crypto: rsassa-pkcs1 - Migrate to sig_alg backend

A sig_alg backend has just been introduced with the intent of moving all
asymmetric sign/verify algorithms to it one by one.

Migrate the sign/verify operations from rsa-pkcs1pad.c to a separate
rsassa-pkcs1.c which uses the new backend.

Consequently there are now two templates which build on the "rsa"
akcipher_alg:

* The existing "pkcs1pad" template, which is instantiated as an
  akcipher_instance and retains the encrypt/decrypt operations of
  RSAES-PKCS1-v1_5 (RFC 8017 sec 7.2).

* The new "pkcs1" template, which is instantiated as a sig_instance
  and contains the sign/verify operations of RSASSA-PKCS1-v1_5
  (RFC 8017 sec 8.2).

In a separate step, rsa-pkcs1pad.c could optionally be renamed to
rsaes-pkcs1.c for clarity.  Additional "oaep" and "pss" templates
could be added for RSAES-OAEP and RSASSA-PSS.

Note that it's currently allowed to allocate a "pkcs1pad(rsa)" transform
without specifying a hash algorithm.  That makes sense if the transform
is only used for encrypt/decrypt and continues to be supported.  But for
sign/verify, such transforms previously did not insert the Full Hash
Prefix into the padding.  The resulting message encoding was incompliant
with EMSA-PKCS1-v1_5 (RFC 8017 sec 9.2) and therefore nonsensical.

From here on in, it is no longer allowed to allocate a transform without
specifying a hash algorithm if the transform is used for sign/verify
operations.  This simplifies the code because the insertion of the Full
Hash Prefix is no longer optional, so various "if (digest_info)" clauses
can be removed.

There has been a previous attempt to forbid transform allocation without
specifying a hash algorithm, namely by commit c0d20d22e0 ("crypto:
rsa-pkcs1pad - Require hash to be present").  It had to be rolled back
with commit b3a8c8a5eb ("crypto: rsa-pkcs1pad: Allow hash to be
optional [ver #2]"), presumably because it broke allocation of a
transform which was solely used for encrypt/decrypt, not sign/verify.
Avoid such breakage by allowing transform allocation for encrypt/decrypt
with and without specifying a hash algorithm (and simply ignoring the
hash algorithm in the former case).

So again, specifying a hash algorithm is now mandatory for sign/verify,
but optional and ignored for encrypt/decrypt.

The new sig_alg API uses kernel buffers instead of sglists, which
avoids the overhead of copying signature and digest from sglists back
into kernel buffers.  rsassa-pkcs1.c is thus simplified quite a bit.

sig_alg is always synchronous, whereas the underlying "rsa" akcipher_alg
may be asynchronous.  So await the result of the akcipher_alg, similar
to crypto_akcipher_sync_{en,de}crypt().

As part of the migration, rename "rsa_digest_info" to "hash_prefix" to
adhere to the spec language in RFC 9580.  Otherwise keep the code
unmodified wherever possible to ease reviewing and bisecting.  Leave
several simplification and hardening opportunities to separate commits.

rsassa-pkcs1.c uses modern __free() syntax for allocation of buffers
which need to be freed by kfree_sensitive(), hence a DEFINE_FREE()
clause for kfree_sensitive() is introduced herein as a byproduct.

Signed-off-by: Lukas Wunner <lukas@wunner.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Lukas Wunner 2024-09-10 16:30:16 +02:00 committed by Herbert Xu
parent 7964b0d4bd
commit 1e562deace
11 changed files with 479 additions and 344 deletions

View File

@ -250,6 +250,7 @@ config CRYPTO_RSA
tristate "RSA (Rivest-Shamir-Adleman)" tristate "RSA (Rivest-Shamir-Adleman)"
select CRYPTO_AKCIPHER select CRYPTO_AKCIPHER
select CRYPTO_MANAGER select CRYPTO_MANAGER
select CRYPTO_SIG
select MPILIB select MPILIB
select ASN1 select ASN1
help help

View File

@ -48,6 +48,7 @@ rsa_generic-y += rsaprivkey.asn1.o
rsa_generic-y += rsa.o rsa_generic-y += rsa.o
rsa_generic-y += rsa_helper.o rsa_generic-y += rsa_helper.o
rsa_generic-y += rsa-pkcs1pad.o rsa_generic-y += rsa-pkcs1pad.o
rsa_generic-y += rsassa-pkcs1.o
obj-$(CONFIG_CRYPTO_RSA) += rsa_generic.o obj-$(CONFIG_CRYPTO_RSA) += rsa_generic.o
$(obj)/ecdsasignature.asn1.o: $(obj)/ecdsasignature.asn1.c $(obj)/ecdsasignature.asn1.h $(obj)/ecdsasignature.asn1.o: $(obj)/ecdsasignature.asn1.c $(obj)/ecdsasignature.asn1.h

