mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 12:28:41 +08:00
[PATCH] jbd2: initial copy of files from jbd
This is a simple copy of the files in fs/jbd to fs/jbd2 and /usr/incude/linux/[ext4_]jbd.h to /usr/include/[ext4_]jbd2.h Signed-off-by: Dave Kleikamp <shaggy@austin.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
parent
02ea2104c5
commit
470decc613
7
fs/jbd2/Makefile
Normal file
7
fs/jbd2/Makefile
Normal file
@ -0,0 +1,7 @@
|
||||
#
|
||||
# Makefile for the linux journaling routines.
|
||||
#
|
||||
|
||||
obj-$(CONFIG_JBD) += jbd.o
|
||||
|
||||
jbd-objs := transaction.o commit.o recovery.o checkpoint.o revoke.o journal.o
|
697
fs/jbd2/checkpoint.c
Normal file
697
fs/jbd2/checkpoint.c
Normal file
@ -0,0 +1,697 @@
|
||||
/*
|
||||
* linux/fs/checkpoint.c
|
||||
*
|
||||
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
|
||||
*
|
||||
* Copyright 1999 Red Hat Software --- All Rights Reserved
|
||||
*
|
||||
* This file is part of the Linux kernel and is made available under
|
||||
* the terms of the GNU General Public License, version 2, or at your
|
||||
* option, any later version, incorporated herein by reference.
|
||||
*
|
||||
* Checkpoint routines for the generic filesystem journaling code.
|
||||
* Part of the ext2fs journaling system.
|
||||
*
|
||||
* Checkpointing is the process of ensuring that a section of the log is
|
||||
* committed fully to disk, so that that portion of the log can be
|
||||
* reused.
|
||||
*/
|
||||
|
||||
#include <linux/time.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/jbd.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
/*
|
||||
* Unlink a buffer from a transaction checkpoint list.
|
||||
*
|
||||
* Called with j_list_lock held.
|
||||
*/
|
||||
static inline void __buffer_unlink_first(struct journal_head *jh)
|
||||
{
|
||||
transaction_t *transaction = jh->b_cp_transaction;
|
||||
|
||||
jh->b_cpnext->b_cpprev = jh->b_cpprev;
|
||||
jh->b_cpprev->b_cpnext = jh->b_cpnext;
|
||||
if (transaction->t_checkpoint_list == jh) {
|
||||
transaction->t_checkpoint_list = jh->b_cpnext;
|
||||
if (transaction->t_checkpoint_list == jh)
|
||||
transaction->t_checkpoint_list = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Unlink a buffer from a transaction checkpoint(io) list.
|
||||
*
|
||||
* Called with j_list_lock held.
|
||||
*/
|
||||
static inline void __buffer_unlink(struct journal_head *jh)
|
||||
{
|
||||
transaction_t *transaction = jh->b_cp_transaction;
|
||||
|
||||
__buffer_unlink_first(jh);
|
||||
if (transaction->t_checkpoint_io_list == jh) {
|
||||
transaction->t_checkpoint_io_list = jh->b_cpnext;
|
||||
if (transaction->t_checkpoint_io_list == jh)
|
||||
transaction->t_checkpoint_io_list = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Move a buffer from the checkpoint list to the checkpoint io list
|
||||
*
|
||||
* Called with j_list_lock held
|
||||
*/
|
||||
static inline void __buffer_relink_io(struct journal_head *jh)
|
||||
{
|
||||
transaction_t *transaction = jh->b_cp_transaction;
|
||||
|
||||
__buffer_unlink_first(jh);
|
||||
|
||||
if (!transaction->t_checkpoint_io_list) {
|
||||
jh->b_cpnext = jh->b_cpprev = jh;
|
||||
} else {
|
||||
jh->b_cpnext = transaction->t_checkpoint_io_list;
|
||||
jh->b_cpprev = transaction->t_checkpoint_io_list->b_cpprev;
|
||||
jh->b_cpprev->b_cpnext = jh;
|
||||
jh->b_cpnext->b_cpprev = jh;
|
||||
}
|
||||
transaction->t_checkpoint_io_list = jh;
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to release a checkpointed buffer from its transaction.
|
||||
* Returns 1 if we released it and 2 if we also released the
|
||||
* whole transaction.
|
||||
*
|
||||
* Requires j_list_lock
|
||||
* Called under jbd_lock_bh_state(jh2bh(jh)), and drops it
|
||||
*/
|
||||
static int __try_to_free_cp_buf(struct journal_head *jh)
|
||||
{
|
||||
int ret = 0;
|
||||
struct buffer_head *bh = jh2bh(jh);
|
||||
|
||||
if (jh->b_jlist == BJ_None && !buffer_locked(bh) && !buffer_dirty(bh)) {
|
||||
JBUFFER_TRACE(jh, "remove from checkpoint list");
|
||||
ret = __journal_remove_checkpoint(jh) + 1;
|
||||
jbd_unlock_bh_state(bh);
|
||||
journal_remove_journal_head(bh);
|
||||
BUFFER_TRACE(bh, "release");
|
||||
__brelse(bh);
|
||||
} else {
|
||||
jbd_unlock_bh_state(bh);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* __log_wait_for_space: wait until there is space in the journal.
|
||||
*
|
||||
* Called under j-state_lock *only*. It will be unlocked if we have to wait
|
||||
* for a checkpoint to free up some space in the log.
|
||||
*/
|
||||
void __log_wait_for_space(journal_t *journal)
|
||||
{
|
||||
int nblocks;
|
||||
assert_spin_locked(&journal->j_state_lock);
|
||||
|
||||
nblocks = jbd_space_needed(journal);
|
||||
while (__log_space_left(journal) < nblocks) {
|
||||
if (journal->j_flags & JFS_ABORT)
|
||||
return;
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
mutex_lock(&journal->j_checkpoint_mutex);
|
||||
|
||||
/*
|
||||
* Test again, another process may have checkpointed while we
|
||||
* were waiting for the checkpoint lock
|
||||
*/
|
||||
spin_lock(&journal->j_state_lock);
|
||||
nblocks = jbd_space_needed(journal);
|
||||
if (__log_space_left(journal) < nblocks) {
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
log_do_checkpoint(journal);
|
||||
spin_lock(&journal->j_state_lock);
|
||||
}
|
||||
mutex_unlock(&journal->j_checkpoint_mutex);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* We were unable to perform jbd_trylock_bh_state() inside j_list_lock.
|
||||
* The caller must restart a list walk. Wait for someone else to run
|
||||
* jbd_unlock_bh_state().
|
||||
*/
|
||||
static void jbd_sync_bh(journal_t *journal, struct buffer_head *bh)
|
||||
__releases(journal->j_list_lock)
|
||||
{
|
||||
get_bh(bh);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
jbd_lock_bh_state(bh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
put_bh(bh);
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up transaction's list of buffers submitted for io.
|
||||
* We wait for any pending IO to complete and remove any clean
|
||||
* buffers. Note that we take the buffers in the opposite ordering
|
||||
* from the one in which they were submitted for IO.
|
||||
*
|
||||
* Called with j_list_lock held.
|
||||
*/
|
||||
static void __wait_cp_io(journal_t *journal, transaction_t *transaction)
|
||||
{
|
||||
struct journal_head *jh;
|
||||
struct buffer_head *bh;
|
||||
tid_t this_tid;
|
||||
int released = 0;
|
||||
|
||||
this_tid = transaction->t_tid;
|
||||
restart:
|
||||
/* Did somebody clean up the transaction in the meanwhile? */
|
||||
if (journal->j_checkpoint_transactions != transaction ||
|
||||
transaction->t_tid != this_tid)
|
||||
return;
|
||||
while (!released && transaction->t_checkpoint_io_list) {
|
||||
jh = transaction->t_checkpoint_io_list;
|
||||
bh = jh2bh(jh);
|
||||
if (!jbd_trylock_bh_state(bh)) {
|
||||
jbd_sync_bh(journal, bh);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
goto restart;
|
||||
}
|
||||
if (buffer_locked(bh)) {
|
||||
atomic_inc(&bh->b_count);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
jbd_unlock_bh_state(bh);
|
||||
wait_on_buffer(bh);
|
||||
/* the journal_head may have gone by now */
|
||||
BUFFER_TRACE(bh, "brelse");
|
||||
__brelse(bh);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
goto restart;
|
||||
}
|
||||
/*
|
||||
* Now in whatever state the buffer currently is, we know that
|
||||
* it has been written out and so we can drop it from the list
|
||||
*/
|
||||
released = __journal_remove_checkpoint(jh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
journal_remove_journal_head(bh);
|
||||
__brelse(bh);
|
||||
}
|
||||
}
|
||||
|
||||
#define NR_BATCH 64
|
||||
|
||||
static void
|
||||
__flush_batch(journal_t *journal, struct buffer_head **bhs, int *batch_count)
|
||||
{
|
||||
int i;
|
||||
|
||||
ll_rw_block(SWRITE, *batch_count, bhs);
|
||||
for (i = 0; i < *batch_count; i++) {
|
||||
struct buffer_head *bh = bhs[i];
|
||||
clear_buffer_jwrite(bh);
|
||||
BUFFER_TRACE(bh, "brelse");
|
||||
__brelse(bh);
|
||||
}
|
||||
*batch_count = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to flush one buffer from the checkpoint list to disk.
|
||||
*
|
||||
* Return 1 if something happened which requires us to abort the current
|
||||
* scan of the checkpoint list.
|
||||
*
|
||||
* Called with j_list_lock held and drops it if 1 is returned
|
||||
* Called under jbd_lock_bh_state(jh2bh(jh)), and drops it
|
||||
*/
|
||||
static int __process_buffer(journal_t *journal, struct journal_head *jh,
|
||||
struct buffer_head **bhs, int *batch_count)
|
||||
{
|
||||
struct buffer_head *bh = jh2bh(jh);
|
||||
int ret = 0;
|
||||
|
||||
if (buffer_locked(bh)) {
|
||||
atomic_inc(&bh->b_count);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
jbd_unlock_bh_state(bh);
|
||||
wait_on_buffer(bh);
|
||||
/* the journal_head may have gone by now */
|
||||
BUFFER_TRACE(bh, "brelse");
|
||||
__brelse(bh);
|
||||
ret = 1;
|
||||
} else if (jh->b_transaction != NULL) {
|
||||
transaction_t *t = jh->b_transaction;
|
||||
tid_t tid = t->t_tid;
|
||||
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
jbd_unlock_bh_state(bh);
|
||||
log_start_commit(journal, tid);
|
||||
log_wait_commit(journal, tid);
|
||||
ret = 1;
|
||||
} else if (!buffer_dirty(bh)) {
|
||||
J_ASSERT_JH(jh, !buffer_jbddirty(bh));
|
||||
BUFFER_TRACE(bh, "remove from checkpoint");
|
||||
__journal_remove_checkpoint(jh);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
jbd_unlock_bh_state(bh);
|
||||
journal_remove_journal_head(bh);
|
||||
__brelse(bh);
|
||||
ret = 1;
|
||||
} else {
|
||||
/*
|
||||
* Important: we are about to write the buffer, and
|
||||
* possibly block, while still holding the journal lock.
|
||||
* We cannot afford to let the transaction logic start
|
||||
* messing around with this buffer before we write it to
|
||||
* disk, as that would break recoverability.
|
||||
*/
|
||||
BUFFER_TRACE(bh, "queue");
|
||||
get_bh(bh);
|
||||
J_ASSERT_BH(bh, !buffer_jwrite(bh));
|
||||
set_buffer_jwrite(bh);
|
||||
bhs[*batch_count] = bh;
|
||||
__buffer_relink_io(jh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
(*batch_count)++;
|
||||
if (*batch_count == NR_BATCH) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
__flush_batch(journal, bhs, batch_count);
|
||||
ret = 1;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform an actual checkpoint. We take the first transaction on the
|
||||
* list of transactions to be checkpointed and send all its buffers
|
||||
* to disk. We submit larger chunks of data at once.
|
||||
*
|
||||
* The journal should be locked before calling this function.
|
||||
*/
|
||||
int log_do_checkpoint(journal_t *journal)
|
||||
{
|
||||
transaction_t *transaction;
|
||||
tid_t this_tid;
|
||||
int result;
|
||||
|
||||
jbd_debug(1, "Start checkpoint\n");
|
||||
|
||||
/*
|
||||
* First thing: if there are any transactions in the log which
|
||||
* don't need checkpointing, just eliminate them from the
|
||||
* journal straight away.
|
||||
*/
|
||||
result = cleanup_journal_tail(journal);
|
||||
jbd_debug(1, "cleanup_journal_tail returned %d\n", result);
|
||||
if (result <= 0)
|
||||
return result;
|
||||
|
||||
/*
|
||||
* OK, we need to start writing disk blocks. Take one transaction
|
||||
* and write it.
|
||||
*/
|
||||
spin_lock(&journal->j_list_lock);
|
||||
if (!journal->j_checkpoint_transactions)
|
||||
goto out;
|
||||
transaction = journal->j_checkpoint_transactions;
|
||||
this_tid = transaction->t_tid;
|
||||
restart:
|
||||
/*
|
||||
* If someone cleaned up this transaction while we slept, we're
|
||||
* done (maybe it's a new transaction, but it fell at the same
|
||||
* address).
|
||||
*/
|
||||
if (journal->j_checkpoint_transactions == transaction &&
|
||||
transaction->t_tid == this_tid) {
|
||||
int batch_count = 0;
|
||||
struct buffer_head *bhs[NR_BATCH];
|
||||
struct journal_head *jh;
|
||||
int retry = 0;
|
||||
|
||||
while (!retry && transaction->t_checkpoint_list) {
|
||||
struct buffer_head *bh;
|
||||
|
||||
jh = transaction->t_checkpoint_list;
|
||||
bh = jh2bh(jh);
|
||||
if (!jbd_trylock_bh_state(bh)) {
|
||||
jbd_sync_bh(journal, bh);
|
||||
retry = 1;
|
||||
break;
|
||||
}
|
||||
retry = __process_buffer(journal, jh, bhs,&batch_count);
|
||||
if (!retry && lock_need_resched(&journal->j_list_lock)){
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
retry = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (batch_count) {
|
||||
if (!retry) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
retry = 1;
|
||||
}
|
||||
__flush_batch(journal, bhs, &batch_count);
|
||||
}
|
||||
|
||||
if (retry) {
|
||||
spin_lock(&journal->j_list_lock);
|
||||
goto restart;
|
||||
}
|
||||
/*
|
||||
* Now we have cleaned up the first transaction's checkpoint
|
||||
* list. Let's clean up the second one
|
||||
*/
|
||||
__wait_cp_io(journal, transaction);
|
||||
}
|
||||
out:
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
result = cleanup_journal_tail(journal);
|
||||
if (result < 0)
|
||||
return result;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the list of checkpoint transactions for the journal to see if
|
||||
* we have already got rid of any since the last update of the log tail
|
||||
* in the journal superblock. If so, we can instantly roll the
|
||||
* superblock forward to remove those transactions from the log.
|
||||
*
|
||||
* Return <0 on error, 0 on success, 1 if there was nothing to clean up.
|
||||
*
|
||||
* Called with the journal lock held.
|
||||
*
|
||||
* This is the only part of the journaling code which really needs to be
|
||||
* aware of transaction aborts. Checkpointing involves writing to the
|
||||
* main filesystem area rather than to the journal, so it can proceed
|
||||
* even in abort state, but we must not update the journal superblock if
|
||||
* we have an abort error outstanding.
