mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2025-01-19 04:14:49 +08:00
Core changes:
* Add a flag to mark NANDs that require 3 address cycles to encode a page address * Set a default ECC/free layout when NAND_ECC_NONE is requested * Fix a bug in panic_nand_write() Driver changes: * Another batch of cleanups for the denali driver * Fix PM support in the atmel driver * Remove support for platform data in the omap driver * Fix subpage write in the omap driver * Fix irq handling in the mtk driver * Change link order of mtk_ecc and mtk_nand drivers to speed up boot time * Change log level of ECC error messages in the mxc driver * Patch the pxa3xx driver to support Armada 8k platforms * Add BAM DMA support to the qcom driver * Convert gpio-nand to the GPIO desc API * Fix ECC handling in the mt29f driver -----BEGIN PGP SIGNATURE----- iQJABAABCAAqBQJZ+iDfIxxib3Jpcy5icmV6aWxsb25AZnJlZS1lbGVjdHJvbnMu Y29tAAoJEGXtNgF+CLcAPxoP/iuRGzfzs7DTbS6rLtcbIFKbulj/kjB8BfPtYGC8 1n7C2ZZkQOeargPyf1wtcvNgbVRjUv4/lZ22+HD7l/wDGDjOWeTs0v+it4yGVYzo iafyx+8m7J4kZWmZnguc6MQnFJ4g0yorUF3tmMYtd+OihgtlB/NWoxEAG40kPuhQ JpARsV/yWxV+l+30TBVtKCOmcS4tBh7Kjhlmr624BJv6sWilv63PnkG90a1qZUCw He2PLSNAXXaU7nWta+FKUSzIiRnsWhp2hqf9HIndx4zs1WHK86C15oBXvPuFs3q7 FD5TB/sutTIhmkrqpZZJID/h1QDUkCYd9p2ZO6a0if/S1gZgiBKFFeJXcAlhj0Ze xqFvE/gni/w2mY8xlqX4/Ras5ndfMuNIIQgyCR/iDwQM4Sv6G5t59nMaCb7r0XYy Y1pZqVQ/jE8Kh5IkANEmQPVWv95OeQQwY0igtSb5Ih2J9cIzbX/8daE3CP1SOUaX REOmUJkb1Ad6gA9e3/nS0ZhLttmFtLEgxQqMQ16XWDtKkf+6uQcBPF/1JD6CuFjn 0q6S5p1Mci/IZy2/ds9zIm42/dkG3LSLSG0cd2j60lTgTZsTloIsLcX120bDH/DM 3LejsHgHuaA1Qd7ku9Bn/rfTZdQbSoqQtvkSw3t0touMG/5ErKuleTv9JDaoEb2e vRGr =iUhH -----END PGP SIGNATURE----- Merge tag 'nand/for-4.15' of git://git.infradead.org/l2-mtd From Boris: " Core changes: * Add a flag to mark NANDs that require 3 address cycles to encode a page address * Set a default ECC/free layout when NAND_ECC_NONE is requested * Fix a bug in panic_nand_write() Driver changes: * Another batch of cleanups for the denali driver * Fix PM support in the atmel driver * Remove support for platform data in the omap driver * Fix subpage write in the omap driver * Fix irq handling in the mtk driver * Change link order of mtk_ecc and mtk_nand drivers to speed up boot time * Change log level of ECC error messages in the mxc driver * Patch the pxa3xx driver to support Armada 8k platforms * Add BAM DMA support to the qcom driver * Convert gpio-nand to the GPIO desc API * Fix ECC handling in the mt29f driver "
This commit is contained in:
commit
16271224bc
@ -29,7 +29,7 @@ nand: nand@ff900000 {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <1>;
|
||||
compatible = "altr,socfpga-denali-nand";
|
||||
reg = <0xff900000 0x100000>, <0xffb80000 0x10000>;
|
||||
reg = <0xff900000 0x20>, <0xffb80000 0x1000>;
|
||||
reg-names = "nand_data", "denali_reg";
|
||||
interrupts = <0 144 4>;
|
||||
};
|
||||
|
@ -5,9 +5,13 @@ Required properties:
|
||||
- compatible: Should be set to one of the following:
|
||||
marvell,pxa3xx-nand
|
||||
marvell,armada370-nand
|
||||
marvell,armada-8k-nand
|
||||
- reg: The register base for the controller
|
||||
- interrupts: The interrupt to map
|
||||
- #address-cells: Set to <1> if the node includes partitions
|
||||
- marvell,system-controller: Set to retrieve the syscon node that handles
|
||||
NAND controller related registers (only required
|
||||
with marvell,armada-8k-nand compatible).