View File

@ -83,13 +83,19 @@ software_key_determine_akcipher(const struct public_key *pkey,
if (strcmp(encoding, "pkcs1") == 0) { if (strcmp(encoding, "pkcs1") == 0) {
*sig = op == kernel_pkey_sign || *sig = op == kernel_pkey_sign ||
op == kernel_pkey_verify; op == kernel_pkey_verify;
if (!hash_algo) { if (!*sig) {
/*
* For encrypt/decrypt, hash_algo is not used
* but allowed to be set for historic reasons.
*/
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
"pkcs1pad(%s)", "pkcs1pad(%s)",
pkey->pkey_algo); pkey->pkey_algo);
} else { } else {
if (!hash_algo)
return -EINVAL;
n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME, n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
"pkcs1pad(%s,%s)", "pkcs1(%s,%s)",
pkey->pkey_algo, hash_algo); pkey->pkey_algo, hash_algo);
} }
return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0; return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;

View File

@ -16,101 +16,6 @@
#include <linux/random.h> #include <linux/random.h>
#include <linux/scatterlist.h> #include <linux/scatterlist.h>
/*
* Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
*/
static const u8 rsa_digest_info_md5[] = {
0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
0x05, 0x00, 0x04, 0x10
};
static const u8 rsa_digest_info_sha1[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00, 0x04, 0x14
};
static const u8 rsa_digest_info_rmd160[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
0x2b, 0x24, 0x03, 0x02, 0x01,
0x05, 0x00, 0x04, 0x14
};
static const u8 rsa_digest_info_sha224[] = {
0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
0x05, 0x00, 0x04, 0x1c
};
static const u8 rsa_digest_info_sha256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20
};
static const u8 rsa_digest_info_sha384[] = {
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
0x05, 0x00, 0x04, 0x30
};
static const u8 rsa_digest_info_sha512[] = {
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
0x05, 0x00, 0x04, 0x40
};
static const u8 rsa_digest_info_sha3_256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08,
0x05, 0x00, 0x04, 0x20
};
static const u8 rsa_digest_info_sha3_384[] = {
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09,
0x05, 0x00, 0x04, 0x30
};
static const u8 rsa_digest_info_sha3_512[] = {
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0A,
0x05, 0x00, 0x04, 0x40
};
static const struct rsa_asn1_template {
const char *name;
const u8 *data;
size_t size;
} rsa_asn1_templates[] = {
#define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
_(md5),
_(sha1),
_(rmd160),
_(sha256),
_(sha384),
_(sha512),
_(sha224),
#undef _
#define _(X) { "sha3-" #X, rsa_digest_info_sha3_##X, sizeof(rsa_digest_info_sha3_##X) }
_(256),
_(384),
_(512),
#undef _
{ NULL }
};
static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
{
const struct rsa_asn1_template *p;
for (p = rsa_asn1_templates; p->name; p++)
if (strcmp(name, p->name) == 0)
return p;
return NULL;
}
struct pkcs1pad_ctx { struct pkcs1pad_ctx {
struct crypto_akcipher *child; struct crypto_akcipher *child;
unsigned int key_size; unsigned int key_size;
@ -118,7 +23,6 @@ struct pkcs1pad_ctx {
struct pkcs1pad_inst_ctx { struct pkcs1pad_inst_ctx {
struct crypto_akcipher_spawn spawn; struct crypto_akcipher_spawn spawn;
const struct rsa_asn1_template *digest_info;
}; };
struct pkcs1pad_request { struct pkcs1pad_request {
@ -148,9 +52,9 @@ static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
/* /*
* The maximum destination buffer size for the encrypt/sign operations * The maximum destination buffer size for the encrypt operation
* will be the same as for RSA, even though it's smaller for * will be the same as for RSA, even though it's smaller for
* decrypt/verify. * decrypt.
*/ */
return ctx->key_size; return ctx->key_size;
@ -168,7 +72,7 @@ static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
sg_chain(sg, nsegs, next); sg_chain(sg, nsegs, next);
} }
static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err) static int pkcs1pad_encrypt_complete(struct akcipher_request *req, int err)
{ {
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm); struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
@ -207,14 +111,14 @@ out:
return err; return err;
} }
static void pkcs1pad_encrypt_sign_complete_cb(void *data, int err) static void pkcs1pad_encrypt_complete_cb(void *data, int err)
{ {
struct akcipher_request *req = data; struct akcipher_request *req = data;
if (err == -EINPROGRESS) if (err == -EINPROGRESS)
goto out; goto out;
err = pkcs1pad_encrypt_sign_complete(req, err); err = pkcs1pad_encrypt_complete(req, err);
out: out:
akcipher_request_complete(req, err); akcipher_request_complete(req, err);
@ -255,7 +159,7 @@ static int pkcs1pad_encrypt(struct akcipher_request *req)
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child); akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags, akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
pkcs1pad_encrypt_sign_complete_cb, req); pkcs1pad_encrypt_complete_cb, req);
/* Reuse output buffer */ /* Reuse output buffer */
akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg, akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
@ -263,7 +167,7 @@ static int pkcs1pad_encrypt(struct akcipher_request *req)
err = crypto_akcipher_encrypt(&req_ctx->child_req); err = crypto_akcipher_encrypt(&req_ctx->child_req);
if (err != -EINPROGRESS && err != -EBUSY) if (err != -EINPROGRESS && err != -EBUSY)
return pkcs1pad_encrypt_sign_complete(req, err); return pkcs1pad_encrypt_complete(req, err);
return err; return err;
} }
@ -368,195 +272,6 @@ static int pkcs1pad_decrypt(struct akcipher_request *req)
return err; return err;
} }
static int pkcs1pad_sign(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
const struct rsa_asn1_template *digest_info = ictx->digest_info;
int err;
unsigned int ps_end, digest_info_size = 0;
if (!ctx->key_size)
return -EINVAL;
if (digest_info)
digest_info_size = digest_info->size;
if (req->src_len + digest_info_size > ctx->key_size - 11)
return -EOVERFLOW;
if (req->dst_len < ctx->key_size) {
req->dst_len = ctx->key_size;
return -EOVERFLOW;
}
req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
GFP_KERNEL);
if (!req_ctx->in_buf)
return -ENOMEM;
ps_end = ctx->key_size - digest_info_size - req->src_len - 2;