|
||||
*/
|
||||
|
||||
int cleanup_journal_tail(journal_t *journal)
|
||||
{
|
||||
transaction_t * transaction;
|
||||
tid_t first_tid;
|
||||
unsigned long blocknr, freed;
|
||||
|
||||
/* OK, work out the oldest transaction remaining in the log, and
|
||||
* the log block it starts at.
|
||||
*
|
||||
* If the log is now empty, we need to work out which is the
|
||||
* next transaction ID we will write, and where it will
|
||||
* start. */
|
||||
|
||||
spin_lock(&journal->j_state_lock);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
transaction = journal->j_checkpoint_transactions;
|
||||
if (transaction) {
|
||||
first_tid = transaction->t_tid;
|
||||
blocknr = transaction->t_log_start;
|
||||
} else if ((transaction = journal->j_committing_transaction) != NULL) {
|
||||
first_tid = transaction->t_tid;
|
||||
blocknr = transaction->t_log_start;
|
||||
} else if ((transaction = journal->j_running_transaction) != NULL) {
|
||||
first_tid = transaction->t_tid;
|
||||
blocknr = journal->j_head;
|
||||
} else {
|
||||
first_tid = journal->j_transaction_sequence;
|
||||
blocknr = journal->j_head;
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
J_ASSERT(blocknr != 0);
|
||||
|
||||
/* If the oldest pinned transaction is at the tail of the log
|
||||
already then there's not much we can do right now. */
|
||||
if (journal->j_tail_sequence == first_tid) {
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* OK, update the superblock to recover the freed space.
|
||||
* Physical blocks come first: have we wrapped beyond the end of
|
||||
* the log? */
|
||||
freed = blocknr - journal->j_tail;
|
||||
if (blocknr < journal->j_tail)
|
||||
freed = freed + journal->j_last - journal->j_first;
|
||||
|
||||
jbd_debug(1,
|
||||
"Cleaning journal tail from %d to %d (offset %lu), "
|
||||
"freeing %lu\n",
|
||||
journal->j_tail_sequence, first_tid, blocknr, freed);
|
||||
|
||||
journal->j_free += freed;
|
||||
journal->j_tail_sequence = first_tid;
|
||||
journal->j_tail = blocknr;
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
if (!(journal->j_flags & JFS_ABORT))
|
||||
journal_update_superblock(journal, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Checkpoint list management */
|
||||
|
||||
/*
|
||||
* journal_clean_one_cp_list
|
||||
*
|
||||
* Find all the written-back checkpoint buffers in the given list and release them.
|
||||
*
|
||||
* Called with the journal locked.
|
||||
* Called with j_list_lock held.
|
||||
* Returns number of bufers reaped (for debug)
|
||||
*/
|
||||
|
||||
static int journal_clean_one_cp_list(struct journal_head *jh, int *released)
|
||||
{
|
||||
struct journal_head *last_jh;
|
||||
struct journal_head *next_jh = jh;
|
||||
int ret, freed = 0;
|
||||
|
||||
*released = 0;
|
||||
if (!jh)
|
||||
return 0;
|
||||
|
||||
last_jh = jh->b_cpprev;
|
||||
do {
|
||||
jh = next_jh;
|
||||
next_jh = jh->b_cpnext;
|
||||
/* Use trylock because of the ranking */
|
||||
if (jbd_trylock_bh_state(jh2bh(jh))) {
|
||||
ret = __try_to_free_cp_buf(jh);
|
||||
if (ret) {
|
||||
freed++;
|
||||
if (ret == 2) {
|
||||
*released = 1;
|
||||
return freed;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* This function only frees up some memory
|
||||
* if possible so we dont have an obligation
|
||||
* to finish processing. Bail out if preemption
|
||||
* requested:
|
||||
*/
|
||||
if (need_resched())
|
||||
return freed;
|
||||
} while (jh != last_jh);
|
||||
|
||||
return freed;
|
||||
}
|
||||
|
||||
/*
|
||||
* journal_clean_checkpoint_list
|
||||
*
|
||||
* Find all the written-back checkpoint buffers in the journal and release them.
|
||||
*
|
||||
* Called with the journal locked.
|
||||
* Called with j_list_lock held.
|
||||
* Returns number of buffers reaped (for debug)
|
||||
*/
|
||||
|
||||
int __journal_clean_checkpoint_list(journal_t *journal)
|
||||
{
|
||||
transaction_t *transaction, *last_transaction, *next_transaction;
|
||||
int ret = 0;
|
||||
int released;
|
||||
|
||||
transaction = journal->j_checkpoint_transactions;
|
||||
if (!transaction)
|
||||
goto out;
|
||||
|
||||
last_transaction = transaction->t_cpprev;
|
||||
next_transaction = transaction;
|
||||
do {
|
||||
transaction = next_transaction;
|
||||
next_transaction = transaction->t_cpnext;
|
||||
ret += journal_clean_one_cp_list(transaction->
|
||||
t_checkpoint_list, &released);
|
||||
/*
|
||||
* This function only frees up some memory if possible so we
|
||||
* dont have an obligation to finish processing. Bail out if
|
||||
* preemption requested:
|
||||
*/
|
||||
if (need_resched())
|
||||
goto out;
|
||||
if (released)
|
||||
continue;
|
||||
/*
|
||||
* It is essential that we are as careful as in the case of
|
||||
* t_checkpoint_list with removing the buffer from the list as
|
||||
* we can possibly see not yet submitted buffers on io_list
|
||||
*/
|
||||
ret += journal_clean_one_cp_list(transaction->
|
||||
t_checkpoint_io_list, &released);
|
||||
if (need_resched())
|
||||
goto out;
|
||||
} while (transaction != last_transaction);
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* journal_remove_checkpoint: called after a buffer has been committed
|
||||
* to disk (either by being write-back flushed to disk, or being
|
||||
* committed to the log).
|
||||
*
|
||||
* We cannot safely clean a transaction out of the log until all of the
|
||||
* buffer updates committed in that transaction have safely been stored
|
||||
* elsewhere on disk. To achieve this, all of the buffers in a
|
||||
* transaction need to be maintained on the transaction's checkpoint
|
||||
* lists until they have been rewritten, at which point this function is
|
||||
* called to remove the buffer from the existing transaction's
|
||||
* checkpoint lists.
|
||||
*
|
||||
* The function returns 1 if it frees the transaction, 0 otherwise.
|
||||
*
|
||||
* This function is called with the journal locked.
|
||||
* This function is called with j_list_lock held.
|
||||
* This function is called with jbd_lock_bh_state(jh2bh(jh))
|
||||
*/
|
||||
|
||||
int __journal_remove_checkpoint(struct journal_head *jh)
|
||||
{
|
||||
transaction_t *transaction;
|
||||
journal_t *journal;
|
||||
int ret = 0;
|
||||
|
||||
JBUFFER_TRACE(jh, "entry");
|
||||
|
||||
if ((transaction = jh->b_cp_transaction) == NULL) {
|
||||
JBUFFER_TRACE(jh, "not on transaction");
|
||||
goto out;
|
||||
}
|
||||
journal = transaction->t_journal;
|
||||
|
||||
__buffer_unlink(jh);
|
||||
jh->b_cp_transaction = NULL;
|
||||
|
||||
if (transaction->t_checkpoint_list != NULL ||
|
||||
transaction->t_checkpoint_io_list != NULL)
|
||||
goto out;
|
||||
JBUFFER_TRACE(jh, "transaction has no more buffers");
|
||||
|
||||
/*
|
||||
* There is one special case to worry about: if we have just pulled the
|
||||
* buffer off a committing transaction's forget list, then even if the
|
||||
* checkpoint list is empty, the transaction obviously cannot be
|
||||
* dropped!
|
||||
*
|
||||
* The locking here around j_committing_transaction is a bit sleazy.
|
||||
* See the comment at the end of journal_commit_transaction().
|
||||
*/
|
||||
if (transaction == journal->j_committing_transaction) {
|
||||
JBUFFER_TRACE(jh, "belongs to committing transaction");
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* OK, that was the last buffer for the transaction: we can now
|
||||
safely remove this transaction from the log */
|
||||
|
||||
__journal_drop_transaction(journal, transaction);
|
||||
|
||||
/* Just in case anybody was waiting for more transactions to be
|
||||
checkpointed... */
|
||||
wake_up(&journal->j_wait_logspace);
|
||||
ret = 1;
|
||||
out:
|
||||
JBUFFER_TRACE(jh, "exit");
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* journal_insert_checkpoint: put a committed buffer onto a checkpoint
|
||||
* list so that we know when it is safe to clean the transaction out of
|
||||
* the log.
|
||||
*
|
||||
* Called with the journal locked.
|
||||
* Called with j_list_lock held.
|
||||
*/
|
||||
void __journal_insert_checkpoint(struct journal_head *jh,
|
||||
transaction_t *transaction)
|
||||
{
|
||||
JBUFFER_TRACE(jh, "entry");
|
||||
J_ASSERT_JH(jh, buffer_dirty(jh2bh(jh)) || buffer_jbddirty(jh2bh(jh)));
|
||||
J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
|
||||
|
||||
jh->b_cp_transaction = transaction;
|
||||
|
||||
if (!transaction->t_checkpoint_list) {
|
||||
jh->b_cpnext = jh->b_cpprev = jh;
|
||||
} else {
|
||||
jh->b_cpnext = transaction->t_checkpoint_list;
|
||||
jh->b_cpprev = transaction->t_checkpoint_list->b_cpprev;
|
||||
jh->b_cpprev->b_cpnext = jh;
|
||||
jh->b_cpnext->b_cpprev = jh;
|
||||
}
|
||||
transaction->t_checkpoint_list = jh;
|
||||
}
|
||||
|
||||
/*
|
||||
* We've finished with this transaction structure: adios...
|
||||
*
|
||||
* The transaction must have no links except for the checkpoint by this
|
||||
* point.
|
||||
*
|
||||
* Called with the journal locked.
|
||||
* Called with j_list_lock held.
|
||||
*/
|
||||
|
||||
void __journal_drop_transaction(journal_t *journal, transaction_t *transaction)
|
||||
{
|
||||
assert_spin_locked(&journal->j_list_lock);
|
||||
if (transaction->t_cpnext) {
|
||||
transaction->t_cpnext->t_cpprev = transaction->t_cpprev;
|
||||
transaction->t_cpprev->t_cpnext = transaction->t_cpnext;
|
||||
if (journal->j_checkpoint_transactions == transaction)
|
||||
journal->j_checkpoint_transactions =
|
||||
transaction->t_cpnext;
|
||||
if (journal->j_checkpoint_transactions == transaction)
|
||||
journal->j_checkpoint_transactions = NULL;
|
||||
}
|
||||
|
||||
J_ASSERT(transaction->t_state == T_FINISHED);
|
||||
J_ASSERT(transaction->t_buffers == NULL);
|
||||
J_ASSERT(transaction->t_sync_datalist == NULL);
|
||||
J_ASSERT(transaction->t_forget == NULL);
|
||||
J_ASSERT(transaction->t_iobuf_list == NULL);
|
||||
J_ASSERT(transaction->t_shadow_list == NULL);
|
||||
J_ASSERT(transaction->t_log_list == NULL);
|
||||
J_ASSERT(transaction->t_checkpoint_list == NULL);
|
||||
J_ASSERT(transaction->t_checkpoint_io_list == NULL);
|
||||
J_ASSERT(transaction->t_updates == 0);
|
||||
J_ASSERT(journal->j_committing_transaction != transaction);
|
||||
J_ASSERT(journal->j_running_transaction != transaction);
|
||||
|
||||
jbd_debug(1, "Dropping transaction %d, all done\n", transaction->t_tid);
|
||||
kfree(transaction);
|
||||
}
|
911
fs/jbd2/commit.c
Normal file
911
fs/jbd2/commit.c
Normal file
@ -0,0 +1,911 @@
|
||||
/*
|
||||
* linux/fs/jbd/commit.c
|
||||
*
|
||||
* Written by Stephen C. Tweedie <sct@redhat.com>, 1998
|
||||
*
|
||||
* Copyright 1998 Red Hat corp --- All Rights Reserved
|
||||
*
|
||||
* This file is part of the Linux kernel and is made available under
|
||||
* the terms of the GNU General Public License, version 2, or at your
|
||||
* option, any later version, incorporated herein by reference.
|
||||
*
|
||||
* Journal commit routines for the generic filesystem journaling code;
|
||||
* part of the ext2fs journaling system.
|
||||
*/
|
||||
|
||||
#include <linux/time.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/jbd.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/smp_lock.h>
|
||||
|
||||
/*
|
||||
* Default IO end handler for temporary BJ_IO buffer_heads.
|
||||
*/
|
||||
static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
|
||||
{
|
||||
BUFFER_TRACE(bh, "");
|
||||
if (uptodate)
|
||||
set_buffer_uptodate(bh);
|
||||
else
|
||||
clear_buffer_uptodate(bh);
|
||||
unlock_buffer(bh);
|
||||
}
|
||||
|
||||
/*
|
||||
* When an ext3-ordered file is truncated, it is possible that many pages are
|
||||
* not sucessfully freed, because they are attached to a committing transaction.
|
||||
* After the transaction commits, these pages are left on the LRU, with no
|
||||
* ->mapping, and with attached buffers. These pages are trivially reclaimable
|
||||
* by the VM, but their apparent absence upsets the VM accounting, and it makes
|
||||
* the numbers in /proc/meminfo look odd.
|
||||
*
|
||||
* So here, we have a buffer which has just come off the forget list. Look to
|
||||
* see if we can strip all buffers from the backing page.
|
||||
*
|
||||
* Called under lock_journal(), and possibly under journal_datalist_lock. The
|
||||
* caller provided us with a ref against the buffer, and we drop that here.
|
||||
*/
|
||||
static void release_buffer_page(struct buffer_head *bh)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
if (buffer_dirty(bh))
|
||||
goto nope;
|
||||
if (atomic_read(&bh->b_count) != 1)
|
||||
goto nope;
|
||||
page = bh->b_page;
|
||||
if (!page)
|
||||
goto nope;
|
||||
if (page->mapping)
|
||||
goto nope;
|
||||
|
||||
/* OK, it's a truncated page */
|
||||
if (TestSetPageLocked(page))
|
||||
goto nope;
|
||||
|
||||
page_cache_get(page);
|
||||
__brelse(bh);
|
||||
try_to_free_buffers(page);
|
||||
unlock_page(page);
|
||||
page_cache_release(page);
|
||||
return;
|
||||
|
||||
nope:
|
||||
__brelse(bh);
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to acquire jbd_lock_bh_state() against the buffer, when j_list_lock is
|
||||
* held. For ranking reasons we must trylock. If we lose, schedule away and
|
||||
* return 0. j_list_lock is dropped in this case.
|
||||
*/
|
||||
static int inverted_lock(journal_t *journal, struct buffer_head *bh)
|
||||
{
|
||||
if (!jbd_trylock_bh_state(bh)) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
schedule();
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Done it all: now write the commit record. We should have
|
||||
* cleaned up our previous buffers by now, so if we are in abort
|
||||
* mode we can now just skip the rest of the journal write
|
||||
* entirely.
