Merge branches 'pm-cpufreq' and 'pm-devfreq'

* pm-cpufreq:
  cpufreq: CPPC: Correct desired_perf calculation
  cpufreq: conservative: Fix next frequency selection
  cpufreq: skip invalid entries when searching the frequency
  cpufreq: intel_pstate: Fix struct pstate_adjust_policy kerneldoc
  cpufreq: intel_pstate: Proportional algorithm for Atom
  cpufreq: intel_pstate: Clarify comment in get_target_pstate_use_performance()
  cpufreq: intel_pstate: Fix unsafe HWP MSR access

* pm-devfreq:
  PM / devfreq: Skip status update on uninitialized previous_freq
  PM / devfreq: Add proper locking around list_del()
  PM / devfreq: exynos-nocp: Remove redundant code
  PM / devfreq: exynos-nocp: Select REGMAP_MMIO
This commit is contained in:
Rafael J. Wysocki 2016-10-14 14:09:14 +02:00
commit 383731d98e
7 changed files with 115 additions and 71 deletions

View File

@ -80,11 +80,17 @@ static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
{
struct cpudata *cpu;
struct cpufreq_freqs freqs;
u32 desired_perf;
int ret = 0;
cpu = all_cpu_data[policy->cpu];
cpu->perf_ctrls.desired_perf = (u64)target_freq * policy->max / cppc_dmi_max_khz;
desired_perf = (u64)target_freq * cpu->perf_caps.highest_perf / cppc_dmi_max_khz;
/* Return if it is exactly the same perf */
if (desired_perf == cpu->perf_ctrls.desired_perf)
return ret;
cpu->perf_ctrls.desired_perf = desired_perf;
freqs.old = policy->cur;
freqs.new = target_freq;

View File

@ -17,6 +17,7 @@
struct cs_policy_dbs_info {
struct policy_dbs_info policy_dbs;
unsigned int down_skip;
unsigned int requested_freq;
};
static inline struct cs_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
@ -61,6 +62,7 @@ static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
unsigned int requested_freq = dbs_info->requested_freq;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int load = dbs_update(policy);
@ -72,10 +74,16 @@ static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
if (cs_tuners->freq_step == 0)
goto out;
/*
* If requested_freq is out of range, it is likely that the limits
* changed in the meantime, so fall back to current frequency in that
* case.
*/
if (requested_freq > policy->max || requested_freq < policy->min)
requested_freq = policy->cur;
/* Check for frequency increase */
if (load > dbs_data->up_threshold) {
unsigned int requested_freq = policy->cur;
dbs_info->down_skip = 0;
/* if we are already at full speed then break out early */
@ -83,8 +91,11 @@ static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
goto out;
requested_freq += get_freq_target(cs_tuners, policy);
if (requested_freq > policy->max)
requested_freq = policy->max;
__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_H);
dbs_info->requested_freq = requested_freq;
goto out;
}
@ -95,7 +106,7 @@ static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
/* Check for frequency decrease */
if (load < cs_tuners->down_threshold) {
unsigned int freq_target, requested_freq = policy->cur;
unsigned int freq_target;
/*
* if we cannot reduce the frequency anymore, break out early
*/
@ -109,6 +120,7 @@ static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
requested_freq = policy->min;
__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_L);
dbs_info->requested_freq = requested_freq;
}
out:
@ -287,6 +299,7 @@ static void cs_start(struct cpufreq_policy *policy)
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
dbs_info->down_skip = 0;
dbs_info->requested_freq = policy->cur;
}
static struct dbs_governor cs_governor = {

View File

@ -225,7 +225,7 @@ struct cpudata {
static struct cpudata **all_cpu_data;
/**
* struct pid_adjust_policy - Stores static PID configuration data
* struct pstate_adjust_policy - Stores static PID configuration data
* @sample_rate_ms: PID calculation sample rate in ms
* @sample_rate_ns: Sample rate calculation in ns
* @deadband: PID deadband
@ -562,12 +562,12 @@ static void intel_pstate_hwp_set(const struct cpumask *cpumask)
int min, hw_min, max, hw_max, cpu, range, adj_range;
u64 value, cap;
rdmsrl(MSR_HWP_CAPABILITIES, cap);
hw_min = HWP_LOWEST_PERF(cap);
hw_max = HWP_HIGHEST_PERF(cap);
range = hw_max - hw_min;
for_each_cpu(cpu, cpumask) {
rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
hw_min = HWP_LOWEST_PERF(cap);
hw_max = HWP_HIGHEST_PERF(cap);
range = hw_max - hw_min;
rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
adj_range = limits->min_perf_pct * range / 100;
min = hw_min + adj_range;
@ -1232,6 +1232,7 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
struct sample *sample = &cpu->sample;
int32_t busy_frac, boost;
int target, avg_pstate;
busy_frac = div_fp(sample->mperf, sample->tsc);
@ -1242,7 +1243,26 @@ static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
busy_frac = boost;
sample->busy_scaled = busy_frac * 100;
return get_avg_pstate(cpu) - pid_calc(&cpu->pid, sample->busy_scaled);
target = limits->no_turbo || limits->turbo_disabled ?
cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
target += target >> 2;
target = mul_fp(target, busy_frac);
if (target < cpu->pstate.min_pstate)
target = cpu->pstate.min_pstate;
/*
* If the average P-state during the previous cycle was higher than the
* current target, add 50% of the difference to the target to reduce
* possible performance oscillations and offset possible performance
* loss related to moving the workload from one CPU to another within
* a package/module.
*/
avg_pstate = get_avg_pstate(cpu);
if (avg_pstate > target)
target += (avg_pstate - target) >> 1;
return target;
}
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
@ -1251,10 +1271,11 @@ static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
u64 duration_ns;
/*
* perf_scaled is the average performance during the last sampling
* period scaled by the ratio of the maximum P-state to the P-state
* requested last time (in percent). That measures the system's
* response to the previous P-state selection.
* perf_scaled is the ratio of the average P-state during the last
* sampling period to the P-state requested last time (in percent).
*
* That measures the system's response to the previous P-state
* selection.
*/
max_pstate = cpu->pstate.max_pstate_physical;
current_pstate = cpu->pstate.current_pstate;