req_ctx->in_buf[0] = 0x01;
memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
req_ctx->in_buf[ps_end] = 0x00;
if (digest_info)
memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
digest_info->size);
pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
ctx->key_size - 1 - req->src_len, req->src);
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
pkcs1pad_encrypt_sign_complete_cb, req);
/* Reuse output buffer */
akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
req->dst, ctx->key_size - 1, req->dst_len);
err = crypto_akcipher_decrypt(&req_ctx->child_req);
if (err != -EINPROGRESS && err != -EBUSY)
return pkcs1pad_encrypt_sign_complete(req, err);
return err;
}
static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
struct akcipher_instance *inst = akcipher_alg_instance(tfm);
struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
const struct rsa_asn1_template *digest_info = ictx->digest_info;
const unsigned int sig_size = req->src_len;
const unsigned int digest_size = req->dst_len;
unsigned int dst_len;
unsigned int pos;
u8 *out_buf;
if (err)
goto done;
err = -EINVAL;
dst_len = req_ctx->child_req.dst_len;
if (dst_len < ctx->key_size - 1)
goto done;
out_buf = req_ctx->out_buf;
if (dst_len == ctx->key_size) {
if (out_buf[0] != 0x00)
/* Decrypted value had no leading 0 byte */
goto done;
dst_len--;
out_buf++;
}
err = -EBADMSG;
if (out_buf[0] != 0x01)
goto done;
for (pos = 1; pos < dst_len; pos++)
if (out_buf[pos] != 0xff)
break;
if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
goto done;
pos++;
if (digest_info) {
if (digest_info->size > dst_len - pos)
goto done;
if (crypto_memneq(out_buf + pos, digest_info->data,
digest_info->size))
goto done;
pos += digest_info->size;
}
err = 0;
if (digest_size != dst_len - pos) {
err = -EKEYREJECTED;
req->dst_len = dst_len - pos;
goto done;
}
/* Extract appended digest. */
sg_pcopy_to_buffer(req->src,
sg_nents_for_len(req->src, sig_size + digest_size),
req_ctx->out_buf + ctx->key_size,
digest_size, sig_size);
/* Do the actual verification step. */
if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos,
digest_size) != 0)
err = -EKEYREJECTED;
done:
kfree_sensitive(req_ctx->out_buf);
return err;
}
static void pkcs1pad_verify_complete_cb(void *data, int err)
{
struct akcipher_request *req = data;
if (err == -EINPROGRESS)
goto out;
err = pkcs1pad_verify_complete(req, err);
out:
akcipher_request_complete(req, err);
}
/*
* The verify operation is here for completeness similar to the verification
* defined in RFC2313 section 10.2 except that block type 0 is not accepted,
* as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
* retrieve the DigestInfo from a signature, instead the user is expected
* to call the sign operation to generate the expected signature and compare
* signatures instead of the message-digests.
*/
static int pkcs1pad_verify(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
const unsigned int sig_size = req->src_len;
const unsigned int digest_size = req->dst_len;
int err;
if (WARN_ON(req->dst) || WARN_ON(!digest_size) ||
!ctx->key_size || sig_size != ctx->key_size)
return -EINVAL;
req_ctx->out_buf = kmalloc(ctx->key_size + digest_size, GFP_KERNEL);
if (!req_ctx->out_buf)
return -ENOMEM;
pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
ctx->key_size, NULL);
akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
pkcs1pad_verify_complete_cb, req);
/* Reuse input buffer, output to a new buffer */
akcipher_request_set_crypt(&req_ctx->child_req, req->src,
req_ctx->out_sg, sig_size, ctx->key_size);
err = crypto_akcipher_encrypt(&req_ctx->child_req);
if (err != -EINPROGRESS && err != -EBUSY)
return pkcs1pad_verify_complete(req, err);
return err;
}
static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm) static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
{ {
struct akcipher_instance *inst = akcipher_alg_instance(tfm); struct akcipher_instance *inst = akcipher_alg_instance(tfm);
@ -598,7 +313,6 @@ static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
struct akcipher_instance *inst; struct akcipher_instance *inst;
struct pkcs1pad_inst_ctx *ctx; struct pkcs1pad_inst_ctx *ctx;
struct akcipher_alg *rsa_alg; struct akcipher_alg *rsa_alg;
const char *hash_name;
int err; int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask); err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
@ -624,36 +338,15 @@ static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
} }
err = -ENAMETOOLONG; err = -ENAMETOOLONG;
hash_name = crypto_attr_alg_name(tb[2]); if (snprintf(inst->alg.base.cra_name,
if (IS_ERR(hash_name)) { CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
if (snprintf(inst->alg.base.cra_name, rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", goto err_free_inst;
rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name, if (snprintf(inst->alg.base.cra_driver_name,
CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)", CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
rsa_alg->base.cra_driver_name) >= rsa_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
CRYPTO_MAX_ALG_NAME) goto err_free_inst;
goto err_free_inst;
} else {
ctx->digest_info = rsa_lookup_asn1(hash_name);
if (!ctx->digest_info) {
err = -EINVAL;
goto err_free_inst;
}
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"pkcs1pad(%s,%s)", rsa_alg->base.cra_name,
hash_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name,
CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)",
rsa_alg->base.cra_driver_name,
hash_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
}
inst->alg.base.cra_priority = rsa_alg->base.cra_priority; inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx); inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
@ -663,8 +356,6 @@ static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
inst->alg.encrypt = pkcs1pad_encrypt; inst->alg.encrypt = pkcs1pad_encrypt;
inst->alg.decrypt = pkcs1pad_decrypt; inst->alg.decrypt = pkcs1pad_decrypt;
inst->alg.sign = pkcs1pad_sign;
inst->alg.verify = pkcs1pad_verify;
inst->alg.set_pub_key = pkcs1pad_set_pub_key; inst->alg.set_pub_key = pkcs1pad_set_pub_key;
inst->alg.set_priv_key = pkcs1pad_set_priv_key; inst->alg.set_priv_key = pkcs1pad_set_priv_key;
inst->alg.max_size = pkcs1pad_get_max_size; inst->alg.max_size = pkcs1pad_get_max_size;