|
||||
*
|
||||
* Returns 1 if the journal needs to be aborted or 0 on success
|
||||
*/
|
||||
static int journal_write_commit_record(journal_t *journal,
|
||||
transaction_t *commit_transaction)
|
||||
{
|
||||
struct journal_head *descriptor;
|
||||
struct buffer_head *bh;
|
||||
int i, ret;
|
||||
int barrier_done = 0;
|
||||
|
||||
if (is_journal_aborted(journal))
|
||||
return 0;
|
||||
|
||||
descriptor = journal_get_descriptor_buffer(journal);
|
||||
if (!descriptor)
|
||||
return 1;
|
||||
|
||||
bh = jh2bh(descriptor);
|
||||
|
||||
/* AKPM: buglet - add `i' to tmp! */
|
||||
for (i = 0; i < bh->b_size; i += 512) {
|
||||
journal_header_t *tmp = (journal_header_t*)bh->b_data;
|
||||
tmp->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
|
||||
tmp->h_blocktype = cpu_to_be32(JFS_COMMIT_BLOCK);
|
||||
tmp->h_sequence = cpu_to_be32(commit_transaction->t_tid);
|
||||
}
|
||||
|
||||
JBUFFER_TRACE(descriptor, "write commit block");
|
||||
set_buffer_dirty(bh);
|
||||
if (journal->j_flags & JFS_BARRIER) {
|
||||
set_buffer_ordered(bh);
|
||||
barrier_done = 1;
|
||||
}
|
||||
ret = sync_dirty_buffer(bh);
|
||||
/* is it possible for another commit to fail at roughly
|
||||
* the same time as this one? If so, we don't want to
|
||||
* trust the barrier flag in the super, but instead want
|
||||
* to remember if we sent a barrier request
|
||||
*/
|
||||
if (ret == -EOPNOTSUPP && barrier_done) {
|
||||
char b[BDEVNAME_SIZE];
|
||||
|
||||
printk(KERN_WARNING
|
||||
"JBD: barrier-based sync failed on %s - "
|
||||
"disabling barriers\n",
|
||||
bdevname(journal->j_dev, b));
|
||||
spin_lock(&journal->j_state_lock);
|
||||
journal->j_flags &= ~JFS_BARRIER;
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
|
||||
/* And try again, without the barrier */
|
||||
clear_buffer_ordered(bh);
|
||||
set_buffer_uptodate(bh);
|
||||
set_buffer_dirty(bh);
|
||||
ret = sync_dirty_buffer(bh);
|
||||
}
|
||||
put_bh(bh); /* One for getblk() */
|
||||
journal_put_journal_head(descriptor);
|
||||
|
||||
return (ret == -EIO);
|
||||
}
|
||||
|
||||
static void journal_do_submit_data(struct buffer_head **wbuf, int bufs)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < bufs; i++) {
|
||||
wbuf[i]->b_end_io = end_buffer_write_sync;
|
||||
/* We use-up our safety reference in submit_bh() */
|
||||
submit_bh(WRITE, wbuf[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Submit all the data buffers to disk
|
||||
*/
|
||||
static void journal_submit_data_buffers(journal_t *journal,
|
||||
transaction_t *commit_transaction)
|
||||
{
|
||||
struct journal_head *jh;
|
||||
struct buffer_head *bh;
|
||||
int locked;
|
||||
int bufs = 0;
|
||||
struct buffer_head **wbuf = journal->j_wbuf;
|
||||
|
||||
/*
|
||||
* Whenever we unlock the journal and sleep, things can get added
|
||||
* onto ->t_sync_datalist, so we have to keep looping back to
|
||||
* write_out_data until we *know* that the list is empty.
|
||||
*
|
||||
* Cleanup any flushed data buffers from the data list. Even in
|
||||
* abort mode, we want to flush this out as soon as possible.
|
||||
*/
|
||||
write_out_data:
|
||||
cond_resched();
|
||||
spin_lock(&journal->j_list_lock);
|
||||
|
||||
while (commit_transaction->t_sync_datalist) {
|
||||
jh = commit_transaction->t_sync_datalist;
|
||||
bh = jh2bh(jh);
|
||||
locked = 0;
|
||||
|
||||
/* Get reference just to make sure buffer does not disappear
|
||||
* when we are forced to drop various locks */
|
||||
get_bh(bh);
|
||||
/* If the buffer is dirty, we need to submit IO and hence
|
||||
* we need the buffer lock. We try to lock the buffer without
|
||||
* blocking. If we fail, we need to drop j_list_lock and do
|
||||
* blocking lock_buffer().
|
||||
*/
|
||||
if (buffer_dirty(bh)) {
|
||||
if (test_set_buffer_locked(bh)) {
|
||||
BUFFER_TRACE(bh, "needs blocking lock");
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
/* Write out all data to prevent deadlocks */
|
||||
journal_do_submit_data(wbuf, bufs);
|
||||
bufs = 0;
|
||||
lock_buffer(bh);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
}
|
||||
locked = 1;
|
||||
}
|
||||
/* We have to get bh_state lock. Again out of order, sigh. */
|
||||
if (!inverted_lock(journal, bh)) {
|
||||
jbd_lock_bh_state(bh);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
}
|
||||
/* Someone already cleaned up the buffer? */
|
||||
if (!buffer_jbd(bh)
|
||||
|| jh->b_transaction != commit_transaction
|
||||
|| jh->b_jlist != BJ_SyncData) {
|
||||
jbd_unlock_bh_state(bh);
|
||||
if (locked)
|
||||
unlock_buffer(bh);
|
||||
BUFFER_TRACE(bh, "already cleaned up");
|
||||
put_bh(bh);
|
||||
continue;
|
||||
}
|
||||
if (locked && test_clear_buffer_dirty(bh)) {
|
||||
BUFFER_TRACE(bh, "needs writeout, adding to array");
|
||||
wbuf[bufs++] = bh;
|
||||
__journal_file_buffer(jh, commit_transaction,
|
||||
BJ_Locked);
|
||||
jbd_unlock_bh_state(bh);
|
||||
if (bufs == journal->j_wbufsize) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
journal_do_submit_data(wbuf, bufs);
|
||||
bufs = 0;
|
||||
goto write_out_data;
|
||||
}
|
||||
}
|
||||
else {
|
||||
BUFFER_TRACE(bh, "writeout complete: unfile");
|
||||
__journal_unfile_buffer(jh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
if (locked)
|
||||
unlock_buffer(bh);
|
||||
journal_remove_journal_head(bh);
|
||||
/* Once for our safety reference, once for
|
||||
* journal_remove_journal_head() */
|
||||
put_bh(bh);
|
||||
put_bh(bh);
|
||||
}
|
||||
|
||||
if (lock_need_resched(&journal->j_list_lock)) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
goto write_out_data;
|
||||
}
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
journal_do_submit_data(wbuf, bufs);
|
||||
}
|
||||
|
||||
/*
|
||||
* journal_commit_transaction
|
||||
*
|
||||
* The primary function for committing a transaction to the log. This
|
||||
* function is called by the journal thread to begin a complete commit.
|
||||
*/
|
||||
void journal_commit_transaction(journal_t *journal)
|
||||
{
|
||||
transaction_t *commit_transaction;
|
||||
struct journal_head *jh, *new_jh, *descriptor;
|
||||
struct buffer_head **wbuf = journal->j_wbuf;
|
||||
int bufs;
|
||||
int flags;
|
||||
int err;
|
||||
unsigned long blocknr;
|
||||
char *tagp = NULL;
|
||||
journal_header_t *header;
|
||||
journal_block_tag_t *tag = NULL;
|
||||
int space_left = 0;
|
||||
int first_tag = 0;
|
||||
int tag_flag;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* First job: lock down the current transaction and wait for
|
||||
* all outstanding updates to complete.
|
||||
*/
|
||||
|
||||
#ifdef COMMIT_STATS
|
||||
spin_lock(&journal->j_list_lock);
|
||||
summarise_journal_usage(journal);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
#endif
|
||||
|
||||
/* Do we need to erase the effects of a prior journal_flush? */
|
||||
if (journal->j_flags & JFS_FLUSHED) {
|
||||
jbd_debug(3, "super block updated\n");
|
||||
journal_update_superblock(journal, 1);
|
||||
} else {
|
||||
jbd_debug(3, "superblock not updated\n");
|
||||
}
|
||||
|
||||
J_ASSERT(journal->j_running_transaction != NULL);
|
||||
J_ASSERT(journal->j_committing_transaction == NULL);
|
||||
|
||||
commit_transaction = journal->j_running_transaction;
|
||||
J_ASSERT(commit_transaction->t_state == T_RUNNING);
|
||||
|
||||
jbd_debug(1, "JBD: starting commit of transaction %d\n",
|
||||
commit_transaction->t_tid);
|
||||
|
||||
spin_lock(&journal->j_state_lock);
|
||||
commit_transaction->t_state = T_LOCKED;
|
||||
|
||||
spin_lock(&commit_transaction->t_handle_lock);
|
||||
while (commit_transaction->t_updates) {
|
||||
DEFINE_WAIT(wait);
|
||||
|
||||
prepare_to_wait(&journal->j_wait_updates, &wait,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
if (commit_transaction->t_updates) {
|
||||
spin_unlock(&commit_transaction->t_handle_lock);
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
schedule();
|
||||
spin_lock(&journal->j_state_lock);
|
||||
spin_lock(&commit_transaction->t_handle_lock);
|
||||
}
|
||||
finish_wait(&journal->j_wait_updates, &wait);
|
||||
}
|
||||
spin_unlock(&commit_transaction->t_handle_lock);
|
||||
|
||||
J_ASSERT (commit_transaction->t_outstanding_credits <=
|
||||
journal->j_max_transaction_buffers);
|
||||
|
||||
/*
|
||||
* First thing we are allowed to do is to discard any remaining
|
||||
* BJ_Reserved buffers. Note, it is _not_ permissible to assume
|
||||
* that there are no such buffers: if a large filesystem
|
||||
* operation like a truncate needs to split itself over multiple
|
||||
* transactions, then it may try to do a journal_restart() while
|
||||
* there are still BJ_Reserved buffers outstanding. These must
|
||||
* be released cleanly from the current transaction.
|
||||
*
|
||||
* In this case, the filesystem must still reserve write access
|
||||
* again before modifying the buffer in the new transaction, but
|
||||
* we do not require it to remember exactly which old buffers it
|
||||
* has reserved. This is consistent with the existing behaviour
|
||||
* that multiple journal_get_write_access() calls to the same
|
||||
* buffer are perfectly permissable.
|
||||
*/
|
||||
while (commit_transaction->t_reserved_list) {
|
||||
jh = commit_transaction->t_reserved_list;
|
||||
JBUFFER_TRACE(jh, "reserved, unused: refile");
|
||||
/*
|
||||
* A journal_get_undo_access()+journal_release_buffer() may
|
||||
* leave undo-committed data.
|
||||
*/
|
||||
if (jh->b_committed_data) {
|
||||
struct buffer_head *bh = jh2bh(jh);
|
||||
|
||||
jbd_lock_bh_state(bh);
|
||||
jbd_slab_free(jh->b_committed_data, bh->b_size);
|
||||
jh->b_committed_data = NULL;
|
||||
jbd_unlock_bh_state(bh);
|
||||
}
|
||||
journal_refile_buffer(journal, jh);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now try to drop any written-back buffers from the journal's
|
||||
* checkpoint lists. We do this *before* commit because it potentially
|
||||
* frees some memory
|
||||
*/
|
||||
spin_lock(&journal->j_list_lock);
|
||||
__journal_clean_checkpoint_list(journal);
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
|
||||
jbd_debug (3, "JBD: commit phase 1\n");
|
||||
|
||||
/*
|
||||
* Switch to a new revoke table.
|
||||
*/
|
||||
journal_switch_revoke_table(journal);
|
||||
|
||||
commit_transaction->t_state = T_FLUSH;
|
||||
journal->j_committing_transaction = commit_transaction;
|
||||
journal->j_running_transaction = NULL;
|
||||
commit_transaction->t_log_start = journal->j_head;
|
||||
wake_up(&journal->j_wait_transaction_locked);
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
|
||||
jbd_debug (3, "JBD: commit phase 2\n");
|
||||
|
||||
/*
|
||||
* First, drop modified flag: all accesses to the buffers
|
||||
* will be tracked for a new trasaction only -bzzz
|
||||
*/
|
||||
spin_lock(&journal->j_list_lock);
|
||||
if (commit_transaction->t_buffers) {
|
||||
new_jh = jh = commit_transaction->t_buffers->b_tnext;
|
||||
do {
|
||||
J_ASSERT_JH(new_jh, new_jh->b_modified == 1 ||
|
||||
new_jh->b_modified == 0);
|
||||
new_jh->b_modified = 0;
|
||||
new_jh = new_jh->b_tnext;
|
||||
} while (new_jh != jh);
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
|
||||
/*
|
||||
* Now start flushing things to disk, in the order they appear
|
||||
* on the transaction lists. Data blocks go first.
|
||||
*/
|
||||
err = 0;
|
||||
journal_submit_data_buffers(journal, commit_transaction);
|
||||
|
||||
/*
|
||||
* Wait for all previously submitted IO to complete.
|
||||
*/
|
||||
spin_lock(&journal->j_list_lock);
|
||||
while (commit_transaction->t_locked_list) {
|
||||
struct buffer_head *bh;
|
||||
|
||||
jh = commit_transaction->t_locked_list->b_tprev;
|
||||
bh = jh2bh(jh);
|
||||
get_bh(bh);
|
||||
if (buffer_locked(bh)) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
wait_on_buffer(bh);
|
||||
if (unlikely(!buffer_uptodate(bh)))
|
||||
err = -EIO;
|
||||
spin_lock(&journal->j_list_lock);
|
||||
}
|
||||
if (!inverted_lock(journal, bh)) {
|
||||
put_bh(bh);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
continue;
|
||||
}
|
||||
if (buffer_jbd(bh) && jh->b_jlist == BJ_Locked) {
|
||||
__journal_unfile_buffer(jh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
journal_remove_journal_head(bh);
|
||||
put_bh(bh);
|
||||
} else {
|
||||
jbd_unlock_bh_state(bh);
|
||||
}
|
||||
put_bh(bh);
|
||||
cond_resched_lock(&journal->j_list_lock);
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
|
||||
if (err)
|
||||
__journal_abort_hard(journal);
|
||||
|
||||
journal_write_revoke_records(journal, commit_transaction);
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 2\n");
|
||||
|
||||
/*
|
||||
* If we found any dirty or locked buffers, then we should have
|
||||
* looped back up to the write_out_data label. If there weren't
|
||||
* any then journal_clean_data_list should have wiped the list
|
||||
* clean by now, so check that it is in fact empty.