|
||||
|
||||
Optional properties:
|
||||
|
||||
|
@ -14,7 +14,7 @@
|
||||
#include <linux/mtd/partitions.h>
|
||||
#include <linux/mtd/physmap.h>
|
||||
#include <linux/mtd/nand-gpio.h>
|
||||
|
||||
#include <linux/gpio/machine.h>
|
||||
#include <linux/spi/spi.h>
|
||||
#include <linux/spi/pxa2xx_spi.h>
|
||||
|
||||
@ -176,6 +176,17 @@ static inline void cmx255_init_nor(void) {}
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_MTD_NAND_GPIO) || defined(CONFIG_MTD_NAND_GPIO_MODULE)
|
||||
|
||||
static struct gpiod_lookup_table cmx255_nand_gpiod_table = {
|
||||
.dev_id = "gpio-nand",
|
||||
.table = {
|
||||
GPIO_LOOKUP("gpio-pxa", GPIO_NAND_CS, "nce", GPIO_ACTIVE_HIGH),
|
||||
GPIO_LOOKUP("gpio-pxa", GPIO_NAND_CLE, "cle", GPIO_ACTIVE_HIGH),
|
||||
GPIO_LOOKUP("gpio-pxa", GPIO_NAND_ALE, "ale", GPIO_ACTIVE_HIGH),
|
||||
GPIO_LOOKUP("gpio-pxa", GPIO_NAND_RB, "rdy", GPIO_ACTIVE_HIGH),
|
||||
},
|
||||
};
|
||||
|
||||
static struct resource cmx255_nand_resource[] = {
|
||||
[0] = {
|
||||
.start = PXA_CS1_PHYS,
|
||||
@ -198,11 +209,6 @@ static struct mtd_partition cmx255_nand_parts[] = {
|
||||
};
|
||||
|
||||
static struct gpio_nand_platdata cmx255_nand_platdata = {
|
||||
.gpio_nce = GPIO_NAND_CS,
|
||||
.gpio_cle = GPIO_NAND_CLE,
|
||||
.gpio_ale = GPIO_NAND_ALE,
|
||||
.gpio_rdy = GPIO_NAND_RB,
|
||||
.gpio_nwp = -1,
|
||||
.parts = cmx255_nand_parts,
|
||||
.num_parts = ARRAY_SIZE(cmx255_nand_parts),
|
||||
.chip_delay = 25,
|
||||
@ -220,6 +226,7 @@ static struct platform_device cmx255_nand = {
|
||||
|
||||
static void __init cmx255_init_nand(void)
|
||||
{
|
||||
gpiod_add_lookup_table(&cmx255_nand_gpiod_table);
|
||||
platform_device_register(&cmx255_nand);
|
||||
}
|
||||
#else
|
||||
|
@ -317,8 +317,11 @@ config MTD_NAND_PXA3xx
|
||||
tristate "NAND support on PXA3xx and Armada 370/XP"
|
||||
depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU
|
||||
help
|
||||
|
||||
This enables the driver for the NAND flash device found on
|
||||
PXA3xx processors (NFCv1) and also on Armada 370/XP (NFCv2).
|
||||
PXA3xx processors (NFCv1) and also on 32-bit Armada
|
||||
platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada
|
||||
platforms (7K, 8K) (NFCv2).