View File

@ -407,16 +407,25 @@ static int __init rsa_init(void)
return err; return err;
err = crypto_register_template(&rsa_pkcs1pad_tmpl); err = crypto_register_template(&rsa_pkcs1pad_tmpl);
if (err) { if (err)
crypto_unregister_akcipher(&rsa); goto err_unregister_rsa;
return err;
} err = crypto_register_template(&rsassa_pkcs1_tmpl);
if (err)
goto err_unregister_rsa_pkcs1pad;
return 0; return 0;
err_unregister_rsa_pkcs1pad:
crypto_unregister_template(&rsa_pkcs1pad_tmpl);
err_unregister_rsa:
crypto_unregister_akcipher(&rsa);
return err;
} }
static void __exit rsa_exit(void) static void __exit rsa_exit(void)
{ {
crypto_unregister_template(&rsassa_pkcs1_tmpl);
crypto_unregister_template(&rsa_pkcs1pad_tmpl); crypto_unregister_template(&rsa_pkcs1pad_tmpl);
crypto_unregister_akcipher(&rsa); crypto_unregister_akcipher(&rsa);
} }

422
crypto/rsassa-pkcs1.c Normal file
View File

@ -0,0 +1,422 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* RSA Signature Scheme with Appendix - PKCS #1 v1.5 (RFC 8017 sec 8.2)
*
* https://www.rfc-editor.org/rfc/rfc8017#section-8.2
*
* Copyright (c) 2015 - 2024 Intel Corporation
*/
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <crypto/akcipher.h>
#include <crypto/algapi.h>
#include <crypto/sig.h>
#include <crypto/internal/akcipher.h>
#include <crypto/internal/rsa.h>
#include <crypto/internal/sig.h>
/*
* Full Hash Prefix for EMSA-PKCS1-v1_5 encoding method (RFC 9580 table 24)
*
* RSA keys are usually much larger than the hash of the message to be signed.
* The hash is therefore prepended by the Full Hash Prefix and a 0xff padding.
* The Full Hash Prefix is an ASN.1 SEQUENCE containing the hash algorithm OID.
*
* https://www.rfc-editor.org/rfc/rfc9580#table-24
*/
static const u8 hash_prefix_md5[] = {
0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, /* SEQUENCE (SEQUENCE (OID */
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* <algorithm>, */
0x05, 0x00, 0x04, 0x10 /* NULL), OCTET STRING <hash>) */
};
static const u8 hash_prefix_sha1[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00, 0x04, 0x14
};
static const u8 hash_prefix_rmd160[] = {
0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
0x2b, 0x24, 0x03, 0x02, 0x01,
0x05, 0x00, 0x04, 0x14
};
static const u8 hash_prefix_sha224[] = {
0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
0x05, 0x00, 0x04, 0x1c
};
static const u8 hash_prefix_sha256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
0x05, 0x00, 0x04, 0x20
};
static const u8 hash_prefix_sha384[] = {
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
0x05, 0x00, 0x04, 0x30
};
static const u8 hash_prefix_sha512[] = {
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
0x05, 0x00, 0x04, 0x40
};
static const u8 hash_prefix_sha3_256[] = {
0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x08,
0x05, 0x00, 0x04, 0x20
};
static const u8 hash_prefix_sha3_384[] = {
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x09,
0x05, 0x00, 0x04, 0x30
};
static const u8 hash_prefix_sha3_512[] = {
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x0a,
0x05, 0x00, 0x04, 0x40
};
static const struct hash_prefix {
const char *name;
const u8 *data;
size_t size;
} hash_prefixes[] = {
#define _(X) { #X, hash_prefix_##X, sizeof(hash_prefix_##X) }
_(md5),
_(sha1),
_(rmd160),
_(sha256),
_(sha384),
_(sha512),
_(sha224),
#undef _
#define _(X) { "sha3-" #X, hash_prefix_sha3_##X, sizeof(hash_prefix_sha3_##X) }
_(256),
_(384),
_(512),
#undef _
{ NULL }
};
static const struct hash_prefix *rsassa_pkcs1_find_hash_prefix(const char *name)
{
const struct hash_prefix *p;
for (p = hash_prefixes; p->name; p++)
if (strcmp(name, p->name) == 0)
return p;
return NULL;
}
struct rsassa_pkcs1_ctx {
struct crypto_akcipher *child;
unsigned int key_size;