|
||||
*/
|
||||
J_ASSERT (commit_transaction->t_sync_datalist == NULL);
|
||||
|
||||
jbd_debug (3, "JBD: commit phase 3\n");
|
||||
|
||||
/*
|
||||
* Way to go: we have now written out all of the data for a
|
||||
* transaction! Now comes the tricky part: we need to write out
|
||||
* metadata. Loop over the transaction's entire buffer list:
|
||||
*/
|
||||
commit_transaction->t_state = T_COMMIT;
|
||||
|
||||
descriptor = NULL;
|
||||
bufs = 0;
|
||||
while (commit_transaction->t_buffers) {
|
||||
|
||||
/* Find the next buffer to be journaled... */
|
||||
|
||||
jh = commit_transaction->t_buffers;
|
||||
|
||||
/* If we're in abort mode, we just un-journal the buffer and
|
||||
release it for background writing. */
|
||||
|
||||
if (is_journal_aborted(journal)) {
|
||||
JBUFFER_TRACE(jh, "journal is aborting: refile");
|
||||
journal_refile_buffer(journal, jh);
|
||||
/* If that was the last one, we need to clean up
|
||||
* any descriptor buffers which may have been
|
||||
* already allocated, even if we are now
|
||||
* aborting. */
|
||||
if (!commit_transaction->t_buffers)
|
||||
goto start_journal_io;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Make sure we have a descriptor block in which to
|
||||
record the metadata buffer. */
|
||||
|
||||
if (!descriptor) {
|
||||
struct buffer_head *bh;
|
||||
|
||||
J_ASSERT (bufs == 0);
|
||||
|
||||
jbd_debug(4, "JBD: get descriptor\n");
|
||||
|
||||
descriptor = journal_get_descriptor_buffer(journal);
|
||||
if (!descriptor) {
|
||||
__journal_abort_hard(journal);
|
||||
continue;
|
||||
}
|
||||
|
||||
bh = jh2bh(descriptor);
|
||||
jbd_debug(4, "JBD: got buffer %llu (%p)\n",
|
||||
(unsigned long long)bh->b_blocknr, bh->b_data);
|
||||
header = (journal_header_t *)&bh->b_data[0];
|
||||
header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
|
||||
header->h_blocktype = cpu_to_be32(JFS_DESCRIPTOR_BLOCK);
|
||||
header->h_sequence = cpu_to_be32(commit_transaction->t_tid);
|
||||
|
||||
tagp = &bh->b_data[sizeof(journal_header_t)];
|
||||
space_left = bh->b_size - sizeof(journal_header_t);
|
||||
first_tag = 1;
|
||||
set_buffer_jwrite(bh);
|
||||
set_buffer_dirty(bh);
|
||||
wbuf[bufs++] = bh;
|
||||
|
||||
/* Record it so that we can wait for IO
|
||||
completion later */
|
||||
BUFFER_TRACE(bh, "ph3: file as descriptor");
|
||||
journal_file_buffer(descriptor, commit_transaction,
|
||||
BJ_LogCtl);
|
||||
}
|
||||
|
||||
/* Where is the buffer to be written? */
|
||||
|
||||
err = journal_next_log_block(journal, &blocknr);
|
||||
/* If the block mapping failed, just abandon the buffer
|
||||
and repeat this loop: we'll fall into the
|
||||
refile-on-abort condition above. */
|
||||
if (err) {
|
||||
__journal_abort_hard(journal);
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* start_this_handle() uses t_outstanding_credits to determine
|
||||
* the free space in the log, but this counter is changed
|
||||
* by journal_next_log_block() also.
|
||||
*/
|
||||
commit_transaction->t_outstanding_credits--;
|
||||
|
||||
/* Bump b_count to prevent truncate from stumbling over
|
||||
the shadowed buffer! @@@ This can go if we ever get
|
||||
rid of the BJ_IO/BJ_Shadow pairing of buffers. */
|
||||
atomic_inc(&jh2bh(jh)->b_count);
|
||||
|
||||
/* Make a temporary IO buffer with which to write it out
|
||||
(this will requeue both the metadata buffer and the
|
||||
temporary IO buffer). new_bh goes on BJ_IO*/
|
||||
|
||||
set_bit(BH_JWrite, &jh2bh(jh)->b_state);
|
||||
/*
|
||||
* akpm: journal_write_metadata_buffer() sets
|
||||
* new_bh->b_transaction to commit_transaction.
|
||||
* We need to clean this up before we release new_bh
|
||||
* (which is of type BJ_IO)
|
||||
*/
|
||||
JBUFFER_TRACE(jh, "ph3: write metadata");
|
||||
flags = journal_write_metadata_buffer(commit_transaction,
|
||||
jh, &new_jh, blocknr);
|
||||
set_bit(BH_JWrite, &jh2bh(new_jh)->b_state);
|
||||
wbuf[bufs++] = jh2bh(new_jh);
|
||||
|
||||
/* Record the new block's tag in the current descriptor
|
||||
buffer */
|
||||
|
||||
tag_flag = 0;
|
||||
if (flags & 1)
|
||||
tag_flag |= JFS_FLAG_ESCAPE;
|
||||
if (!first_tag)
|
||||
tag_flag |= JFS_FLAG_SAME_UUID;
|
||||
|
||||
tag = (journal_block_tag_t *) tagp;
|
||||
tag->t_blocknr = cpu_to_be32(jh2bh(jh)->b_blocknr);
|
||||
tag->t_flags = cpu_to_be32(tag_flag);
|
||||
tagp += sizeof(journal_block_tag_t);
|
||||
space_left -= sizeof(journal_block_tag_t);
|
||||
|
||||
if (first_tag) {
|
||||
memcpy (tagp, journal->j_uuid, 16);
|
||||
tagp += 16;
|
||||
space_left -= 16;
|
||||
first_tag = 0;
|
||||
}
|
||||
|
||||
/* If there's no more to do, or if the descriptor is full,
|
||||
let the IO rip! */
|
||||
|
||||
if (bufs == journal->j_wbufsize ||
|
||||
commit_transaction->t_buffers == NULL ||
|
||||
space_left < sizeof(journal_block_tag_t) + 16) {
|
||||
|
||||
jbd_debug(4, "JBD: Submit %d IOs\n", bufs);
|
||||
|
||||
/* Write an end-of-descriptor marker before
|
||||
submitting the IOs. "tag" still points to
|
||||
the last tag we set up. */
|
||||
|
||||
tag->t_flags |= cpu_to_be32(JFS_FLAG_LAST_TAG);
|
||||
|
||||
start_journal_io:
|
||||
for (i = 0; i < bufs; i++) {
|
||||
struct buffer_head *bh = wbuf[i];
|
||||
lock_buffer(bh);
|
||||
clear_buffer_dirty(bh);
|
||||
set_buffer_uptodate(bh);
|
||||
bh->b_end_io = journal_end_buffer_io_sync;
|
||||
submit_bh(WRITE, bh);
|
||||
}
|
||||
cond_resched();
|
||||
|
||||
/* Force a new descriptor to be generated next
|
||||
time round the loop. */
|
||||
descriptor = NULL;
|
||||
bufs = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Lo and behold: we have just managed to send a transaction to
|
||||
the log. Before we can commit it, wait for the IO so far to
|
||||
complete. Control buffers being written are on the
|
||||
transaction's t_log_list queue, and metadata buffers are on
|
||||
the t_iobuf_list queue.
|
||||
|
||||
Wait for the buffers in reverse order. That way we are
|
||||
less likely to be woken up until all IOs have completed, and
|
||||
so we incur less scheduling load.
|
||||
*/
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 4\n");
|
||||
|
||||
/*
|
||||
* akpm: these are BJ_IO, and j_list_lock is not needed.
|
||||
* See __journal_try_to_free_buffer.
|
||||
*/
|
||||
wait_for_iobuf:
|
||||
while (commit_transaction->t_iobuf_list != NULL) {
|
||||
struct buffer_head *bh;
|
||||
|
||||
jh = commit_transaction->t_iobuf_list->b_tprev;
|
||||
bh = jh2bh(jh);
|
||||
if (buffer_locked(bh)) {
|
||||
wait_on_buffer(bh);
|
||||
goto wait_for_iobuf;
|
||||
}
|
||||
if (cond_resched())
|
||||
goto wait_for_iobuf;
|
||||
|
||||
if (unlikely(!buffer_uptodate(bh)))
|
||||
err = -EIO;
|
||||
|
||||
clear_buffer_jwrite(bh);
|
||||
|
||||
JBUFFER_TRACE(jh, "ph4: unfile after journal write");
|
||||
journal_unfile_buffer(journal, jh);
|
||||
|
||||
/*
|
||||
* ->t_iobuf_list should contain only dummy buffer_heads
|
||||
* which were created by journal_write_metadata_buffer().
|
||||
*/
|
||||
BUFFER_TRACE(bh, "dumping temporary bh");
|
||||
journal_put_journal_head(jh);
|
||||
__brelse(bh);
|
||||
J_ASSERT_BH(bh, atomic_read(&bh->b_count) == 0);
|
||||
free_buffer_head(bh);
|
||||
|
||||
/* We also have to unlock and free the corresponding
|
||||
shadowed buffer */
|
||||
jh = commit_transaction->t_shadow_list->b_tprev;
|
||||
bh = jh2bh(jh);
|
||||
clear_bit(BH_JWrite, &bh->b_state);
|
||||
J_ASSERT_BH(bh, buffer_jbddirty(bh));
|
||||
|
||||
/* The metadata is now released for reuse, but we need
|
||||
to remember it against this transaction so that when
|
||||
we finally commit, we can do any checkpointing
|
||||
required. */
|
||||
JBUFFER_TRACE(jh, "file as BJ_Forget");
|
||||
journal_file_buffer(jh, commit_transaction, BJ_Forget);
|
||||
/* Wake up any transactions which were waiting for this
|
||||
IO to complete */
|
||||
wake_up_bit(&bh->b_state, BH_Unshadow);
|
||||
JBUFFER_TRACE(jh, "brelse shadowed buffer");
|
||||
__brelse(bh);
|
||||
}
|
||||
|
||||
J_ASSERT (commit_transaction->t_shadow_list == NULL);
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 5\n");
|
||||
|
||||
/* Here we wait for the revoke record and descriptor record buffers */
|
||||
wait_for_ctlbuf:
|
||||
while (commit_transaction->t_log_list != NULL) {
|
||||
struct buffer_head *bh;
|
||||
|
||||
jh = commit_transaction->t_log_list->b_tprev;
|
||||
bh = jh2bh(jh);
|
||||
if (buffer_locked(bh)) {
|
||||
wait_on_buffer(bh);
|
||||
goto wait_for_ctlbuf;
|
||||
}
|
||||
if (cond_resched())
|
||||
goto wait_for_ctlbuf;
|
||||
|
||||
if (unlikely(!buffer_uptodate(bh)))
|
||||
err = -EIO;
|
||||
|
||||
BUFFER_TRACE(bh, "ph5: control buffer writeout done: unfile");
|
||||
clear_buffer_jwrite(bh);
|
||||
journal_unfile_buffer(journal, jh);
|
||||
journal_put_journal_head(jh);
|
||||
__brelse(bh); /* One for getblk */
|
||||
/* AKPM: bforget here */
|
||||
}
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 6\n");
|
||||
|
||||
if (journal_write_commit_record(journal, commit_transaction))
|
||||
err = -EIO;
|
||||
|
||||
if (err)
|
||||
__journal_abort_hard(journal);
|
||||
|
||||
/* End of a transaction! Finally, we can do checkpoint
|
||||
processing: any buffers committed as a result of this
|
||||
transaction can be removed from any checkpoint list it was on
|
||||
before. */
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 7\n");
|
||||
|
||||
J_ASSERT(commit_transaction->t_sync_datalist == NULL);
|
||||
J_ASSERT(commit_transaction->t_buffers == NULL);
|
||||
J_ASSERT(commit_transaction->t_checkpoint_list == NULL);
|
||||
J_ASSERT(commit_transaction->t_iobuf_list == NULL);
|
||||
J_ASSERT(commit_transaction->t_shadow_list == NULL);
|
||||
J_ASSERT(commit_transaction->t_log_list == NULL);
|
||||
|
||||
restart_loop:
|
||||
/*
|
||||
* As there are other places (journal_unmap_buffer()) adding buffers
|
||||
* to this list we have to be careful and hold the j_list_lock.
|
||||
*/
|
||||
spin_lock(&journal->j_list_lock);
|
||||
while (commit_transaction->t_forget) {
|
||||
transaction_t *cp_transaction;
|
||||
struct buffer_head *bh;
|
||||
|
||||
jh = commit_transaction->t_forget;
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
bh = jh2bh(jh);
|
||||
jbd_lock_bh_state(bh);
|
||||
J_ASSERT_JH(jh, jh->b_transaction == commit_transaction ||
|
||||
jh->b_transaction == journal->j_running_transaction);
|
||||
|
||||
/*
|
||||
* If there is undo-protected committed data against
|
||||
* this buffer, then we can remove it now. If it is a
|
||||
* buffer needing such protection, the old frozen_data
|
||||
* field now points to a committed version of the
|
||||
* buffer, so rotate that field to the new committed
|
||||
* data.
|
||||
*
|
||||
* Otherwise, we can just throw away the frozen data now.
|
||||
*/
|
||||
if (jh->b_committed_data) {
|
||||
jbd_slab_free(jh->b_committed_data, bh->b_size);
|
||||
jh->b_committed_data = NULL;
|
||||
if (jh->b_frozen_data) {
|
||||
jh->b_committed_data = jh->b_frozen_data;
|
||||
jh->b_frozen_data = NULL;
|
||||
}
|
||||
} else if (jh->b_frozen_data) {
|
||||
jbd_slab_free(jh->b_frozen_data, bh->b_size);
|
||||
jh->b_frozen_data = NULL;
|
||||
}
|
||||
|
||||
spin_lock(&journal->j_list_lock);
|
||||
cp_transaction = jh->b_cp_transaction;
|
||||
if (cp_transaction) {
|
||||
JBUFFER_TRACE(jh, "remove from old cp transaction");
|
||||
__journal_remove_checkpoint(jh);
|
||||
}
|
||||
|
||||
/* Only re-checkpoint the buffer_head if it is marked
|
||||
* dirty. If the buffer was added to the BJ_Forget list
|
||||
* by journal_forget, it may no longer be dirty and
|
||||
* there's no point in keeping a checkpoint record for
|
||||
* it. */
|
||||
|
||||
/* A buffer which has been freed while still being
|
||||
* journaled by a previous transaction may end up still
|
||||
* being dirty here, but we want to avoid writing back
|
||||
* that buffer in the future now that the last use has
|
||||
* been committed. That's not only a performance gain,
|
||||
* it also stops aliasing problems if the buffer is left
|
||||
* behind for writeback and gets reallocated for another
|
||||
* use in a different page. */
|
||||
if (buffer_freed(bh)) {
|
||||
clear_buffer_freed(bh);
|
||||
clear_buffer_jbddirty(bh);
|
||||
}
|
||||
|
||||
if (buffer_jbddirty(bh)) {
|
||||
JBUFFER_TRACE(jh, "add to new checkpointing trans");
|
||||
__journal_insert_checkpoint(jh, commit_transaction);
|
||||
JBUFFER_TRACE(jh, "refile for checkpoint writeback");
|
||||
__journal_refile_buffer(jh);
|
||||
jbd_unlock_bh_state(bh);
|
||||
} else {
|
||||
J_ASSERT_BH(bh, !buffer_dirty(bh));
|
||||
/* The buffer on BJ_Forget list and not jbddirty means
|
||||
* it has been freed by this transaction and hence it
|
||||
* could not have been reallocated until this
|
||||
* transaction has committed. *BUT* it could be
|
||||
* reallocated once we have written all the data to
|
||||
* disk and before we process the buffer on BJ_Forget
|
||||
* list. */
|
||||
JBUFFER_TRACE(jh, "refile or unfile freed buffer");
|
||||
__journal_refile_buffer(jh);
|
||||
if (!jh->b_transaction) {
|
||||
jbd_unlock_bh_state(bh);
|
||||
/* needs a brelse */
|
||||
journal_remove_journal_head(bh);
|
||||
release_buffer_page(bh);
|
||||
} else
|
||||
jbd_unlock_bh_state(bh);
|
||||
}
|
||||
cond_resched_lock(&journal->j_list_lock);
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
/*
|
||||
* This is a bit sleazy. We borrow j_list_lock to protect
|
||||
* journal->j_committing_transaction in __journal_remove_checkpoint.
