radix tree: Remove multiorder support

All users have now been converted to the XArray.  Removing the support
reduces code size and ensures new users will use the XArray instead.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
This commit is contained in:
Matthew Wilcox 2018-09-22 16:14:30 -04:00
parent 542980aa93
commit 3a08cd52c3
5 changed files with 19 additions and 245 deletions

View File

@ -96,7 +96,6 @@ static inline bool radix_tree_empty(const struct radix_tree_root *root)
* @next_index: one beyond the last index for this chunk
* @tags: bit-mask for tag-iterating
* @node: node that contains current slot
* @shift: shift for the node that holds our slots
*
* This radix tree iterator works in terms of "chunks" of slots. A chunk is a
* subinterval of slots contained within one radix tree leaf node. It is
@ -110,20 +109,8 @@ struct radix_tree_iter {
unsigned long next_index;
unsigned long tags;
struct radix_tree_node *node;
#ifdef CONFIG_RADIX_TREE_MULTIORDER
unsigned int shift;
#endif
};
static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
{
#ifdef CONFIG_RADIX_TREE_MULTIORDER
return iter->shift;
#else
return 0;
#endif
}
/**
* Radix-tree synchronization
*
@ -230,13 +217,8 @@ static inline int radix_tree_exception(void *arg)
return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
}
int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
unsigned order, void *);
static inline int radix_tree_insert(struct radix_tree_root *root,
unsigned long index, void *entry)
{
return __radix_tree_insert(root, index, 0, entry);
}
int radix_tree_insert(struct radix_tree_root *, unsigned long index,
void *);
void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
struct radix_tree_node **nodep, void __rcu ***slotp);
void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
@ -384,7 +366,7 @@ void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
{
return iter->index + (slots << iter_shift(iter));
return iter->index + slots;
}
/**
@ -409,21 +391,9 @@ void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter *iter)
{
return (iter->next_index - iter->index) >> iter_shift(iter);
return iter->next_index - iter->index;
}
#ifdef CONFIG_RADIX_TREE_MULTIORDER
void __rcu **__radix_tree_next_slot(void __rcu **slot,
struct radix_tree_iter *iter, unsigned flags);
#else
/* Can't happen without sibling entries, but the compiler can't tell that */
static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
struct radix_tree_iter *iter, unsigned flags)
{
return slot;
}
#endif
/**
* radix_tree_next_slot - find next slot in chunk
*
@ -482,8 +452,6 @@ static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
return NULL;
found:
if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
return __radix_tree_next_slot(slot, iter, flags);
return slot;
}

View File

@ -405,10 +405,6 @@ config XARRAY_MULTI
Support entries which occupy multiple consecutive indices in the
XArray.
config RADIX_TREE_MULTIORDER
bool
select XARRAY_MULTI
config ASSOCIATIVE_ARRAY
bool
help