};
struct rsassa_pkcs1_inst_ctx {
struct crypto_akcipher_spawn spawn;
const struct hash_prefix *hash_prefix;
};
static int rsassa_pkcs1_sign(struct crypto_sig *tfm,
const void *src, unsigned int slen,
void *dst, unsigned int dlen)
{
struct sig_instance *inst = sig_alg_instance(tfm);
struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst);
const struct hash_prefix *hash_prefix = ictx->hash_prefix;
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
unsigned int child_reqsize = crypto_akcipher_reqsize(ctx->child);
struct akcipher_request *child_req __free(kfree_sensitive) = NULL;
struct scatterlist in_sg[2], out_sg;
struct crypto_wait cwait;
unsigned int pad_len;
unsigned int ps_end;
unsigned int len;
u8 *in_buf;
int err;
if (!ctx->key_size)
return -EINVAL;
if (dlen < ctx->key_size)
return -EOVERFLOW;
if (slen + hash_prefix->size > ctx->key_size - 11)
return -EOVERFLOW;
child_req = kmalloc(sizeof(*child_req) + child_reqsize +
ctx->key_size - 1 - slen, GFP_KERNEL);
if (!child_req)
return -ENOMEM;
/* RFC 8017 sec 8.2.1 step 1 - EMSA-PKCS1-v1_5 encoding generation */
in_buf = (u8 *)(child_req + 1) + child_reqsize;
ps_end = ctx->key_size - hash_prefix->size - slen - 2;
in_buf[0] = 0x01;
memset(in_buf + 1, 0xff, ps_end - 1);
in_buf[ps_end] = 0x00;
memcpy(in_buf + ps_end + 1, hash_prefix->data, hash_prefix->size);
/* RFC 8017 sec 8.2.1 step 2 - RSA signature */
crypto_init_wait(&cwait);
sg_init_table(in_sg, 2);
sg_set_buf(&in_sg[0], in_buf, ctx->key_size - 1 - slen);
sg_set_buf(&in_sg[1], src, slen);
sg_init_one(&out_sg, dst, dlen);
akcipher_request_set_tfm(child_req, ctx->child);
akcipher_request_set_crypt(child_req, in_sg, &out_sg,
ctx->key_size - 1, dlen);
akcipher_request_set_callback(child_req, CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &cwait);
err = crypto_akcipher_decrypt(child_req);
err = crypto_wait_req(err, &cwait);
if (err)
return err;
len = child_req->dst_len;
pad_len = ctx->key_size - len;
/* Four billion to one */
if (unlikely(pad_len)) {
memmove(dst + pad_len, dst, len);
memset(dst, 0, pad_len);
}
return 0;
}
static int rsassa_pkcs1_verify(struct crypto_sig *tfm,
const void *src, unsigned int slen,
const void *digest, unsigned int dlen)
{
struct sig_instance *inst = sig_alg_instance(tfm);
struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst);
const struct hash_prefix *hash_prefix = ictx->hash_prefix;
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
unsigned int child_reqsize = crypto_akcipher_reqsize(ctx->child);
struct akcipher_request *child_req __free(kfree_sensitive) = NULL;
struct scatterlist in_sg, out_sg;
struct crypto_wait cwait;
unsigned int dst_len;
unsigned int pos;
u8 *out_buf;
int err;
/* RFC 8017 sec 8.2.2 step 1 - length checking */
if (!ctx->key_size ||
slen != ctx->key_size ||
!dlen)
return -EINVAL;
/* RFC 8017 sec 8.2.2 step 2 - RSA verification */
child_req = kmalloc(sizeof(*child_req) + child_reqsize + ctx->key_size,
GFP_KERNEL);
if (!child_req)
return -ENOMEM;
out_buf = (u8 *)(child_req + 1) + child_reqsize;
crypto_init_wait(&cwait);
sg_init_one(&in_sg, src, slen);
sg_init_one(&out_sg, out_buf, ctx->key_size);
akcipher_request_set_tfm(child_req, ctx->child);
akcipher_request_set_crypt(child_req, &in_sg, &out_sg,
slen, ctx->key_size);
akcipher_request_set_callback(child_req, CRYPTO_TFM_REQ_MAY_SLEEP,
crypto_req_done, &cwait);
err = crypto_akcipher_encrypt(child_req);
err = crypto_wait_req(err, &cwait);
if (err)
return err;
/* RFC 8017 sec 8.2.2 step 3 - EMSA-PKCS1-v1_5 encoding verification */
dst_len = child_req->dst_len;
if (dst_len < ctx->key_size - 1)
return -EINVAL;
if (dst_len == ctx->key_size) {
if (out_buf[0] != 0x00)
/* Encrypted value had no leading 0 byte */
return -EINVAL;
dst_len--;
out_buf++;
}
