mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-28 22:54:05 +08:00
sched: adaptive scheduler granularity
Instead of specifying the preemption granularity, specify the wanted latency. By fixing the granlarity to a constany the wakeup latency it a function of the number of running tasks on the rq. Invert this relation. sysctl_sched_granularity becomes a minimum for the dynamic granularity computed from the new sysctl_sched_latency. Then use this latency to do more intelligent granularity decisions: if there are fewer tasks running then we can schedule coarser. This helps performance while still always keeping the latency target. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
parent
1fc84aaae3
commit
218050855e
@ -1399,6 +1399,7 @@ static inline void idle_task_exit(void) {}
|
||||
|
||||
extern void sched_idle_next(void);
|
||||
|
||||
extern unsigned int sysctl_sched_latency;
|
||||
extern unsigned int sysctl_sched_granularity;
|
||||
extern unsigned int sysctl_sched_wakeup_granularity;
|
||||
extern unsigned int sysctl_sched_batch_wakeup_granularity;
|
||||
|
@ -4911,14 +4911,18 @@ cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
|
||||
static inline void sched_init_granularity(void)
|
||||
{
|
||||
unsigned int factor = 1 + ilog2(num_online_cpus());
|
||||
const unsigned long gran_limit = 100000000;
|
||||
const unsigned long limit = 100000000;
|
||||
|
||||
sysctl_sched_granularity *= factor;
|
||||
if (sysctl_sched_granularity > gran_limit)
|
||||
sysctl_sched_granularity = gran_limit;
|
||||
if (sysctl_sched_granularity > limit)
|
||||
sysctl_sched_granularity = limit;
|
||||
|
||||
sysctl_sched_runtime_limit = sysctl_sched_granularity * 5;
|
||||
sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
|
||||
sysctl_sched_latency *= factor;
|
||||
if (sysctl_sched_latency > limit)
|
||||
sysctl_sched_latency = limit;
|
||||
|
||||
sysctl_sched_runtime_limit = sysctl_sched_latency * 5;
|
||||
sysctl_sched_wakeup_granularity = sysctl_sched_latency / 2;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
|
@ -15,23 +15,32 @@
|
||||
*
|
||||
* Scaled math optimizations by Thomas Gleixner
|
||||
* Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
|
||||
*
|
||||
* Adaptive scheduling granularity, math enhancements by Peter Zijlstra
|
||||
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
||||
*/
|
||||
|
||||
/*
|
||||
* Preemption granularity:
|
||||
* (default: 10 msec, units: nanoseconds)
|
||||
* Targeted preemption latency for CPU-bound tasks:
|
||||
* (default: 20ms, units: nanoseconds)
|
||||
*
|
||||
* NOTE: this granularity value is not the same as the concept of
|
||||
* 'timeslice length' - timeslices in CFS will typically be somewhat
|
||||
* larger than this value. (to see the precise effective timeslice
|
||||
* length of your workload, run vmstat and monitor the context-switches
|
||||
* field)
|
||||
* NOTE: this latency value is not the same as the concept of
|
||||
* 'timeslice length' - timeslices in CFS are of variable length.
|
||||
* (to see the precise effective timeslice length of your workload,
|
||||
* run vmstat and monitor the context-switches field)
|
||||
*
|
||||
* On SMP systems the value of this is multiplied by the log2 of the
|
||||
* number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
|
||||
* systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
|
||||
* Targeted preemption latency for CPU-bound tasks:
|
||||
*/
|
||||
unsigned int sysctl_sched_granularity __read_mostly = 10000000UL;
|
||||
unsigned int sysctl_sched_latency __read_mostly = 20000000ULL;
|
||||
|
||||
/*
|
||||
* Minimal preemption granularity for CPU-bound tasks:
|
||||
* (default: 2 msec, units: nanoseconds)
|
||||
*/
|
||||
unsigned int sysctl_sched_granularity __read_mostly = 2000000ULL;
|
||||
|
||||
/*
|
||||
* SCHED_BATCH wake-up granularity.
|
||||
@ -212,6 +221,49 @@ static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
|
||||
* Scheduling class statistics methods:
|
||||
*/
|
||||
|
||||
/*
|
||||
* Calculate the preemption granularity needed to schedule every
|
||||
* runnable task once per sysctl_sched_latency amount of time.