View File

@ -110,11 +110,6 @@ static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
if (xa_is_sibling(entry)) {
offset = xa_to_sibling(entry);
entry = rcu_dereference_raw(parent->slots[offset]);
}
*nodep = (void *)entry;
return offset;
}
@ -229,7 +224,7 @@ radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
static unsigned int iter_offset(const struct radix_tree_iter *iter)
{
return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
return iter->index & RADIX_TREE_MAP_MASK;
}
/*
@ -506,16 +501,13 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root)
/*
* The candidate node has more than one child, or its child
* is not at the leftmost slot, or the child is a multiorder
* entry, we cannot shrink.
* is not at the leftmost slot, we cannot shrink.
*/
if (node->count != 1)
break;
child = rcu_dereference_raw(node->slots[0]);
if (!child)
break;
if (!radix_tree_is_internal_node(child) && node->shift)
break;
/*
* For an IDR, we must not shrink entry 0 into the root in
@ -613,7 +605,6 @@ static bool delete_node(struct radix_tree_root *root,
* __radix_tree_create - create a slot in a radix tree
* @root: radix tree root
* @index: index key
* @order: index occupies 2^order aligned slots
* @nodep: returns node
* @slotp: returns slot
*
@ -627,21 +618,19 @@ static bool delete_node(struct radix_tree_root *root,
* Returns -ENOMEM, or 0 for success.
*/
static int __radix_tree_create(struct radix_tree_root *root,
unsigned long index, unsigned order,
struct radix_tree_node **nodep, void __rcu ***slotp)
unsigned long index, struct radix_tree_node **nodep,
void __rcu ***slotp)
{
struct radix_tree_node *node = NULL, *child;
void __rcu **slot = (void __rcu **)&root->xa_head;
unsigned long maxindex;
unsigned int shift, offset = 0;
unsigned long max = index | ((1UL << order) - 1);
unsigned long max = index;
gfp_t gfp = root_gfp_mask(root);
shift = radix_tree_load_root(root, &child, &maxindex);
/* Make sure the tree is high enough. */
if (order > 0 && max == ((1UL << order) - 1))
max++;
if (max > maxindex) {
int error = radix_tree_extend(root, gfp, max, shift);
if (error < 0)
@ -650,7 +639,7 @@ static int __radix_tree_create(struct radix_tree_root *root,
child = rcu_dereference_raw(root->xa_head);
}
while (shift > order) {
while (shift > 0) {
shift -= RADIX_TREE_MAP_SHIFT;
if (child == NULL) {
/* Have to add a child node. */
@ -711,70 +700,8 @@ static void radix_tree_free_nodes(struct radix_tree_node *node)
}
}
#ifdef CONFIG_RADIX_TREE_MULTIORDER
static inline int insert_entries(struct radix_tree_node *node,
void __rcu **slot, void *item, unsigned order, bool replace)
{
void *sibling;
unsigned i, n, tag, offset, tags = 0;
if (node) {
if (order > node->shift)
n = 1 << (order - node->shift);
else
n = 1;
offset = get_slot_offset(node, slot);
} else {
n = 1;
offset = 0;
}
if (n > 1) {
offset = offset & ~(n - 1);
slot = &node->slots[offset];
}
sibling = xa_mk_sibling(offset);
for (i = 0; i < n; i++) {
if (slot[i]) {
if (replace) {
node->count--;
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
if (tag_get(node, tag, offset + i))
tags |= 1 << tag;
} else
return -EEXIST;
}
}
for (i = 0; i < n; i++) {
struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
if (i) {
rcu_assign_pointer(slot[i], sibling);
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
if (tags & (1 << tag))
tag_clear(node, tag, offset + i);
} else {
rcu_assign_pointer(slot[i], item);
for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
if (tags & (1 << tag))
tag_set(node, tag, offset);
}
if (xa_is_node(old))
radix_tree_free_nodes(old);
if (xa_is_value(old))
node->nr_values--;
}
if (node) {
node->count += n;
if (xa_is_value(item))
node->nr_values += n;
}
return n;
}
#else
static inline int insert_entries(struct radix_tree_node *node,
void __rcu **slot, void *item, unsigned order, bool replace)
void __rcu **slot, void *item, bool replace)
{
if (*slot)
return -EEXIST;
@ -786,19 +713,17 @@ static inline int insert_entries(struct radix_tree_node *node,
}
return 1;
}
#endif
/**
* __radix_tree_insert - insert into a radix tree
* @root: radix tree root
* @index: index key
* @order: key covers the 2^order indices around index
* @item: item to insert
*
* Insert an item into the radix tree at position @index.
*/
int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
unsigned order, void *item)
int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
void *item)
{
struct radix_tree_node *node;
void __rcu **slot;
@ -806,11 +731,11 @@ int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
BUG_ON(radix_tree_is_internal_node(item));
error = __radix_tree_create(root, index, order, &node, &slot);
error = __radix_tree_create(root, index, &node, &slot);
if (error)
return error;
error = insert_entries(node, slot, item, order, false);
error = insert_entries(node, slot, item, false);
if (error < 0)
return error;
@ -825,7 +750,7 @@ int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
return 0;
}
EXPORT_SYMBOL(__radix_tree_insert);
EXPORT_SYMBOL(radix_tree_insert);
/**
* __radix_tree_lookup - lookup an item in a radix tree
@ -917,32 +842,12 @@ void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