if (out_buf[0] != 0x01)
return -EBADMSG;
for (pos = 1; pos < dst_len; pos++)
if (out_buf[pos] != 0xff)
break;
if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
return -EBADMSG;
pos++;
if (hash_prefix->size > dst_len - pos)
return -EBADMSG;
if (crypto_memneq(out_buf + pos, hash_prefix->data, hash_prefix->size))
return -EBADMSG;
pos += hash_prefix->size;
/* RFC 8017 sec 8.2.2 step 4 - comparison of digest with out_buf */
if (dlen != dst_len - pos)
return -EKEYREJECTED;
if (memcmp(digest, out_buf + pos, dlen) != 0)
return -EKEYREJECTED;
return 0;
}
static unsigned int rsassa_pkcs1_max_size(struct crypto_sig *tfm)
{
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
return ctx->key_size;
}
static int rsassa_pkcs1_set_pub_key(struct crypto_sig *tfm,
const void *key, unsigned int keylen)
{
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
return rsa_set_key(ctx->child, &ctx->key_size, RSA_PUB, key, keylen);
}
static int rsassa_pkcs1_set_priv_key(struct crypto_sig *tfm,
const void *key, unsigned int keylen)
{
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
return rsa_set_key(ctx->child, &ctx->key_size, RSA_PRIV, key, keylen);
}
static int rsassa_pkcs1_init_tfm(struct crypto_sig *tfm)
{
struct sig_instance *inst = sig_alg_instance(tfm);
struct rsassa_pkcs1_inst_ctx *ictx = sig_instance_ctx(inst);
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
struct crypto_akcipher *child_tfm;
child_tfm = crypto_spawn_akcipher(&ictx->spawn);
if (IS_ERR(child_tfm))
return PTR_ERR(child_tfm);
ctx->child = child_tfm;
return 0;
}
static void rsassa_pkcs1_exit_tfm(struct crypto_sig *tfm)
{
struct rsassa_pkcs1_ctx *ctx = crypto_sig_ctx(tfm);
crypto_free_akcipher(ctx->child);
}
static void rsassa_pkcs1_free(struct sig_instance *inst)
{
struct rsassa_pkcs1_inst_ctx *ctx = sig_instance_ctx(inst);
struct crypto_akcipher_spawn *spawn = &ctx->spawn;
crypto_drop_akcipher(spawn);
kfree(inst);
}
static int rsassa_pkcs1_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct rsassa_pkcs1_inst_ctx *ctx;
struct akcipher_alg *rsa_alg;
struct sig_instance *inst;
const char *hash_name;
u32 mask;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SIG, &mask);
if (err)
return err;
inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
if (!inst)
return -ENOMEM;
ctx = sig_instance_ctx(inst);
err = crypto_grab_akcipher(&ctx->spawn, sig_crypto_instance(inst),
crypto_attr_alg_name(tb[1]), 0, mask);
if (err)
goto err_free_inst;
rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
if (strcmp(rsa_alg->base.cra_name, "rsa") != 0) {
err = -EINVAL;
goto err_free_inst;
}
hash_name = crypto_attr_alg_name(tb[2]);
if (IS_ERR(hash_name)) {
err = PTR_ERR(hash_name);
goto err_free_inst;
}
ctx->hash_prefix = rsassa_pkcs1_find_hash_prefix(hash_name);
if (!ctx->hash_prefix) {
err = -EINVAL;
goto err_free_inst;
}
err = -ENAMETOOLONG;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"pkcs1(%s,%s)", rsa_alg->base.cra_name,
hash_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
"pkcs1(%s,%s)", rsa_alg->base.cra_driver_name,
hash_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
inst->alg.base.cra_ctxsize = sizeof(struct rsassa_pkcs1_ctx);
inst->alg.init = rsassa_pkcs1_init_tfm;
inst->alg.exit = rsassa_pkcs1_exit_tfm;
inst->alg.sign = rsassa_pkcs1_sign;
inst->alg.verify = rsassa_pkcs1_verify;
inst->alg.max_size = rsassa_pkcs1_max_size;
inst->alg.set_pub_key = rsassa_pkcs1_set_pub_key;
inst->alg.set_priv_key = rsassa_pkcs1_set_priv_key;
inst->free = rsassa_pkcs1_free;
err = sig_register_instance(tmpl, inst);
if (err) {
err_free_inst:
rsassa_pkcs1_free(inst);
}
return err;
}
struct crypto_template rsassa_pkcs1_tmpl = {
.name = "pkcs1",
.create = rsassa_pkcs1_create,
.module = THIS_MODULE,
};
MODULE_ALIAS_CRYPTO("pkcs1");