|
||||
* Really, __journal_remove_checkpoint should be using j_state_lock but
|
||||
* it's a bit hassle to hold that across __journal_remove_checkpoint
|
||||
*/
|
||||
spin_lock(&journal->j_state_lock);
|
||||
spin_lock(&journal->j_list_lock);
|
||||
/*
|
||||
* Now recheck if some buffers did not get attached to the transaction
|
||||
* while the lock was dropped...
|
||||
*/
|
||||
if (commit_transaction->t_forget) {
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
goto restart_loop;
|
||||
}
|
||||
|
||||
/* Done with this transaction! */
|
||||
|
||||
jbd_debug(3, "JBD: commit phase 8\n");
|
||||
|
||||
J_ASSERT(commit_transaction->t_state == T_COMMIT);
|
||||
|
||||
commit_transaction->t_state = T_FINISHED;
|
||||
J_ASSERT(commit_transaction == journal->j_committing_transaction);
|
||||
journal->j_commit_sequence = commit_transaction->t_tid;
|
||||
journal->j_committing_transaction = NULL;
|
||||
spin_unlock(&journal->j_state_lock);
|
||||
|
||||
if (commit_transaction->t_checkpoint_list == NULL) {
|
||||
__journal_drop_transaction(journal, commit_transaction);
|
||||
} else {
|
||||
if (journal->j_checkpoint_transactions == NULL) {
|
||||
journal->j_checkpoint_transactions = commit_transaction;
|
||||
commit_transaction->t_cpnext = commit_transaction;
|
||||
commit_transaction->t_cpprev = commit_transaction;
|
||||
} else {
|
||||
commit_transaction->t_cpnext =
|
||||
journal->j_checkpoint_transactions;
|
||||
commit_transaction->t_cpprev =
|
||||
commit_transaction->t_cpnext->t_cpprev;
|
||||
commit_transaction->t_cpnext->t_cpprev =
|
||||
commit_transaction;
|
||||
commit_transaction->t_cpprev->t_cpnext =
|
||||
commit_transaction;
|
||||
}
|
||||
}
|
||||
spin_unlock(&journal->j_list_lock);
|
||||
|
||||
jbd_debug(1, "JBD: commit %d complete, head %d\n",
|
||||
journal->j_commit_sequence, journal->j_tail_sequence);
|
||||
|
||||
wake_up(&journal->j_wait_done_commit);
|
||||
}
|
2072
fs/jbd2/journal.c
Normal file
2072
fs/jbd2/journal.c
Normal file
File diff suppressed because it is too large
Load Diff
592
fs/jbd2/recovery.c
Normal file
592
fs/jbd2/recovery.c
Normal file
@ -0,0 +1,592 @@
|
||||
/*
|
||||
* linux/fs/recovery.c
|
||||
*
|
||||
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
|
||||
*
|
||||
* Copyright 1999-2000 Red Hat Software --- All Rights Reserved
|
||||
*
|
||||
* This file is part of the Linux kernel and is made available under
|
||||
* the terms of the GNU General Public License, version 2, or at your
|
||||
* option, any later version, incorporated herein by reference.
|
||||
*
|
||||
* Journal recovery routines for the generic filesystem journaling code;
|
||||
* part of the ext2fs journaling system.
|
||||
*/
|
||||
|
||||
#ifndef __KERNEL__
|
||||
#include "jfs_user.h"
|
||||
#else
|
||||
#include <linux/time.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/jbd.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Maintain information about the progress of the recovery job, so that
|
||||
* the different passes can carry information between them.
|
||||
*/
|
||||
struct recovery_info
|
||||
{
|
||||
tid_t start_transaction;
|
||||
tid_t end_transaction;
|
||||
|
||||
int nr_replays;
|
||||
int nr_revokes;
|
||||
int nr_revoke_hits;
|
||||
};
|
||||
|
||||
enum passtype {PASS_SCAN, PASS_REVOKE, PASS_REPLAY};
|
||||
static int do_one_pass(journal_t *journal,
|
||||
struct recovery_info *info, enum passtype pass);
|
||||
static int scan_revoke_records(journal_t *, struct buffer_head *,
|
||||
tid_t, struct recovery_info *);
|
||||
|
||||
#ifdef __KERNEL__
|
||||
|
||||
/* Release readahead buffers after use */
|
||||
static void journal_brelse_array(struct buffer_head *b[], int n)
|
||||
{
|
||||
while (--n >= 0)
|
||||
brelse (b[n]);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* When reading from the journal, we are going through the block device
|
||||
* layer directly and so there is no readahead being done for us. We
|
||||
* need to implement any readahead ourselves if we want it to happen at
|
||||
* all. Recovery is basically one long sequential read, so make sure we
|
||||
* do the IO in reasonably large chunks.
|
||||
*
|
||||
* This is not so critical that we need to be enormously clever about
|
||||
* the readahead size, though. 128K is a purely arbitrary, good-enough
|
||||
* fixed value.
|
||||
*/
|
||||
|
||||
#define MAXBUF 8
|
||||
static int do_readahead(journal_t *journal, unsigned int start)
|
||||
{
|
||||
int err;
|
||||
unsigned int max, nbufs, next;
|
||||
unsigned long blocknr;
|
||||
struct buffer_head *bh;
|
||||
|
||||
struct buffer_head * bufs[MAXBUF];
|
||||
|
||||
/* Do up to 128K of readahead */
|
||||
max = start + (128 * 1024 / journal->j_blocksize);
|
||||
if (max > journal->j_maxlen)
|
||||
max = journal->j_maxlen;
|
||||
|
||||
/* Do the readahead itself. We'll submit MAXBUF buffer_heads at
|
||||
* a time to the block device IO layer. */
|
||||
|
||||
nbufs = 0;
|
||||
|
||||
for (next = start; next < max; next++) {
|
||||
err = journal_bmap(journal, next, &blocknr);
|
||||
|
||||
if (err) {
|
||||
printk (KERN_ERR "JBD: bad block at offset %u\n",
|
||||
next);
|
||||
goto failed;
|
||||
}
|
||||
|
||||
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
|
||||
if (!bh) {
|
||||
err = -ENOMEM;
|
||||
goto failed;
|
||||
}
|
||||
|
||||
if (!buffer_uptodate(bh) && !buffer_locked(bh)) {
|
||||
bufs[nbufs++] = bh;
|
||||
if (nbufs == MAXBUF) {
|
||||
ll_rw_block(READ, nbufs, bufs);
|
||||
journal_brelse_array(bufs, nbufs);
|
||||
nbufs = 0;
|
||||
}
|
||||
} else
|
||||
brelse(bh);
|
||||
}
|
||||
|
||||
if (nbufs)
|
||||
ll_rw_block(READ, nbufs, bufs);
|
||||
err = 0;
|
||||
|
||||
failed:
|
||||
if (nbufs)
|
||||
journal_brelse_array(bufs, nbufs);
|
||||
return err;
|
||||
}
|
||||
|
||||
#endif /* __KERNEL__ */
|
||||
|
||||
|
||||
/*
|
||||
* Read a block from the journal
|
||||
*/
|
||||
|
||||
static int jread(struct buffer_head **bhp, journal_t *journal,
|
||||
unsigned int offset)
|
||||
{
|
||||
int err;
|
||||
unsigned long blocknr;
|
||||
struct buffer_head *bh;
|
||||
|
||||
*bhp = NULL;
|
||||
|
||||
if (offset >= journal->j_maxlen) {
|
||||
printk(KERN_ERR "JBD: corrupted journal superblock\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
err = journal_bmap(journal, offset, &blocknr);
|
||||
|
||||
if (err) {
|
||||
printk (KERN_ERR "JBD: bad block at offset %u\n",
|
||||
offset);
|
||||
return err;
|
||||
}
|
||||
|
||||
bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
|
||||
if (!bh)
|
||||
return -ENOMEM;
|
||||
|
||||
if (!buffer_uptodate(bh)) {
|
||||
/* If this is a brand new buffer, start readahead.
|
||||
Otherwise, we assume we are already reading it. */
|
||||
if (!buffer_req(bh))
|
||||
do_readahead(journal, offset);
|
||||
wait_on_buffer(bh);
|
||||
}
|
||||
|
||||
if (!buffer_uptodate(bh)) {
|
||||
printk (KERN_ERR "JBD: Failed to read block at offset %u\n",
|
||||
offset);
|
||||
brelse(bh);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
*bhp = bh;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Count the number of in-use tags in a journal descriptor block.
|
||||
*/
|
||||
|
||||
static int count_tags(struct buffer_head *bh, int size)
|
||||
{
|
||||
char * tagp;
|
||||
journal_block_tag_t * tag;
|
||||
int nr = 0;
|
||||
|
||||
tagp = &bh->b_data[sizeof(journal_header_t)];
|
||||
|
||||
while ((tagp - bh->b_data + sizeof(journal_block_tag_t)) <= size) {
|
||||
tag = (journal_block_tag_t *) tagp;
|
||||
|
||||
nr++;
|
||||
tagp += sizeof(journal_block_tag_t);
|
||||
if (!(tag->t_flags & cpu_to_be32(JFS_FLAG_SAME_UUID)))
|
||||
tagp += 16;
|
||||
|
||||
if (tag->t_flags & cpu_to_be32(JFS_FLAG_LAST_TAG))
|
||||
break;
|
||||
}
|
||||
|
||||
return nr;
|
||||
}
|
||||
|
||||
|
||||
/* Make sure we wrap around the log correctly! */
|
||||
#define wrap(journal, var) \
|
||||
do { \
|
||||
if (var >= (journal)->j_last) \
|
||||
var -= ((journal)->j_last - (journal)->j_first); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* journal_recover - recovers a on-disk journal
|
||||
* @journal: the journal to recover
|
||||
*
|
||||
* The primary function for recovering the log contents when mounting a
|
||||
* journaled device.
|
||||
*
|
||||
* Recovery is done in three passes. In the first pass, we look for the
|
||||
* end of the log. In the second, we assemble the list of revoke
|
||||
* blocks. In the third and final pass, we replay any un-revoked blocks
|
||||
* in the log.
|
||||
*/
|
||||
int journal_recover(journal_t *journal)
|
||||
{
|
||||
int err;
|
||||
journal_superblock_t * sb;
|
||||
|
||||
struct recovery_info info;
|
||||
|
||||
memset(&info, 0, sizeof(info));
|
||||
sb = journal->j_superblock;
|
||||
|
||||
/*
|
||||
* The journal superblock's s_start field (the current log head)
|
||||
* is always zero if, and only if, the journal was cleanly
|
||||
* unmounted.
|
||||
*/
|
||||
|
||||
if (!sb->s_start) {
|
||||
jbd_debug(1, "No recovery required, last transaction %d\n",
|
||||
be32_to_cpu(sb->s_sequence));
|
||||
journal->j_transaction_sequence = be32_to_cpu(sb->s_sequence) + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
err = do_one_pass(journal, &info, PASS_SCAN);
|
||||
if (!err)
|
||||
err = do_one_pass(journal, &info, PASS_REVOKE);
|
||||
if (!err)
|
||||
err = do_one_pass(journal, &info, PASS_REPLAY);
|
||||
|
||||
jbd_debug(0, "JBD: recovery, exit status %d, "
|
||||
"recovered transactions %u to %u\n",
|
||||
err, info.start_transaction, info.end_transaction);
|
||||
jbd_debug(0, "JBD: Replayed %d and revoked %d/%d blocks\n",
|
||||
info.nr_replays, info.nr_revoke_hits, info.nr_revokes);
|
||||
|
||||
/* Restart the log at the next transaction ID, thus invalidating
|
||||
* any existing commit records in the log. */
|
||||
journal->j_transaction_sequence = ++info.end_transaction;
|
||||
|
||||
journal_clear_revoke(journal);
|
||||
sync_blockdev(journal->j_fs_dev);
|
||||
return err;
|
||||
}
|
||||
|
||||
/**
|
||||
* journal_skip_recovery - Start journal and wipe exiting records
|
||||
* @journal: journal to startup
|
||||
*
|
||||
* Locate any valid recovery information from the journal and set up the
|
||||
* journal structures in memory to ignore it (presumably because the
|
||||
* caller has evidence that it is out of date).
|
||||
* This function does'nt appear to be exorted..
|
||||
*
|
||||
* We perform one pass over the journal to allow us to tell the user how
|
||||
* much recovery information is being erased, and to let us initialise
|
||||
* the journal transaction sequence numbers to the next unused ID.
|
||||
*/
|
||||
int journal_skip_recovery(journal_t *journal)
|
||||
{
|
||||
int err;
|
||||
journal_superblock_t * sb;
|
||||
|
||||
struct recovery_info info;
|
||||
|
||||
memset (&info, 0, sizeof(info));
|
||||
sb = journal->j_superblock;
|
||||
|
||||
err = do_one_pass(journal, &info, PASS_SCAN);
|
||||
|
||||
if (err) {
|
||||
printk(KERN_ERR "JBD: error %d scanning journal\n", err);
|
||||
++journal->j_transaction_sequence;
|
||||
} else {
|
||||
#ifdef CONFIG_JBD_DEBUG
|
||||
int dropped = info.end_transaction - be32_to_cpu(sb->s_sequence);
|
||||
#endif
|
||||
jbd_debug(0,
|
||||
"JBD: ignoring %d transaction%s from the journal.\n",
|
||||
dropped, (dropped == 1) ? "" : "s");
|
||||
journal->j_transaction_sequence = ++info.end_transaction;
|
||||
}
|
||||
|
||||
journal->j_tail = 0;
|
||||
return err;
|
||||
}
|
||||
|
||||
static int do_one_pass(journal_t *journal,
|
||||
struct recovery_info *info, enum passtype pass)
|
||||
{
|
||||
unsigned int first_commit_ID, next_commit_ID;
|
||||
unsigned long next_log_block;
|
||||
int err, success = 0;
|
||||
journal_superblock_t * sb;
|
||||
journal_header_t * tmp;
|
||||
struct buffer_head * bh;
|
||||
unsigned int sequence;
|
||||
int blocktype;
|
||||
|
||||
/* Precompute the maximum metadata descriptors in a descriptor block */
|
||||
int MAX_BLOCKS_PER_DESC;
|
||||
MAX_BLOCKS_PER_DESC = ((journal->j_blocksize-sizeof(journal_header_t))
|
||||
/ sizeof(journal_block_tag_t));
|
||||
|
||||
/*
|
||||
* First thing is to establish what we expect to find in the log
|
||||
* (in terms of transaction IDs), and where (in terms of log
|
||||
* block offsets): query the superblock.
|
||||
*/
|
||||
|
||||
sb = journal->j_superblock;
|
||||
next_commit_ID = be32_to_cpu(sb->s_sequence);
|
||||
next_log_block = be32_to_cpu(sb->s_start);
|
||||
|
||||
first_commit_ID = next_commit_ID;
|
||||
if (pass == PASS_SCAN)
|
||||
info->start_transaction = first_commit_ID;
|
||||
|
||||
jbd_debug(1, "Starting recovery pass %d\n", pass);
|
||||
|
||||
/*
|
||||
* Now we walk through the log, transaction by transaction,
|
||||
* making sure that each transaction has a commit block in the
|
||||
* expected place. Each complete transaction gets replayed back
|
||||
* into the main filesystem.