View File

@ -137,6 +137,10 @@ static int devfreq_update_status(struct devfreq *devfreq, unsigned long freq)
cur_time = jiffies;
/* Immediately exit if previous_freq is not initialized yet. */
if (!devfreq->previous_freq)
goto out;
prev_lev = devfreq_get_freq_level(devfreq, devfreq->previous_freq);
if (prev_lev < 0) {
ret = prev_lev;
@ -594,17 +598,19 @@ struct devfreq *devfreq_add_device(struct device *dev,
if (devfreq->governor)
err = devfreq->governor->event_handler(devfreq,
DEVFREQ_GOV_START, NULL);
mutex_unlock(&devfreq_list_lock);
if (err) {
dev_err(dev, "%s: Unable to start governor for the device\n",
__func__);
goto err_init;
}
mutex_unlock(&devfreq_list_lock);
return devfreq;
err_init:
list_del(&devfreq->node);
mutex_unlock(&devfreq_list_lock);
device_unregister(&devfreq->dev);
err_out:
return ERR_PTR(err);

View File

@ -17,6 +17,7 @@ config DEVFREQ_EVENT_EXYNOS_NOCP
tristate "EXYNOS NoC (Network On Chip) Probe DEVFREQ event Driver"
depends on ARCH_EXYNOS || COMPILE_TEST
select PM_OPP
select REGMAP_MMIO
help
This add the devfreq-event driver for Exynos SoC. It provides NoC
(Network on Chip) Probe counters to measure the bandwidth of AXI bus.

View File

@ -176,9 +176,6 @@ static int exynos_nocp_get_event(struct devfreq_event_dev *edev,
return 0;
out:
edata->load_count = 0;
edata->total_count = 0;
dev_err(nocp->dev, "Failed to read the counter of NoC probe device\n");
return ret;

View File

@ -639,19 +639,19 @@ static inline int cpufreq_table_find_index_al(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq >= target_freq)
return i;
return pos - table;
best = i;
best = pos;
}
return best;
return best - table;
}
/* Find lowest freq at or above target in a table in descending order */
@ -659,28 +659,28 @@ static inline int cpufreq_table_find_index_dl(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq == target_freq)
return i;
return pos - table;
if (freq > target_freq) {
best = i;
best = pos;
continue;
}
/* No freq found above target_freq */
if (best == -1)
return i;
if (best == table - 1)
return pos - table;
return best;
return best - pos;
}
return best;
return best - pos;
}
/* Works only on sorted freq-tables */
@ -700,28 +700,28 @@ static inline int cpufreq_table_find_index_ah(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq == target_freq)
return i;
return pos - table;
if (freq < target_freq) {
best = i;
best = pos;
continue;
}
/* No freq found below target_freq */
if (best == -1)
return i;
if (best == table - 1)
return pos - table;
return best;
return best - table;
}
return best;
return best - table;
}
/* Find highest freq at or below target in a table in descending order */
@ -729,19 +729,19 @@ static inline int cpufreq_table_find_index_dh(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq <= target_freq)
return i;
return pos - table;
best = i;
best = pos;
}
return best;
return best - table;
}
/* Works only on sorted freq-tables */
@ -761,32 +761,32 @@ static inline int cpufreq_table_find_index_ac(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq == target_freq)
return i;
return pos - table;
if (freq < target_freq) {
best = i;
best = pos;
continue;
}
/* No freq found below target_freq */
if (best == -1)
return i;
if (best == table - 1)
return pos - table;
/* Choose the closest freq */
if (target_freq - table[best].frequency > freq - target_freq)
return i;
if (target_freq - best->frequency > freq - target_freq)
return pos - table;
return best;
return best - table;
}
return best;
return best - table;
}
/* Find closest freq to target in a table in descending order */
@ -794,32 +794,32 @@ static inline int cpufreq_table_find_index_dc(struct cpufreq_policy *policy,
unsigned int target_freq)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos, *best = table - 1;
unsigned int freq;
int i, best = -1;
for (i = 0; table[i].frequency != CPUFREQ_TABLE_END; i++) {
freq = table[i].frequency;
cpufreq_for_each_valid_entry(pos, table) {
freq = pos->frequency;
if (freq == target_freq)
return i;
return pos - table;
if (freq > target_freq) {
best = i;
best = pos;
continue;
}
/* No freq found above target_freq */
if (best == -1)
return i;
if (best == table - 1)
return pos - table;
/* Choose the closest freq */
if (table[best].frequency - target_freq > target_freq - freq)
return i;
if (best->frequency - target_freq > target_freq - freq)
return pos - table;
return best;
return best - table;
}
return best;
return best - table;
}
/* Works only on sorted freq-tables */