View File

@ -5569,34 +5569,38 @@ static const struct alg_test_desc alg_test_descs[] = {
.cipher = __VECS(fcrypt_pcbc_tv_template) .cipher = __VECS(fcrypt_pcbc_tv_template)
} }
}, { }, {
.alg = "pkcs1pad(rsa,sha224)", .alg = "pkcs1(rsa,sha224)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {
.alg = "pkcs1pad(rsa,sha256)", .alg = "pkcs1(rsa,sha256)",
.test = alg_test_akcipher, .test = alg_test_sig,
.fips_allowed = 1, .fips_allowed = 1,
.suite = { .suite = {
.akcipher = __VECS(pkcs1pad_rsa_tv_template) .sig = __VECS(pkcs1_rsa_tv_template)
} }
}, { }, {
.alg = "pkcs1pad(rsa,sha3-256)", .alg = "pkcs1(rsa,sha3-256)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {
.alg = "pkcs1pad(rsa,sha3-384)", .alg = "pkcs1(rsa,sha3-384)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {
.alg = "pkcs1pad(rsa,sha3-512)", .alg = "pkcs1(rsa,sha3-512)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {
.alg = "pkcs1pad(rsa,sha384)", .alg = "pkcs1(rsa,sha384)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {
.alg = "pkcs1pad(rsa,sha512)", .alg = "pkcs1(rsa,sha512)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa)",
.test = alg_test_null, .test = alg_test_null,
.fips_allowed = 1, .fips_allowed = 1,
}, { }, {