}
EXPORT_SYMBOL(radix_tree_lookup);
static inline void replace_sibling_entries(struct radix_tree_node *node,
void __rcu **slot, int count, int values)
{
#ifdef CONFIG_RADIX_TREE_MULTIORDER
unsigned offset = get_slot_offset(node, slot);
void *ptr = xa_mk_sibling(offset);
while (++offset < RADIX_TREE_MAP_SIZE) {
if (rcu_dereference_raw(node->slots[offset]) != ptr)
break;
if (count < 0) {
node->slots[offset] = NULL;
node->count--;
}
node->nr_values += values;
}
#endif
}
static void replace_slot(void __rcu **slot, void *item,
struct radix_tree_node *node, int count, int values)
{
if (node && (count || values)) {
node->count += count;
node->nr_values += values;
replace_sibling_entries(node, slot, count, values);
}
rcu_assign_pointer(*slot, item);
@ -1223,14 +1128,6 @@ int radix_tree_tag_get(const struct radix_tree_root *root,
}
EXPORT_SYMBOL(radix_tree_tag_get);
static inline void __set_iter_shift(struct radix_tree_iter *iter,
unsigned int shift)
{
#ifdef CONFIG_RADIX_TREE_MULTIORDER
iter->shift = shift;
#endif
}
/* Construct iter->tags bit-mask from node->tags[tag] array */
static void set_iter_tags(struct radix_tree_iter *iter,
struct radix_tree_node *node, unsigned offset,
@ -1257,92 +1154,11 @@ static void set_iter_tags(struct radix_tree_iter *iter,
}
}
#ifdef CONFIG_RADIX_TREE_MULTIORDER
static void __rcu **skip_siblings(struct radix_tree_node **nodep,
void __rcu **slot, struct radix_tree_iter *iter)
{
while (iter->index < iter->next_index) {
*nodep = rcu_dereference_raw(*slot);
if (*nodep && !xa_is_sibling(*nodep))
return slot;
slot++;
iter->index = __radix_tree_iter_add(iter, 1);
iter->tags >>= 1;
}
*nodep = NULL;
return NULL;
}
void __rcu **__radix_tree_next_slot(void __rcu **slot,
struct radix_tree_iter *iter, unsigned flags)
{
unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
struct radix_tree_node *node;
slot = skip_siblings(&node, slot, iter);
while (radix_tree_is_internal_node(node)) {
unsigned offset;
unsigned long next_index;
if (node == RADIX_TREE_RETRY)
return slot;
node = entry_to_node(node);
iter->node = node;
iter->shift = node->shift;
if (flags & RADIX_TREE_ITER_TAGGED) {
offset = radix_tree_find_next_bit(node, tag, 0);
if (offset == RADIX_TREE_MAP_SIZE)
return NULL;
slot = &node->slots[offset];
iter->index = __radix_tree_iter_add(iter, offset);
set_iter_tags(iter, node, offset, tag);
node = rcu_dereference_raw(*slot);
} else {
offset = 0;
slot = &node->slots[0];
for (;;) {
node = rcu_dereference_raw(*slot);
if (node)
break;
slot++;
offset++;
if (offset == RADIX_TREE_MAP_SIZE)
return NULL;
}
iter->index = __radix_tree_iter_add(iter, offset);
}
if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
goto none;
next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
if (next_index < iter->next_index)
iter->next_index = next_index;
}
return slot;
none:
iter->next_index = 0;
return NULL;
}
EXPORT_SYMBOL(__radix_tree_next_slot);
#else
static void __rcu **skip_siblings(struct radix_tree_node **nodep,
void __rcu **slot, struct radix_tree_iter *iter)
{
return slot;
}
#endif
void __rcu **radix_tree_iter_resume(void __rcu **slot,
struct radix_tree_iter *iter)
{
struct radix_tree_node *node;
slot++;
iter->index = __radix_tree_iter_add(iter, 1);
skip_siblings(&node, slot, iter);
iter->next_index = iter->index;
iter->tags = 0;
return NULL;
@ -1393,7 +1209,6 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
iter->next_index = maxindex + 1;
iter->tags = 1;
iter->node = NULL;
__set_iter_shift(iter, 0);
return (void __rcu **)&root->xa_head;
}
@ -1414,8 +1229,6 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
while (++offset < RADIX_TREE_MAP_SIZE) {
void *slot = rcu_dereference_raw(
node->slots[offset]);
if (xa_is_sibling(slot))
continue;
if (slot)
break;
}
@ -1436,10 +1249,9 @@ void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
} while (node->shift && radix_tree_is_internal_node(child));
/* Update the iterator state */
iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
iter->index = (index &~ node_maxindex(node)) | offset;
iter->next_index = (index | node_maxindex(node)) + 1;
iter->node = node;
__set_iter_shift(iter, node->shift);
if (flags & RADIX_TREE_ITER_TAGGED)
set_iter_tags(iter, node, offset, tag);
@ -1750,7 +1562,6 @@ void __rcu **idr_get_free(struct radix_tree_root *root,
else
iter->next_index = 1;
iter->node = node;
__set_iter_shift(iter, shift);
set_iter_tags(iter, node, offset, IDR_FREE);
return slot;

View File

@ -379,7 +379,7 @@ config TRANSPARENT_HUGEPAGE
bool "Transparent Hugepage Support"
depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE
select COMPACTION
select RADIX_TREE_MULTIORDER
select XARRAY_MULTI
help
Transparent Hugepages allows the kernel to use huge pages and
huge tlb transparently to the applications whenever possible.
@ -671,7 +671,7 @@ config ZONE_DEVICE
depends on MEMORY_HOTREMOVE
depends on SPARSEMEM_VMEMMAP
depends on ARCH_HAS_ZONE_DEVICE
select RADIX_TREE_MULTIORDER
select XARRAY_MULTI
help
Device memory hotplug support allows for establishing pmem,

View File

@ -1,2 +1 @@
#define CONFIG_RADIX_TREE_MULTIORDER 1
#define CONFIG_XARRAY_MULTI 1