that no user can implement a rouge `__pin_data`
//! // struct. This is important to ensure that no user can implement a rogue `__pin_data`
//! // function without using `unsafe`.
//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> {
//! type Datee = Bar<T>;
@ -156,7 +156,7 @@
//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist
//! // for two reasons:
//! // - `__phantom`: every generic must be used, since we cannot really know which generics
//! // are used, we declere all and then use everything here once.
//! // are used, we declare all and then use everything here once.
//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant
//! // over it. The lifetime is needed to work around the limitation that trait bounds must
//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is

View File

@ -491,7 +491,7 @@ impl<T: Driver> Adapter<T> {
pub struct DriverVTable(Opaque<bindings::phy_driver>);
// SAFETY: `DriverVTable` doesn't expose any &self method to access internal data, so it's safe to
// share `&DriverVTable` across execution context boundries.
// share `&DriverVTable` across execution context boundaries.
unsafe impl Sync for DriverVTable {}
/// Creates a [`DriverVTable`] instance from [`Driver`].