View File

@ -1268,7 +1268,7 @@ static const struct sig_testvec ecrdsa_tv_template[] = {
/* /*
* PKCS#1 RSA test vectors. Obtained from CAVS testing. * PKCS#1 RSA test vectors. Obtained from CAVS testing.
*/ */
static const struct akcipher_testvec pkcs1pad_rsa_tv_template[] = { static const struct sig_testvec pkcs1_rsa_tv_template[] = {
{ {
.key = .key =
"\x30\x82\x04\xa5\x02\x01\x00\x02\x82\x01\x01\x00\xd7\x1e\x77\x82" "\x30\x82\x04\xa5\x02\x01\x00\x02\x82\x01\x01\x00\xd7\x1e\x77\x82"
@ -1380,7 +1380,6 @@ static const struct akcipher_testvec pkcs1pad_rsa_tv_template[] = {
"\xda\x62\x8d\xe1\x2a\x71\x91\x43\x40\x61\x3c\x5a\xbe\x86\xfc\x5b" "\xda\x62\x8d\xe1\x2a\x71\x91\x43\x40\x61\x3c\x5a\xbe\x86\xfc\x5b"
"\xe6\xf9\xa9\x16\x31\x1f\xaf\x25\x6d\xc2\x4a\x23\x6e\x63\x02\xa2", "\xe6\xf9\xa9\x16\x31\x1f\xaf\x25\x6d\xc2\x4a\x23\x6e\x63\x02\xa2",
.c_size = 256, .c_size = 256,
.siggen_sigver_test = true,
} }
}; };

View File

@ -82,4 +82,5 @@ static inline int rsa_set_key(struct crypto_akcipher *child,
} }
extern struct crypto_template rsa_pkcs1pad_tmpl; extern struct crypto_template rsa_pkcs1pad_tmpl;
extern struct crypto_template rsassa_pkcs1_tmpl;
#endif #endif

View File

@ -448,6 +448,7 @@ void kfree_sensitive(const void *objp);
size_t __ksize(const void *objp); size_t __ksize(const void *objp);
DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T)) DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T))
/** /**
* ksize - Report actual allocation size of associated object * ksize - Report actual allocation size of associated object

View File

@ -1114,7 +1114,7 @@ EXPORT_SYMBOL_GPL(ima_measure_critical_data);
#ifdef CONFIG_INTEGRITY_ASYMMETRIC_KEYS #ifdef CONFIG_INTEGRITY_ASYMMETRIC_KEYS
/** /**
* ima_kernel_module_request - Prevent crypto-pkcs1pad(rsa,*) requests * ima_kernel_module_request - Prevent crypto-pkcs1(rsa,*) requests
* @kmod_name: kernel module name * @kmod_name: kernel module name
* *
* Avoid a verification loop where verifying the signature of the modprobe * Avoid a verification loop where verifying the signature of the modprobe
@ -1128,7 +1128,7 @@ EXPORT_SYMBOL_GPL(ima_measure_critical_data);
* algorithm on the fly, but crypto_larval_lookup() will try to use alg_name * algorithm on the fly, but crypto_larval_lookup() will try to use alg_name
* in order to load a kernel module with same name. * in order to load a kernel module with same name.
* *
* Since we don't have any real "crypto-pkcs1pad(rsa,*)" kernel modules, * Since we don't have any real "crypto-pkcs1(rsa,*)" kernel modules,
* we are safe to fail such module request from crypto_larval_lookup(), and * we are safe to fail such module request from crypto_larval_lookup(), and
* avoid the verification loop. * avoid the verification loop.
* *
@ -1136,7 +1136,7 @@ EXPORT_SYMBOL_GPL(ima_measure_critical_data);
*/ */
static int ima_kernel_module_request(char *kmod_name) static int ima_kernel_module_request(char *kmod_name)
{ {
if (strncmp(kmod_name, "crypto-pkcs1pad(rsa,", 20) == 0) if (strncmp(kmod_name, "crypto-pkcs1(rsa,", 17) == 0)
return -EINVAL; return -EINVAL;
return 0; return 0;