mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-11-11 04:18:39 +08:00
x86/irq: Install posted MSI notification handler
All MSI vectors are multiplexed into a single notification vector when posted MSI is enabled. It is the responsibility of the notification vector handler to demultiplex MSI vectors. In the handler the MSI vector handlers are dispatched without IDT delivery for each pending MSI interrupt. For example, the interrupt flow will change as follows: (3 MSIs of different vectors arrive in a a high frequency burst) BEFORE: interrupt(MSI) irq_enter() handler() /* EOI */ irq_exit() process_softirq() interrupt(MSI) irq_enter() handler() /* EOI */ irq_exit() process_softirq() interrupt(MSI) irq_enter() handler() /* EOI */ irq_exit() process_softirq() AFTER: interrupt /* Posted MSI notification vector */ irq_enter() atomic_xchg(PIR) handler() handler() handler() pi_clear_on() apic_eoi() irq_exit() process_softirq() Except for the leading MSI, CPU notifications are skipped/coalesced. For MSIs which arrive at a low frequency, the demultiplexing loop does not wait for more interrupts to coalesce. Therefore, there's no additional latency other than the processing time. Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20240423174114.526704-9-jacob.jun.pan@linux.intel.com
This commit is contained in:
parent
6087c7f36a
commit
1b03d82ba1
@ -117,6 +117,8 @@ static idtentry_t sysvec_table[NR_SYSTEM_VECTORS] __ro_after_init = {
|
||||
SYSVEC(POSTED_INTR_VECTOR, kvm_posted_intr_ipi),
|
||||
SYSVEC(POSTED_INTR_WAKEUP_VECTOR, kvm_posted_intr_wakeup_ipi),
|
||||
SYSVEC(POSTED_INTR_NESTED_VECTOR, kvm_posted_intr_nested_ipi),
|
||||
|
||||
SYSVEC(POSTED_MSI_NOTIFICATION_VECTOR, posted_msi_notification),
|
||||
};
|
||||
|
||||
static bool fred_setup_done __initdata;
|
||||
|
@ -44,6 +44,9 @@ typedef struct {
|
||||
unsigned int irq_hv_reenlightenment_count;
|
||||
unsigned int hyperv_stimer0_count;
|
||||
#endif
|
||||
#ifdef CONFIG_X86_POSTED_MSI
|
||||
unsigned int posted_msi_notification_count;
|
||||
#endif
|
||||
} ____cacheline_aligned irq_cpustat_t;
|
||||
|
||||
DECLARE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
|
||||
|
@ -751,6 +751,12 @@ DECLARE_IDTENTRY_SYSVEC(POSTED_INTR_NESTED_VECTOR, sysvec_kvm_posted_intr_nested
|
||||
# define fred_sysvec_kvm_posted_intr_nested_ipi NULL
|
||||
#endif
|
||||
|
||||
# ifdef CONFIG_X86_POSTED_MSI
|
||||
DECLARE_IDTENTRY_SYSVEC(POSTED_MSI_NOTIFICATION_VECTOR, sysvec_posted_msi_notification);
|
||||
#else
|
||||
# define fred_sysvec_posted_msi_notification NULL
|
||||
# endif
|
||||
|
||||
#if IS_ENABLED(CONFIG_HYPERV)
|
||||
DECLARE_IDTENTRY_SYSVEC(HYPERVISOR_CALLBACK_VECTOR, sysvec_hyperv_callback);
|
||||
DECLARE_IDTENTRY_SYSVEC(HYPERV_REENLIGHTENMENT_VECTOR, sysvec_hyperv_reenlightenment);
|
||||
|
@ -163,6 +163,9 @@ static const __initconst struct idt_data apic_idts[] = {
|
||||
# endif
|
||||
INTG(SPURIOUS_APIC_VECTOR, asm_sysvec_spurious_apic_interrupt),
|
||||
INTG(ERROR_APIC_VECTOR, asm_sysvec_error_interrupt),
|
||||
# ifdef CONFIG_X86_POSTED_MSI
|
||||
INTG(POSTED_MSI_NOTIFICATION_VECTOR, asm_sysvec_posted_msi_notification),
|
||||
# endif
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -183,6 +183,13 @@ int arch_show_interrupts(struct seq_file *p, int prec)
|
||||
seq_printf(p, "%10u ",
|
||||
irq_stats(j)->kvm_posted_intr_wakeup_ipis);
|
||||
seq_puts(p, " Posted-interrupt wakeup event\n");
|
||||
#endif
|
||||
#ifdef CONFIG_X86_POSTED_MSI
|
||||
seq_printf(p, "%*s: ", prec, "PMN");
|
||||
for_each_online_cpu(j)
|
||||
seq_printf(p, "%10u ",
|
||||
irq_stats(j)->posted_msi_notification_count);
|
||||
seq_puts(p, " Posted MSI notification event\n");
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
@ -242,16 +249,16 @@ static __always_inline void handle_irq(struct irq_desc *desc,
|
||||
__handle_irq(desc, regs);
|
||||
}
|
||||
|
||||
static __always_inline void call_irq_handler(int vector, struct pt_regs *regs)
|
||||
static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
|
||||
{
|
||||
struct irq_desc *desc;
|
||||
int ret = 0;
|
||||
|
||||
desc = __this_cpu_read(vector_irq[vector]);
|
||||
if (likely(!IS_ERR_OR_NULL(desc))) {
|
||||
handle_irq(desc, regs);
|
||||
} else {
|
||||
apic_eoi();
|
||||
|
||||
ret = -EINVAL;
|
||||
if (desc == VECTOR_UNUSED) {
|
||||
pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
|
||||
__func__, smp_processor_id(),
|
||||
@ -260,6 +267,8 @@ static __always_inline void call_irq_handler(int vector, struct pt_regs *regs)
|
||||
__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -273,7 +282,9 @@ DEFINE_IDTENTRY_IRQ(common_interrupt)
|
||||
/* entry code tells RCU that we're not quiescent. Check it. */
|
||||
RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
|
||||
|
||||
call_irq_handler(vector, regs);
|
||||
if (unlikely(call_irq_handler(vector, regs)))
|
||||
apic_eoi();
|
||||
|
||||
set_irq_regs(old_regs);
|
||||
}
|
||||
|
||||
@ -361,6 +372,112 @@ void intel_posted_msi_init(void)
|
||||
destination = x2apic_enabled() ? apic_id : apic_id << 8;
|
||||
this_cpu_write(posted_msi_pi_desc.ndst, destination);
|
||||
}
|
||||
|
||||
/*
|
||||
* De-multiplexing posted interrupts is on the performance path, the code
|
||||
* below is written to optimize the cache performance based on the following
|
||||
* considerations:
|
||||
* 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
|
||||
* accessed by both CPU and IOMMU.