|
||||
*/
|
||||
|
||||
while (1) {
|
||||
int flags;
|
||||
char * tagp;
|
||||
journal_block_tag_t * tag;
|
||||
struct buffer_head * obh;
|
||||
struct buffer_head * nbh;
|
||||
|
||||
cond_resched(); /* We're under lock_kernel() */
|
||||
|
||||
/* If we already know where to stop the log traversal,
|
||||
* check right now that we haven't gone past the end of
|
||||
* the log. */
|
||||
|
||||
if (pass != PASS_SCAN)
|
||||
if (tid_geq(next_commit_ID, info->end_transaction))
|
||||
break;
|
||||
|
||||
jbd_debug(2, "Scanning for sequence ID %u at %lu/%lu\n",
|
||||
next_commit_ID, next_log_block, journal->j_last);
|
||||
|
||||
/* Skip over each chunk of the transaction looking
|
||||
* either the next descriptor block or the final commit
|
||||
* record. */
|
||||
|
||||
jbd_debug(3, "JBD: checking block %ld\n", next_log_block);
|
||||
err = jread(&bh, journal, next_log_block);
|
||||
if (err)
|
||||
goto failed;
|
||||
|
||||
next_log_block++;
|
||||
wrap(journal, next_log_block);
|
||||
|
||||
/* What kind of buffer is it?
|
||||
*
|
||||
* If it is a descriptor block, check that it has the
|
||||
* expected sequence number. Otherwise, we're all done
|
||||
* here. */
|
||||
|
||||
tmp = (journal_header_t *)bh->b_data;
|
||||
|
||||
if (tmp->h_magic != cpu_to_be32(JFS_MAGIC_NUMBER)) {
|
||||
brelse(bh);
|
||||
break;
|
||||
}
|
||||
|
||||
blocktype = be32_to_cpu(tmp->h_blocktype);
|
||||
sequence = be32_to_cpu(tmp->h_sequence);
|
||||
jbd_debug(3, "Found magic %d, sequence %d\n",
|
||||
blocktype, sequence);
|
||||
|
||||
if (sequence != next_commit_ID) {
|
||||
brelse(bh);
|
||||
break;
|
||||
}
|
||||
|
||||
/* OK, we have a valid descriptor block which matches
|
||||
* all of the sequence number checks. What are we going
|
||||
* to do with it? That depends on the pass... */
|
||||
|
||||
switch(blocktype) {
|
||||
case JFS_DESCRIPTOR_BLOCK:
|
||||
/* If it is a valid descriptor block, replay it
|
||||
* in pass REPLAY; otherwise, just skip over the
|
||||
* blocks it describes. */
|
||||
if (pass != PASS_REPLAY) {
|
||||
next_log_block +=
|
||||
count_tags(bh, journal->j_blocksize);
|
||||
wrap(journal, next_log_block);
|
||||
brelse(bh);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* A descriptor block: we can now write all of
|
||||
* the data blocks. Yay, useful work is finally
|
||||
* getting done here! */
|
||||
|
||||
tagp = &bh->b_data[sizeof(journal_header_t)];
|
||||
while ((tagp - bh->b_data +sizeof(journal_block_tag_t))
|
||||
<= journal->j_blocksize) {
|
||||
unsigned long io_block;
|
||||
|
||||
tag = (journal_block_tag_t *) tagp;
|
||||
flags = be32_to_cpu(tag->t_flags);
|
||||
|
||||
io_block = next_log_block++;
|
||||
wrap(journal, next_log_block);
|
||||
err = jread(&obh, journal, io_block);
|
||||
if (err) {
|
||||
/* Recover what we can, but
|
||||
* report failure at the end. */
|
||||
success = err;
|
||||
printk (KERN_ERR
|
||||
"JBD: IO error %d recovering "
|
||||
"block %ld in log\n",
|
||||
err, io_block);
|
||||
} else {
|
||||
unsigned long blocknr;
|
||||
|
||||
J_ASSERT(obh != NULL);
|
||||
blocknr = be32_to_cpu(tag->t_blocknr);
|
||||
|
||||
/* If the block has been
|
||||
* revoked, then we're all done
|
||||
* here. */
|
||||
if (journal_test_revoke
|
||||
(journal, blocknr,
|
||||
next_commit_ID)) {
|
||||
brelse(obh);
|
||||
++info->nr_revoke_hits;
|
||||
goto skip_write;
|
||||
}
|
||||
|
||||
/* Find a buffer for the new
|
||||
* data being restored */
|
||||
nbh = __getblk(journal->j_fs_dev,
|
||||
blocknr,
|
||||
journal->j_blocksize);
|
||||
if (nbh == NULL) {
|
||||
printk(KERN_ERR
|
||||
"JBD: Out of memory "
|
||||
"during recovery.\n");
|
||||
err = -ENOMEM;
|
||||
brelse(bh);
|
||||
brelse(obh);
|
||||
goto failed;
|
||||
}
|
||||
|
||||
lock_buffer(nbh);
|
||||
memcpy(nbh->b_data, obh->b_data,
|
||||
journal->j_blocksize);
|
||||
if (flags & JFS_FLAG_ESCAPE) {
|
||||
*((__be32 *)bh->b_data) =
|
||||
cpu_to_be32(JFS_MAGIC_NUMBER);
|
||||
}
|
||||
|
||||
BUFFER_TRACE(nbh, "marking dirty");
|
||||
set_buffer_uptodate(nbh);
|
||||
mark_buffer_dirty(nbh);
|
||||
BUFFER_TRACE(nbh, "marking uptodate");
|
||||
++info->nr_replays;
|
||||
/* ll_rw_block(WRITE, 1, &nbh); */
|
||||
unlock_buffer(nbh);
|
||||
brelse(obh);
|
||||
brelse(nbh);
|
||||
}
|
||||
|
||||
skip_write:
|
||||
tagp += sizeof(journal_block_tag_t);
|
||||
if (!(flags & JFS_FLAG_SAME_UUID))
|
||||
tagp += 16;
|
||||
|
||||
if (flags & JFS_FLAG_LAST_TAG)
|
||||
break;
|
||||
}
|
||||
|
||||
brelse(bh);
|
||||
continue;
|
||||
|
||||
case JFS_COMMIT_BLOCK:
|
||||
/* Found an expected commit block: not much to
|
||||
* do other than move on to the next sequence
|
||||
* number. */
|
||||
brelse(bh);
|
||||
next_commit_ID++;
|
||||
continue;
|
||||
|
||||
case JFS_REVOKE_BLOCK:
|
||||
/* If we aren't in the REVOKE pass, then we can
|
||||
* just skip over this block. */
|
||||
if (pass != PASS_REVOKE) {
|
||||
brelse(bh);
|
||||
continue;
|
||||
}
|
||||
|
||||
err = scan_revoke_records(journal, bh,
|
||||
next_commit_ID, info);
|
||||
brelse(bh);
|
||||
if (err)
|
||||
goto failed;
|
||||
continue;
|
||||
|
||||
default:
|
||||
jbd_debug(3, "Unrecognised magic %d, end of scan.\n",
|
||||
blocktype);
|
||||
brelse(bh);
|
||||
goto done;
|
||||
}
|
||||
}
|
||||
|
||||
done:
|
||||
/*
|
||||
* We broke out of the log scan loop: either we came to the
|
||||
* known end of the log or we found an unexpected block in the
|
||||
* log. If the latter happened, then we know that the "current"
|
||||
* transaction marks the end of the valid log.
|
||||
*/
|
||||
|
||||
if (pass == PASS_SCAN)
|
||||
info->end_transaction = next_commit_ID;
|
||||
else {
|
||||
/* It's really bad news if different passes end up at
|
||||
* different places (but possible due to IO errors). */
|
||||
if (info->end_transaction != next_commit_ID) {
|
||||
printk (KERN_ERR "JBD: recovery pass %d ended at "
|
||||
"transaction %u, expected %u\n",
|
||||
pass, next_commit_ID, info->end_transaction);
|
||||
if (!success)
|
||||
success = -EIO;
|
||||
}
|
||||
}
|
||||
|
||||
return success;
|
||||
|
||||
failed:
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
/* Scan a revoke record, marking all blocks mentioned as revoked. */
|
||||
|
||||
static int scan_revoke_records(journal_t *journal, struct buffer_head *bh,
|
||||
tid_t sequence, struct recovery_info *info)
|
||||
{
|
||||
journal_revoke_header_t *header;
|
||||
int offset, max;
|
||||
|
||||
header = (journal_revoke_header_t *) bh->b_data;
|
||||
offset = sizeof(journal_revoke_header_t);
|
||||
max = be32_to_cpu(header->r_count);
|
||||
|
||||
while (offset < max) {
|
||||
unsigned long blocknr;
|
||||
int err;
|
||||
|
||||
blocknr = be32_to_cpu(* ((__be32 *) (bh->b_data+offset)));
|
||||
offset += 4;
|
||||
err = journal_set_revoke(journal, blocknr, sequence);
|
||||
if (err)
|
||||
return err;
|
||||
++info->nr_revokes;
|
||||
}
|
||||
return 0;
|
||||
}
|
703
fs/jbd2/revoke.c
Normal file
703
fs/jbd2/revoke.c
Normal file
@ -0,0 +1,703 @@
|
||||
/*
|
||||
* linux/fs/revoke.c
|
||||
*
|
||||
* Written by Stephen C. Tweedie <sct@redhat.com>, 2000
|
||||
*
|
||||
* Copyright 2000 Red Hat corp --- All Rights Reserved
|
||||
*
|
||||
* This file is part of the Linux kernel and is made available under
|
||||
* the terms of the GNU General Public License, version 2, or at your
|
||||
* option, any later version, incorporated herein by reference.
|
||||
*
|
||||
* Journal revoke routines for the generic filesystem journaling code;
|
||||
* part of the ext2fs journaling system.
|
||||
*
|
||||
* Revoke is the mechanism used to prevent old log records for deleted
|
||||
* metadata from being replayed on top of newer data using the same
|
||||
* blocks. The revoke mechanism is used in two separate places:
|
||||
*
|
||||
* + Commit: during commit we write the entire list of the current
|
||||
* transaction's revoked blocks to the journal
|
||||
*
|
||||
* + Recovery: during recovery we record the transaction ID of all
|
||||
* revoked blocks. If there are multiple revoke records in the log
|
||||
* for a single block, only the last one counts, and if there is a log
|
||||
* entry for a block beyond the last revoke, then that log entry still
|
||||
* gets replayed.
|
||||
*
|
||||
* We can get interactions between revokes and new log data within a
|
||||
* single transaction:
|
||||
*
|
||||
* Block is revoked and then journaled:
|
||||
* The desired end result is the journaling of the new block, so we
|
||||
* cancel the revoke before the transaction commits.
|
||||
*
|
||||
* Block is journaled and then revoked:
|
||||
* The revoke must take precedence over the write of the block, so we
|
||||
* need either to cancel the journal entry or to write the revoke
|
||||
* later in the log than the log block. In this case, we choose the
|
||||
* latter: journaling a block cancels any revoke record for that block
|
||||
* in the current transaction, so any revoke for that block in the
|
||||
* transaction must have happened after the block was journaled and so
|
||||
* the revoke must take precedence.
|
||||
*
|
||||
* Block is revoked and then written as data:
|
||||
* The data write is allowed to succeed, but the revoke is _not_
|
||||
* cancelled. We still need to prevent old log records from
|
||||
* overwriting the new data. We don't even need to clear the revoke
|
||||
* bit here.
|
||||
*
|
||||
* Revoke information on buffers is a tri-state value:
|
||||
*
|
||||
* RevokeValid clear: no cached revoke status, need to look it up
|
||||
* RevokeValid set, Revoked clear:
|
||||
* buffer has not been revoked, and cancel_revoke
|
||||
* need do nothing.
|
||||
* RevokeValid set, Revoked set:
|
||||
* buffer has been revoked.