|
||||
* (down to a sensible low limit on granularity)
|
||||
*
|
||||
* For example, if there are 2 tasks running and latency is 10 msecs,
|
||||
* we switch tasks every 5 msecs. If we have 3 tasks running, we have
|
||||
* to switch tasks every 3.33 msecs to get a 10 msecs observed latency
|
||||
* for each task. We do finer and finer scheduling up to until we
|
||||
* reach the minimum granularity value.
|
||||
*
|
||||
* To achieve this we use the following dynamic-granularity rule:
|
||||
*
|
||||
* gran = lat/nr - lat/nr/nr
|
||||
*
|
||||
* This comes out of the following equations:
|
||||
*
|
||||
* kA1 + gran = kB1
|
||||
* kB2 + gran = kA2
|
||||
* kA2 = kA1
|
||||
* kB2 = kB1 - d + d/nr
|
||||
* lat = d * nr
|
||||
*
|
||||
* Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
|
||||
* '1' is start of time, '2' is end of time, 'd' is delay between
|
||||
* 1 and 2 (during which task B was running), 'nr' is number of tasks
|
||||
* running, 'lat' is the the period of each task. ('lat' is the
|
||||
* sched_latency that we aim for.)
|
||||
*/
|
||||
static long
|
||||
sched_granularity(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
unsigned int gran = sysctl_sched_latency;
|
||||
unsigned int nr = cfs_rq->nr_running;
|
||||
|
||||
if (nr > 1) {
|
||||
gran = gran/nr - gran/nr/nr;
|
||||
gran = max(gran, sysctl_sched_granularity);
|
||||
}
|
||||
|
||||
return gran;
|
||||
}
|
||||
|
||||
/*
|
||||
* We rescale the rescheduling granularity of tasks according to their
|
||||
* nice level, but only linearly, not exponentially:
|
||||
@ -302,7 +354,7 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
delta_fair = calc_delta_fair(delta_exec, lw);
|
||||
delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
|
||||
|
||||
if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
|
||||
if (cfs_rq->sleeper_bonus > sysctl_sched_latency) {
|
||||
delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
|
||||
delta = min(delta, (unsigned long)(
|
||||
(long)sysctl_sched_runtime_limit - curr->wait_runtime));
|
||||
@ -689,7 +741,8 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
if (next == curr)
|
||||
return;
|
||||
|
||||
__check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
|
||||
__check_preempt_curr_fair(cfs_rq, next, curr,
|
||||
sched_granularity(cfs_rq));
|
||||
}
|
||||
|
||||
/**************************************************
|
||||
@ -1034,7 +1087,7 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
|
||||
* it will preempt the parent:
|
||||
*/
|
||||
p->se.fair_key = current->se.fair_key -
|
||||
niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
|
||||
niced_granularity(&rq->curr->se, sched_granularity(cfs_rq)) - 1;
|
||||
/*
|
||||
* The first wait is dominated by the child-runs-first logic,
|
||||
* so do not credit it with that waiting time yet:
|
||||
@ -1047,7 +1100,7 @@ static void task_new_fair(struct rq *rq, struct task_struct *p)
|
||||
* -granularity/2, so initialize the task with that:
|
||||
*/
|
||||
if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
|
||||
p->se.wait_runtime = -((long)sysctl_sched_granularity / 2);
|
||||
p->se.wait_runtime = -(sched_granularity(cfs_rq) / 2);
|
||||
|
||||
__enqueue_entity(cfs_rq, se);
|
||||
}
|
||||
|
@ -231,6 +231,17 @@ static ctl_table kern_table[] = {
|
||||
.extra1 = &min_sched_granularity_ns,
|
||||
.extra2 = &max_sched_granularity_ns,
|
||||
},
|
||||
{
|
||||
.ctl_name = CTL_UNNUMBERED,
|
||||
.procname = "sched_latency_ns",
|
||||
.data = &sysctl_sched_latency,
|
||||
.maxlen = sizeof(unsigned int),
|
||||
.mode = 0644,
|
||||
.proc_handler = &proc_dointvec_minmax,
|
||||
.strategy = &sysctl_intvec,
|
||||
.extra1 = &min_sched_granularity_ns,
|
||||
.extra2 = &max_sched_granularity_ns,
|
||||
},
|
||||
{
|
||||
.ctl_name = CTL_UNNUMBERED,
|
||||
.procname = "sched_wakeup_granularity_ns",
|
||||
|
Loading…
Reference in New Issue
Block a user