|
||||
* 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
|
||||
* for checking and clearing posted interrupt request (PIR), a 256 bit field
|
||||
* within the PID.
|
||||
* 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
|
||||
* line when posting interrupts and setting control bits.
|
||||
* 4.The CPU can access the cache line a magnitude faster than the IOMMU.
|
||||
* 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
|
||||
* cache line. The cache line states after each operation are as follows:
|
||||
* CPU IOMMU PID Cache line state
|
||||
* ---------------------------------------------------------------
|
||||
*...read64 exclusive
|
||||
*...lock xchg64 modified
|
||||
*... post/atomic swap invalid
|
||||
*...-------------------------------------------------------------
|
||||
*
|
||||
* To reduce L1 data cache miss, it is important to avoid contention with
|
||||
* IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
|
||||
* to dispatch interrupt handlers.
|
||||
*
|
||||
* In addition, the code is trying to keep the cache line state consistent
|
||||
* as much as possible. e.g. when making a copy and clearing the PIR
|
||||
* (assuming non-zero PIR bits are present in the entire PIR), it does:
|
||||
* read, read, read, read, xchg, xchg, xchg, xchg
|
||||
* instead of:
|
||||
* read, xchg, read, xchg, read, xchg, read, xchg
|
||||
*/
|
||||
static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
|
||||
{
|
||||
int i, vec = FIRST_EXTERNAL_VECTOR;
|
||||
unsigned long pir_copy[4];
|
||||
bool handled = false;
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
pir_copy[i] = pir[i];
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
if (!pir_copy[i])
|
||||
continue;
|
||||
|
||||
pir_copy[i] = arch_xchg(&pir[i], 0);
|
||||
handled = true;
|
||||
}
|
||||
|
||||
if (handled) {
|
||||
for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
|
||||
call_irq_handler(vec, regs);
|
||||
}
|
||||
|
||||
return handled;
|
||||
}
|
||||
|
||||
/*
|
||||
* Performance data shows that 3 is good enough to harvest 90+% of the benefit
|
||||
* on high IRQ rate workload.
|
||||
*/
|
||||
#define MAX_POSTED_MSI_COALESCING_LOOP 3
|
||||
|
||||
/*
|
||||
* For MSIs that are delivered as posted interrupts, the CPU notifications
|
||||
* can be coalesced if the MSIs arrive in high frequency bursts.
|
||||
*/
|
||||
DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
|
||||
{
|
||||
struct pt_regs *old_regs = set_irq_regs(regs);
|
||||
struct pi_desc *pid;
|
||||
int i = 0;
|
||||
|
||||
pid = this_cpu_ptr(&posted_msi_pi_desc);
|
||||
|
||||
inc_irq_stat(posted_msi_notification_count);
|
||||
irq_enter();
|
||||
|
||||
/*
|
||||
* Max coalescing count includes the extra round of handle_pending_pir
|
||||
* after clearing the outstanding notification bit. Hence, at most
|
||||
* MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
|
||||
*/
|
||||
while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
|
||||
if (!handle_pending_pir(pid->pir64, regs))
|
||||
break;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear outstanding notification bit to allow new IRQ notifications,
|
||||
* do this last to maximize the window of interrupt coalescing.
|
||||
*/
|
||||
pi_clear_on(pid);
|
||||
|
||||
/*
|
||||
* There could be a race of PI notification and the clearing of ON bit,
|
||||
* process PIR bits one last time such that handling the new interrupts
|
||||
* are not delayed until the next IRQ.
|
||||
*/
|
||||
handle_pending_pir(pid->pir64, regs);
|
||||
|
||||
apic_eoi();
|
||||
irq_exit();
|
||||
set_irq_regs(old_regs);
|
||||
}
|
||||
#endif /* X86_POSTED_MSI */
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
|
Loading…
Reference in New Issue
Block a user