|
||||
*/
|
||||
|
||||
#ifndef __KERNEL__
|
||||
#include "jfs_user.h"
|
||||
#else
|
||||
#include <linux/time.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/jbd.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/smp_lock.h>
|
||||
#include <linux/init.h>
|
||||
#endif
|
||||
|
||||
static kmem_cache_t *revoke_record_cache;
|
||||
static kmem_cache_t *revoke_table_cache;
|
||||
|
||||
/* Each revoke record represents one single revoked block. During
|
||||
journal replay, this involves recording the transaction ID of the
|
||||
last transaction to revoke this block. */
|
||||
|
||||
struct jbd_revoke_record_s
|
||||
{
|
||||
struct list_head hash;
|
||||
tid_t sequence; /* Used for recovery only */
|
||||
unsigned long blocknr;
|
||||
};
|
||||
|
||||
|
||||
/* The revoke table is just a simple hash table of revoke records. */
|
||||
struct jbd_revoke_table_s
|
||||
{
|
||||
/* It is conceivable that we might want a larger hash table
|
||||
* for recovery. Must be a power of two. */
|
||||
int hash_size;
|
||||
int hash_shift;
|
||||
struct list_head *hash_table;
|
||||
};
|
||||
|
||||
|
||||
#ifdef __KERNEL__
|
||||
static void write_one_revoke_record(journal_t *, transaction_t *,
|
||||
struct journal_head **, int *,
|
||||
struct jbd_revoke_record_s *);
|
||||
static void flush_descriptor(journal_t *, struct journal_head *, int);
|
||||
#endif
|
||||
|
||||
/* Utility functions to maintain the revoke table */
|
||||
|
||||
/* Borrowed from buffer.c: this is a tried and tested block hash function */
|
||||
static inline int hash(journal_t *journal, unsigned long block)
|
||||
{
|
||||
struct jbd_revoke_table_s *table = journal->j_revoke;
|
||||
int hash_shift = table->hash_shift;
|
||||
|
||||
return ((block << (hash_shift - 6)) ^
|
||||
(block >> 13) ^
|
||||
(block << (hash_shift - 12))) & (table->hash_size - 1);
|
||||
}
|
||||
|
||||
static int insert_revoke_hash(journal_t *journal, unsigned long blocknr,
|
||||
tid_t seq)
|
||||
{
|
||||
struct list_head *hash_list;
|
||||
struct jbd_revoke_record_s *record;
|
||||
|
||||
repeat:
|
||||
record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
|
||||
if (!record)
|
||||
goto oom;
|
||||
|
||||
record->sequence = seq;
|
||||
record->blocknr = blocknr;
|
||||
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
|
||||
spin_lock(&journal->j_revoke_lock);
|
||||
list_add(&record->hash, hash_list);
|
||||
spin_unlock(&journal->j_revoke_lock);
|
||||
return 0;
|
||||
|
||||
oom:
|
||||
if (!journal_oom_retry)
|
||||
return -ENOMEM;
|
||||
jbd_debug(1, "ENOMEM in %s, retrying\n", __FUNCTION__);
|
||||
yield();
|
||||
goto repeat;
|
||||
}
|
||||
|
||||
/* Find a revoke record in the journal's hash table. */
|
||||
|
||||
static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
|
||||
unsigned long blocknr)
|
||||
{
|
||||
struct list_head *hash_list;
|
||||
struct jbd_revoke_record_s *record;
|
||||
|
||||
hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
|
||||
|
||||
spin_lock(&journal->j_revoke_lock);
|
||||
record = (struct jbd_revoke_record_s *) hash_list->next;
|
||||
while (&(record->hash) != hash_list) {
|
||||
if (record->blocknr == blocknr) {
|
||||
spin_unlock(&journal->j_revoke_lock);
|
||||
return record;
|
||||
}
|
||||
record = (struct jbd_revoke_record_s *) record->hash.next;
|
||||
}
|
||||
spin_unlock(&journal->j_revoke_lock);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int __init journal_init_revoke_caches(void)
|
||||
{
|
||||
revoke_record_cache = kmem_cache_create("revoke_record",
|
||||
sizeof(struct jbd_revoke_record_s),
|
||||
0, SLAB_HWCACHE_ALIGN, NULL, NULL);
|
||||
if (revoke_record_cache == 0)
|
||||
return -ENOMEM;
|
||||
|
||||
revoke_table_cache = kmem_cache_create("revoke_table",
|
||||
sizeof(struct jbd_revoke_table_s),
|
||||
0, 0, NULL, NULL);
|
||||
if (revoke_table_cache == 0) {
|
||||
kmem_cache_destroy(revoke_record_cache);
|
||||
revoke_record_cache = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void journal_destroy_revoke_caches(void)
|
||||
{
|
||||
kmem_cache_destroy(revoke_record_cache);
|
||||
revoke_record_cache = NULL;
|
||||
kmem_cache_destroy(revoke_table_cache);
|
||||
revoke_table_cache = NULL;
|
||||
}
|
||||
|
||||
/* Initialise the revoke table for a given journal to a given size. */
|
||||
|
||||
int journal_init_revoke(journal_t *journal, int hash_size)
|
||||
{
|
||||
int shift, tmp;
|
||||
|
||||
J_ASSERT (journal->j_revoke_table[0] == NULL);
|
||||
|
||||
shift = 0;
|
||||
tmp = hash_size;
|
||||
while((tmp >>= 1UL) != 0UL)
|
||||
shift++;
|
||||
|
||||
journal->j_revoke_table[0] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
|
||||
if (!journal->j_revoke_table[0])
|
||||
return -ENOMEM;
|
||||
journal->j_revoke = journal->j_revoke_table[0];
|
||||
|
||||
/* Check that the hash_size is a power of two */
|
||||
J_ASSERT ((hash_size & (hash_size-1)) == 0);
|
||||
|
||||
journal->j_revoke->hash_size = hash_size;
|
||||
|
||||
journal->j_revoke->hash_shift = shift;
|
||||
|
||||
journal->j_revoke->hash_table =
|
||||
kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
|
||||
if (!journal->j_revoke->hash_table) {
|
||||
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
|
||||
journal->j_revoke = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
for (tmp = 0; tmp < hash_size; tmp++)
|
||||
INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
|
||||
|
||||
journal->j_revoke_table[1] = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
|
||||
if (!journal->j_revoke_table[1]) {
|
||||
kfree(journal->j_revoke_table[0]->hash_table);
|
||||
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
journal->j_revoke = journal->j_revoke_table[1];
|
||||
|
||||
/* Check that the hash_size is a power of two */
|
||||
J_ASSERT ((hash_size & (hash_size-1)) == 0);
|
||||
|
||||
journal->j_revoke->hash_size = hash_size;
|
||||
|
||||
journal->j_revoke->hash_shift = shift;
|
||||
|
||||
journal->j_revoke->hash_table =
|
||||
kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
|
||||
if (!journal->j_revoke->hash_table) {
|
||||
kfree(journal->j_revoke_table[0]->hash_table);
|
||||
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[0]);
|
||||
kmem_cache_free(revoke_table_cache, journal->j_revoke_table[1]);
|
||||
journal->j_revoke = NULL;
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
for (tmp = 0; tmp < hash_size; tmp++)
|
||||
INIT_LIST_HEAD(&journal->j_revoke->hash_table[tmp]);
|
||||
|
||||
spin_lock_init(&journal->j_revoke_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Destoy a journal's revoke table. The table must already be empty! */
|
||||
|
||||
void journal_destroy_revoke(journal_t *journal)
|
||||
{
|
||||
struct jbd_revoke_table_s *table;
|
||||
struct list_head *hash_list;
|
||||
int i;
|
||||
|
||||
table = journal->j_revoke_table[0];
|
||||
if (!table)
|
||||
return;
|
||||
|
||||
for (i=0; i<table->hash_size; i++) {
|
||||
hash_list = &table->hash_table[i];
|
||||
J_ASSERT (list_empty(hash_list));
|
||||
}
|
||||
|
||||
kfree(table->hash_table);
|
||||
kmem_cache_free(revoke_table_cache, table);
|
||||
journal->j_revoke = NULL;
|
||||
|
||||
table = journal->j_revoke_table[1];
|
||||
if (!table)
|
||||
return;
|
||||
|
||||
for (i=0; i<table->hash_size; i++) {
|
||||
hash_list = &table->hash_table[i];
|
||||
J_ASSERT (list_empty(hash_list));
|
||||
}
|
||||
|
||||
kfree(table->hash_table);
|
||||
kmem_cache_free(revoke_table_cache, table);
|
||||
journal->j_revoke = NULL;
|
||||
}
|
||||
|
||||
|
||||
#ifdef __KERNEL__
|
||||
|
||||
/*
|
||||
* journal_revoke: revoke a given buffer_head from the journal. This
|
||||
* prevents the block from being replayed during recovery if we take a
|
||||
* crash after this current transaction commits. Any subsequent
|
||||
* metadata writes of the buffer in this transaction cancel the
|
||||
* revoke.
|
||||
*
|
||||
* Note that this call may block --- it is up to the caller to make
|
||||
* sure that there are no further calls to journal_write_metadata
|
||||
* before the revoke is complete. In ext3, this implies calling the
|
||||
* revoke before clearing the block bitmap when we are deleting
|
||||
* metadata.
|
||||
*
|
||||
* Revoke performs a journal_forget on any buffer_head passed in as a
|
||||
* parameter, but does _not_ forget the buffer_head if the bh was only
|
||||
* found implicitly.
|
||||
*
|
||||
* bh_in may not be a journalled buffer - it may have come off
|
||||
* the hash tables without an attached journal_head.
|
||||
*
|
||||
* If bh_in is non-zero, journal_revoke() will decrement its b_count
|
||||
* by one.
|
||||
*/
|
||||
|
||||
int journal_revoke(handle_t *handle, unsigned long blocknr,
|
||||
struct buffer_head *bh_in)
|
||||
{
|
||||
struct buffer_head *bh = NULL;
|
||||
journal_t *journal;
|
||||
struct block_device *bdev;
|
||||
int err;
|
||||
|
||||
might_sleep();
|
||||
if (bh_in)
|
||||
BUFFER_TRACE(bh_in, "enter");
|
||||
|
||||
journal = handle->h_transaction->t_journal;
|
||||
if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
|
||||
J_ASSERT (!"Cannot set revoke feature!");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
bdev = journal->j_fs_dev;
|
||||
bh = bh_in;
|
||||
|
||||
if (!bh) {
|
||||
bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
|
||||
if (bh)
|
||||
BUFFER_TRACE(bh, "found on hash");
|
||||
}
|
||||
#ifdef JBD_EXPENSIVE_CHECKING
|
||||
else {
|
||||
struct buffer_head *bh2;
|
||||
|
||||
/* If there is a different buffer_head lying around in
|
||||
* memory anywhere... */
|
||||
bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
|
||||
if (bh2) {
|
||||
/* ... and it has RevokeValid status... */
|
||||
if (bh2 != bh && buffer_revokevalid(bh2))
|
||||
/* ...then it better be revoked too,
|
||||
* since it's illegal to create a revoke
|
||||
* record against a buffer_head which is
|
||||
* not marked revoked --- that would
|
||||
* risk missing a subsequent revoke
|
||||
* cancel. */
|
||||
J_ASSERT_BH(bh2, buffer_revoked(bh2));
|
||||
put_bh(bh2);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* We really ought not ever to revoke twice in a row without
|
||||
first having the revoke cancelled: it's illegal to free a
|
||||
block twice without allocating it in between! */
|
||||
if (bh) {
|
||||
if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
|
||||
"inconsistent data on disk")) {
|
||||
if (!bh_in)
|
||||
brelse(bh);
|
||||
return -EIO;
|
||||
}
|
||||
set_buffer_revoked(bh);
|
||||
set_buffer_revokevalid(bh);
|
||||
if (bh_in) {
|
||||
BUFFER_TRACE(bh_in, "call journal_forget");
|
||||
journal_forget(handle, bh_in);
|
||||
} else {
|
||||
BUFFER_TRACE(bh, "call brelse");
|
||||
__brelse(bh);
|
||||
}
|
||||
}
|
||||
|
||||
jbd_debug(2, "insert revoke for block %lu, bh_in=%p\n", blocknr, bh_in);
|
||||
err = insert_revoke_hash(journal, blocknr,
|
||||
handle->h_transaction->t_tid);
|
||||
BUFFER_TRACE(bh_in, "exit");
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
* Cancel an outstanding revoke. For use only internally by the
|
||||
* journaling code (called from journal_get_write_access).
|
||||
*
|
||||
* We trust buffer_revoked() on the buffer if the buffer is already
|
||||
* being journaled: if there is no revoke pending on the buffer, then we
|
||||
* don't do anything here.
|
||||
*
|
||||
* This would break if it were possible for a buffer to be revoked and
|
||||
* discarded, and then reallocated within the same transaction. In such
|
||||
* a case we would have lost the revoked bit, but when we arrived here
|
||||
* the second time we would still have a pending revoke to cancel. So,
|
||||
* do not trust the Revoked bit on buffers unless RevokeValid is also
|
||||
* set.
|
||||
*
|
||||
* The caller must have the journal locked.
|
||||
*/
|
||||
int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
|
||||
{
|
||||
struct jbd_revoke_record_s *record;
|
||||
journal_t *journal = handle->h_transaction->t_journal;
|
||||
int need_cancel;
|
||||
int did_revoke = 0; /* akpm: debug */
|
||||
struct buffer_head *bh = jh2bh(jh);
|
||||
|
||||
jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
|
||||
|
||||
/* Is the existing Revoke bit valid? If so, we trust it, and
|
||||
* only perform the full cancel if the revoke bit is set. If
|
||||
* not, we can't trust the revoke bit, and we need to do the
|
||||
* full search for a revoke record. */
|
||||
if (test_set_buffer_revokevalid(bh)) {
|
||||
need_cancel = test_clear_buffer_revoked(bh);
|
||||
} else {
|
||||
need_cancel = 1;
|
||||
clear_buffer_revoked(bh);
|
||||
}
|
||||
|
||||
if (need_cancel) {
|
||||
record = find_revoke_record(journal, bh->b_blocknr);
|
||||
if (record) {
|
||||
jbd_debug(4, "cancelled existing revoke on "
|
||||
"blocknr %llu\n", (unsigned long long)bh->b_blocknr);
|
||||
spin_lock(&journal->j_revoke_lock);
|
||||
list_del(&record->hash);
|
||||
spin_unlock(&journal->j_revoke_lock);
|
||||
kmem_cache_free(revoke_record_cache, record);
|
||||
did_revoke = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef JBD_EXPENSIVE_CHECKING
|
||||
/* There better not be one left behind by now! */
|
||||
record = find_revoke_record(journal, bh->b_blocknr);
|
||||
J_ASSERT_JH(jh, record == NULL);
|
||||
#endif
|
||||
|
||||
/* Finally, have we just cleared revoke on an unhashed
|
||||
* buffer_head? If so, we'd better make sure we clear the
|
||||
* revoked status on any hashed alias too, otherwise the revoke
|
||||
* state machine will get very upset later on. */
|
||||
if (need_cancel) {
|
||||
struct buffer_head *bh2;
|
||||
bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
|
||||
if (bh2) {
|
||||
if (bh2 != bh)
|
||||
clear_buffer_revoked(bh2);
|
||||
__brelse(bh2);
|
||||
}
|
||||
}
|
||||
return did_revoke;
|
||||
}
|
||||
|
||||
/* journal_switch_revoke table select j_revoke for next transaction
|
||||
* we do not want to suspend any processing until all revokes are
|
||||
* written -bzzz
|
||||
*/
|
||||
void journal_switch_revoke_table(journal_t *journal)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (journal->j_revoke == journal->j_revoke_table[0])
|
||||
journal->j_revoke = journal->j_revoke_table[1];
|
||||
else
|
||||
journal->j_revoke = journal->j_revoke_table[0];
|
||||
|
||||
for (i = 0; i < journal->j_revoke->hash_size; i++)
|
||||
INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write revoke records to the journal for all entries in the current
|
||||
* revoke hash, deleting the entries as we go.
|
||||
*
|
||||
* Called with the journal lock held.
|
||||
*/
|
||||
|
||||
void journal_write_revoke_records(journal_t *journal,
|
||||
transaction_t *transaction)
|
||||
{
|
||||
struct journal_head *descriptor;
|
||||
struct jbd_revoke_record_s *record;
|
||||
struct jbd_revoke_table_s *revoke;
|
||||
struct list_head *hash_list;
|
||||
int i, offset, count;
|
||||
|
||||
descriptor = NULL;
|
||||
offset = 0;
|
||||
count = 0;
|
||||
|
||||
/* select revoke table for committing transaction */
|
||||
revoke = journal->j_revoke == journal->j_revoke_table[0] ?
|
||||
journal->j_revoke_table[1] : journal->j_revoke_table[0];
|
||||
|
||||
for (i = 0; i < revoke->hash_size; i++) {
|
||||
hash_list = &revoke->hash_table[i];
|
||||
|
||||
while (!list_empty(hash_list)) {
|
||||
record = (struct jbd_revoke_record_s *)
|
||||
hash_list->next;
|
||||
write_one_revoke_record(journal, transaction,
|
||||
&descriptor, &offset,
|
||||
record);
|
||||
count++;
|
||||
list_del(&record->hash);
|
||||
kmem_cache_free(revoke_record_cache, record);
|
||||
}
|
||||
}
|
||||
if (descriptor)
|
||||
flush_descriptor(journal, descriptor, offset);
|
||||
jbd_debug(1, "Wrote %d revoke records\n", count);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write out one revoke record. We need to create a new descriptor
|
||||
* block if the old one is full or if we have not already created one.
|
||||
*/
|
||||
|
||||
static void write_one_revoke_record(journal_t *journal,
|
||||
transaction_t *transaction,
|
||||
struct journal_head **descriptorp,
|
||||
int *offsetp,
|
||||
struct jbd_revoke_record_s *record)
|
||||
{
|
||||
struct journal_head *descriptor;
|
||||
int offset;
|
||||
journal_header_t *header;
|
||||
|
||||
/* If we are already aborting, this all becomes a noop. We
|
||||
still need to go round the loop in
|
||||
journal_write_revoke_records in order to free all of the
|
||||
revoke records: only the IO to the journal is omitted. */
|
||||
if (is_journal_aborted(journal))
|
||||
return;
|
||||
|
||||
descriptor = *descriptorp;
|
||||
offset = *offsetp;
|
||||
|
||||
/* Make sure we have a descriptor with space left for the record */
|
||||
if (descriptor) {
|
||||
if (offset == journal->j_blocksize) {
|
||||
flush_descriptor(journal, descriptor, offset);
|
||||
descriptor = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
if (!descriptor) {
|
||||
descriptor = journal_get_descriptor_buffer(journal);
|
||||
if (!descriptor)
|
||||
return;
|
||||
header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
|
||||
header->h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
|
||||
header->h_blocktype = cpu_to_be32(JFS_REVOKE_BLOCK);
|
||||
header->h_sequence = cpu_to_be32(transaction->t_tid);
|
||||
|
||||
/* Record it so that we can wait for IO completion later */
|
||||
JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
|
||||
journal_file_buffer(descriptor, transaction, BJ_LogCtl);
|
||||
|
||||
offset = sizeof(journal_revoke_header_t);
|
||||
*descriptorp = descriptor;
|
||||
}
|
||||
|
||||
* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
|
||||
cpu_to_be32(record->blocknr);
|
||||
offset += 4;
|
||||
*offsetp = offset;
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush a revoke descriptor out to the journal. If we are aborting,
|
||||
* this is a noop; otherwise we are generating a buffer which needs to
|
||||
* be waited for during commit, so it has to go onto the appropriate
|
||||
* journal buffer list.
|
||||
*/
|
||||
|
||||
static void flush_descriptor(journal_t *journal,
|
||||
struct journal_head *descriptor,
|
||||
int offset)
|
||||
{
|
||||
journal_revoke_header_t *header;
|
||||
struct buffer_head *bh = jh2bh(descriptor);
|
||||
|
||||
if (is_journal_aborted(journal)) {
|
||||
put_bh(bh);
|
||||
return;
|
||||
}
|
||||
|
||||
header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
|
||||
header->r_count = cpu_to_be32(offset);
|
||||
set_buffer_jwrite(bh);
|
||||
BUFFER_TRACE(bh, "write");
|
||||
set_buffer_dirty(bh);
|
||||
ll_rw_block(SWRITE, 1, &bh);
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Revoke support for recovery.
|
||||
*
|
||||
* Recovery needs to be able to:
|
||||
*
|
||||
* record all revoke records, including the tid of the latest instance
|
||||
* of each revoke in the journal
|
||||
*
|
||||
* check whether a given block in a given transaction should be replayed
|
||||
* (ie. has not been revoked by a revoke record in that or a subsequent
|
||||
* transaction)
|
||||
*
|
||||
* empty the revoke table after recovery.
|
||||
*/
|
||||
|
||||
/*
|
||||
* First, setting revoke records. We create a new revoke record for
|
||||
* every block ever revoked in the log as we scan it for recovery, and
|
||||
* we update the existing records if we find multiple revokes for a
|
||||
* single block.
|
||||
*/
|
||||
|
||||
int journal_set_revoke(journal_t *journal,
|
||||
unsigned long blocknr,
|
||||
tid_t sequence)
|
||||
{
|
||||
struct jbd_revoke_record_s *record;
|
||||
|
||||
record = find_revoke_record(journal, blocknr);
|
||||
if (record) {
|
||||
/* If we have multiple occurrences, only record the
|
||||
* latest sequence number in the hashed record */
|
||||
if (tid_gt(sequence, record->sequence))
|
||||
record->sequence = sequence;
|
||||
return 0;
|
||||
}
|
||||
return insert_revoke_hash(journal, blocknr, sequence);
|
||||
}
|
||||
|
||||
/*
|
||||
* Test revoke records. For a given block referenced in the log, has
|
||||
* that block been revoked? A revoke record with a given transaction
|
||||
* sequence number revokes all blocks in that transaction and earlier
|
||||
* ones, but later transactions still need replayed.
|
||||
*/
|
||||
|
||||
int journal_test_revoke(journal_t *journal,
|
||||
unsigned long blocknr,
|
||||
tid_t sequence)
|
||||
{
|
||||
struct jbd_revoke_record_s *record;
|
||||
|
||||
record = find_revoke_record(journal, blocknr);
|
||||
if (!record)
|
||||
return 0;
|
||||
if (tid_gt(sequence, record->sequence))
|
||||
return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Finally, once recovery is over, we need to clear the revoke table so
|
||||
* that it can be reused by the running filesystem.
|
||||
*/
|
||||
|
||||
void journal_clear_revoke(journal_t *journal)
|
||||
{
|
||||
int i;
|
||||
struct list_head *hash_list;
|
||||
struct jbd_revoke_record_s *record;
|
||||
struct jbd_revoke_table_s *revoke;
|
||||
|
||||
revoke = journal->j_revoke;
|
||||
|
||||
for (i = 0; i < revoke->hash_size; i++) {
|
||||
hash_list = &revoke->hash_table[i];
|
||||
while (!list_empty(hash_list)) {
|
||||
record = (struct jbd_revoke_record_s*) hash_list->next;
|
||||
list_del(&record->hash);
|
||||
kmem_cache_free(revoke_record_cache, record);
|
||||
}
|
||||
}
|
||||
}
|
2080
fs/jbd2/transaction.c
Normal file
2080
fs/jbd2/transaction.c
Normal file
File diff suppressed because it is too large
Load Diff
268
include/linux/ext4_jbd2.h
Normal file
268
include/linux/ext4_jbd2.h
Normal file
@ -0,0 +1,268 @@
|
||||
/*
|
||||
* linux/include/linux/ext4_jbd.h
|
||||
*
|
||||
* Written by Stephen C. Tweedie <sct@redhat.com>, 1999
|
||||
*
|
||||
* Copyright 1998--1999 Red Hat corp --- All Rights Reserved
|
||||
*
|
||||
* This file is part of the Linux kernel and is made available under
|
||||
* the terms of the GNU General Public License, version 2, or at your
|
||||
* option, any later version, incorporated herein by reference.
|
||||
*
|
||||
* Ext4-specific journaling extensions.
|
||||
*/
|
||||
|
||||
#ifndef _LINUX_EXT4_JBD_H
|
||||
#define _LINUX_EXT4_JBD_H
|
||||
|
||||
#include <linux/fs.h>
|
||||
#include <linux/jbd.h>
|
||||
#include <linux/ext4_fs.h>
|
||||
|
||||
#define EXT4_JOURNAL(inode) (EXT4_SB((inode)->i_sb)->s_journal)
|
||||
|
||||
/* Define the number of blocks we need to account to a transaction to
|
||||
* modify one block of data.
|
||||
*
|
||||
* We may have to touch one inode, one bitmap buffer, up to three
|
||||
* indirection blocks, the group and superblock summaries, and the data
|
||||
* block to complete the transaction. */
|
||||
|
||||
#define EXT4_SINGLEDATA_TRANS_BLOCKS 8U
|
||||
|
||||
/* Extended attribute operations touch at most two data buffers,
|
||||
* two bitmap buffers, and two group summaries, in addition to the inode
|
||||
* and the superblock, which are already accounted for. */
|
||||
|
||||
#define EXT4_XATTR_TRANS_BLOCKS 6U
|
||||
|
||||
/* Define the minimum size for a transaction which modifies data. This
|
||||
* needs to take into account the fact that we may end up modifying two
|
||||
* quota files too (one for the group, one for the user quota). The
|
||||
* superblock only gets updated once, of course, so don't bother
|
||||
* counting that again for the quota updates. */
|
||||
|
||||
#define EXT4_DATA_TRANS_BLOCKS(sb) (EXT4_SINGLEDATA_TRANS_BLOCKS + \
|
||||
EXT4_XATTR_TRANS_BLOCKS - 2 + \
|
||||
2*EXT4_QUOTA_TRANS_BLOCKS(sb))
|
||||
|
||||
/* Delete operations potentially hit one directory's namespace plus an
|
||||
* entire inode, plus arbitrary amounts of bitmap/indirection data. Be
|
||||
* generous. We can grow the delete transaction later if necessary. */
|
||||
|
||||
#define EXT4_DELETE_TRANS_BLOCKS(sb) (2 * EXT4_DATA_TRANS_BLOCKS(sb) + 64)
|
||||
|
||||
/* Define an arbitrary limit for the amount of data we will anticipate
|
||||
* writing to any given transaction. For unbounded transactions such as
|
||||
* write(2) and truncate(2) we can write more than this, but we always
|
||||
* start off at the maximum transaction size and grow the transaction
|
||||
* optimistically as we go. */
|
||||
|
||||
#define EXT4_MAX_TRANS_DATA 64U
|
||||
|
||||
/* We break up a large truncate or write transaction once the handle's
|
||||
* buffer credits gets this low, we need either to extend the
|
||||
* transaction or to start a new one. Reserve enough space here for
|
||||
* inode, bitmap, superblock, group and indirection updates for at least
|
||||
* one block, plus two quota updates. Quota allocations are not
|
||||
* needed. */
|
||||
|
||||
#define EXT4_RESERVE_TRANS_BLOCKS 12U
|
||||
|
||||
#define EXT4_INDEX_EXTRA_TRANS_BLOCKS 8
|
||||
|
||||
#ifdef CONFIG_QUOTA
|
||||
/* Amount of blocks needed for quota update - we know that the structure was
|
||||
* allocated so we need to update only inode+data */
|
||||
#define EXT4_QUOTA_TRANS_BLOCKS(sb) (test_opt(sb, QUOTA) ? 2 : 0)
|
||||
/* Amount of blocks needed for quota insert/delete - we do some block writes
|
||||
* but inode, sb and group updates are done only once */
|
||||
#define EXT4_QUOTA_INIT_BLOCKS(sb) (test_opt(sb, QUOTA) ? (DQUOT_INIT_ALLOC*\
|
||||
(EXT4_SINGLEDATA_TRANS_BLOCKS-3)+3+DQUOT_INIT_REWRITE) : 0)
|
||||
#define EXT4_QUOTA_DEL_BLOCKS(sb) (test_opt(sb, QUOTA) ? (DQUOT_DEL_ALLOC*\
|
||||
(EXT4_SINGLEDATA_TRANS_BLOCKS-3)+3+DQUOT_DEL_REWRITE) : 0)
|
||||
#else
|
||||
#define EXT4_QUOTA_TRANS_BLOCKS(sb) 0
|
||||
#define EXT4_QUOTA_INIT_BLOCKS(sb) 0
|
||||
#define EXT4_QUOTA_DEL_BLOCKS(sb) 0
|
||||
#endif
|
||||
|
||||
int
|
||||
ext4_mark_iloc_dirty(handle_t *handle,
|
||||
struct inode *inode,
|
||||
struct ext4_iloc *iloc);
|
||||
|
||||
/*
|
||||
* On success, We end up with an outstanding reference count against
|
||||
* iloc->bh. This _must_ be cleaned up later.
|
||||
*/
|
||||
|
||||
int ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
|
||||
struct ext4_iloc *iloc);
|
||||
|
||||
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode);
|
||||
|
||||
/*
|
||||
* Wrapper functions with which ext4 calls into JBD. The intent here is
|
||||
* to allow these to be turned into appropriate stubs so ext4 can control
|
||||
* ext2 filesystems, so ext2+ext4 systems only nee one fs. This work hasn't
|
||||
* been done yet.
|
||||
*/
|
||||
|
||||
void ext4_journal_abort_handle(const char *caller, const char *err_fn,
|
||||
struct buffer_head *bh, handle_t *handle, int err);
|
||||
|
||||
static inline int
|
||||
__ext4_journal_get_undo_access(const char *where, handle_t *handle,
|
||||
struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_get_undo_access(handle, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline int
|
||||
__ext4_journal_get_write_access(const char *where, handle_t *handle,
|
||||
struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_get_write_access(handle, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline void
|
||||
ext4_journal_release_buffer(handle_t *handle, struct buffer_head *bh)
|
||||
{
|
||||
journal_release_buffer(handle, bh);
|
||||
}
|
||||
|
||||
static inline int
|
||||
__ext4_journal_forget(const char *where, handle_t *handle, struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_forget(handle, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline int
|
||||
__ext4_journal_revoke(const char *where, handle_t *handle,
|
||||
unsigned long blocknr, struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_revoke(handle, blocknr, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline int
|
||||
__ext4_journal_get_create_access(const char *where,
|
||||
handle_t *handle, struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_get_create_access(handle, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
static inline int
|
||||
__ext4_journal_dirty_metadata(const char *where,
|
||||
handle_t *handle, struct buffer_head *bh)
|
||||
{
|
||||
int err = journal_dirty_metadata(handle, bh);
|
||||
if (err)
|
||||
ext4_journal_abort_handle(where, __FUNCTION__, bh, handle,err);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
#define ext4_journal_get_undo_access(handle, bh) \
|
||||
__ext4_journal_get_undo_access(__FUNCTION__, (handle), (bh))
|
||||
#define ext4_journal_get_write_access(handle, bh) \
|
||||
__ext4_journal_get_write_access(__FUNCTION__, (handle), (bh))
|
||||
#define ext4_journal_revoke(handle, blocknr, bh) \
|
||||
__ext4_journal_revoke(__FUNCTION__, (handle), (blocknr), (bh))
|
||||
#define ext4_journal_get_create_access(handle, bh) \
|
||||
__ext4_journal_get_create_access(__FUNCTION__, (handle), (bh))
|
||||
#define ext4_journal_dirty_metadata(handle, bh) \
|
||||
__ext4_journal_dirty_metadata(__FUNCTION__, (handle), (bh))
|
||||
#define ext4_journal_forget(handle, bh) \
|
||||
__ext4_journal_forget(__FUNCTION__, (handle), (bh))
|
||||
|
||||
int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh);
|
||||
|
||||
handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks);
|
||||
int __ext4_journal_stop(const char *where, handle_t *handle);
|
||||
|
||||
static inline handle_t *ext4_journal_start(struct inode *inode, int nblocks)
|
||||
{
|
||||
return ext4_journal_start_sb(inode->i_sb, nblocks);
|
||||
}
|
||||
|
||||
#define ext4_journal_stop(handle) \
|
||||
__ext4_journal_stop(__FUNCTION__, (handle))
|
||||
|
||||
static inline handle_t *ext4_journal_current_handle(void)
|
||||
{
|
||||
return journal_current_handle();
|
||||
}
|
||||
|
||||
static inline int ext4_journal_extend(handle_t *handle, int nblocks)
|
||||
{
|
||||
return journal_extend(handle, nblocks);
|
||||
}
|
||||
|
||||
static inline int ext4_journal_restart(handle_t *handle, int nblocks)
|
||||
{
|
||||
return journal_restart(handle, nblocks);
|
||||
}
|
||||
|
||||
static inline int ext4_journal_blocks_per_page(struct inode *inode)
|
||||
{
|
||||
return journal_blocks_per_page(inode);
|
||||
}
|
||||
|
||||
static inline int ext4_journal_force_commit(journal_t *journal)
|
||||
{
|
||||
return journal_force_commit(journal);
|
||||
}
|
||||
|
||||
/* super.c */
|
||||
int ext4_force_commit(struct super_block *sb);
|
||||
|
||||
static inline int ext4_should_journal_data(struct inode *inode)
|
||||
{
|
||||
if (!S_ISREG(inode->i_mode))
|
||||
return 1;
|
||||
if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
|
||||
return 1;
|
||||
if (EXT4_I(inode)->i_flags & EXT4_JOURNAL_DATA_FL)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int ext4_should_order_data(struct inode *inode)
|
||||
{
|
||||
if (!S_ISREG(inode->i_mode))
|
||||
return 0;
|
||||
if (EXT4_I(inode)->i_flags & EXT4_JOURNAL_DATA_FL)
|
||||
return 0;
|
||||
if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int ext4_should_writeback_data(struct inode *inode)
|
||||
{
|
||||
if (!S_ISREG(inode->i_mode))
|
||||
return 0;
|
||||
if (EXT4_I(inode)->i_flags & EXT4_JOURNAL_DATA_FL)
|
||||
return 0;
|
||||
if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* _LINUX_EXT4_JBD_H */
|
1098
include/linux/jbd2.h
Normal file
1098
include/linux/jbd2.h
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user