|
||||
|
||||
config MTD_NAND_SLC_LPC32XX
|
||||
tristate "NXP LPC32xx SLC Controller"
|
||||
|
@ -58,7 +58,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
|
||||
obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
|
||||
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
|
||||
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
|
||||
obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o mtk_ecc.o
|
||||
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
|
||||
|
||||
nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
|
||||
nand-objs += nand_amd.o
|
||||
|
@ -718,8 +718,7 @@ static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
|
||||
nc->op.addrs[nc->op.naddrs++] = page;
|
||||
nc->op.addrs[nc->op.naddrs++] = page >> 8;
|
||||
|
||||
if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
|
||||
(mtd->writesize <= 512 && chip->chipsize > SZ_32M))
|
||||
if (chip->options & NAND_ROW_ADDR_3)
|
||||
nc->op.addrs[nc->op.naddrs++] = page >> 16;
|
||||
}
|
||||
}
|
||||
@ -2530,6 +2529,9 @@ static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
|
||||
struct atmel_nand_controller *nc = dev_get_drvdata(dev);
|
||||
struct atmel_nand *nand;
|
||||
|
||||
if (nc->pmecc)
|
||||
atmel_pmecc_reset(nc->pmecc);
|
||||
|
||||
list_for_each_entry(nand, &nc->chips, node) {
|
||||
int i;
|
||||
|
||||
@ -2547,6 +2549,7 @@ static struct platform_driver atmel_nand_controller_driver = {
|
||||
.driver = {
|
||||
.name = "atmel-nand-controller",
|
||||
.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
|
||||
.pm = &atmel_nand_controller_pm_ops,
|
||||
},
|
||||
.probe = atmel_nand_controller_probe,
|
||||
.remove = atmel_nand_controller_remove,
|
||||
|
@ -765,6 +765,13 @@ void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
|
||||
|
||||
void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
|
||||
{
|
||||
writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
|
||||
|
||||
int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
|
||||
{
|
||||
struct atmel_pmecc *pmecc = user->pmecc;
|
||||
@ -797,10 +804,7 @@ EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
|
||||
|
||||
void atmel_pmecc_disable(struct atmel_pmecc_user *user)
|
||||
{
|
||||
struct atmel_pmecc *pmecc = user->pmecc;
|
||||
|
||||
writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
atmel_pmecc_reset(user->pmecc);
|
||||
mutex_unlock(&user->pmecc->lock);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
|
||||
@ -855,10 +859,7 @@ static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
|
||||
|
||||
/* Disable all interrupts before registering the PMECC handler. */
|
||||
writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
|
||||
|
||||
/* Reset the ECC engine */
|
||||
writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
|
||||
atmel_pmecc_reset(pmecc);
|
||||
|
||||
return pmecc;
|
||||
}
|
||||
|
@ -61,6 +61,7 @@ atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
|
||||
struct atmel_pmecc_user_req *req);
|
||||
void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user);
|
||||
|
||||
void atmel_pmecc_reset(struct atmel_pmecc *pmecc);
|
||||
int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op);
|
||||
void atmel_pmecc_disable(struct atmel_pmecc_user *user);
|
||||
int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user);
|
||||
|
@ -331,8 +331,7 @@ static void au1550_command(struct mtd_info *mtd, unsigned command, int column, i
|
||||
|
||||
ctx->write_byte(mtd, (u8)(page_addr >> 8));
|
||||
|
||||
/* One more address cycle for devices > 32MiB */
|
||||
if (this->chipsize > (32 << 20))
|
||||
if (this->options & NAND_ROW_ADDR_3)
|
||||
ctx->write_byte(mtd,
|
||||
((page_addr >> 16) & 0x0f));
|
||||
}
|
||||
|
@ -10,20 +10,18 @@
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along with
|
||||
* this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
*/
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/delay.h>
|
||||
|
||||
#include <linux/bitfield.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/rawnand.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/spinlock.h>
|
||||
|
||||
#include "denali.h"
|
||||
|
||||
@ -31,9 +29,9 @@ MODULE_LICENSE("GPL");
|
||||
|
||||
#define DENALI_NAND_NAME "denali-nand"
|
||||
|
||||
/* Host Data/Command Interface */
|
||||
#define DENALI_HOST_ADDR 0x00
|
||||
#define DENALI_HOST_DATA 0x10
|
||||
/* for Indexed Addressing */
|
||||
#define DENALI_INDEXED_CTRL 0x00
|
||||
#define DENALI_INDEXED_DATA 0x10
|
||||
|
||||
#define DENALI_MAP00 (0 << 26) /* direct access to buffer */
|
||||
#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */
|
||||
@ -61,31 +59,55 @@ MODULE_LICENSE("GPL");
|
||||
*/
|
||||
#define DENALI_CLK_X_MULT 6
|
||||
|
||||
/*
|
||||
* this macro allows us to convert from an MTD structure to our own
|
||||
* device context (denali) structure.
|
||||
*/
|
||||
static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
|
||||
{
|
||||
return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
|
||||
}
|
||||
|
||||
static void denali_host_write(struct denali_nand_info *denali,
|
||||
uint32_t addr, uint32_t data)
|
||||
/*
|
||||
* Direct Addressing - the slave address forms the control information (command
|
||||
* type, bank, block, and page address). The slave data is the actual data to
|
||||
* be transferred. This mode requires 28 bits of address region allocated.
|
||||
*/
|
||||
static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
|
||||
{
|
||||
iowrite32(addr, denali->host + DENALI_HOST_ADDR);
|
||||
iowrite32(data, denali->host + DENALI_HOST_DATA);
|
||||
return ioread32(denali->host + addr);
|
||||
}
|
||||
|
||||
static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
|
||||
u32 data)
|
||||
{
|
||||
iowrite32(data, denali->host + addr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Indexed Addressing - address translation module intervenes in passing the
|
||||
* control information. This mode reduces the required address range. The
|
||||
* control information and transferred data are latched by the registers in
|
||||
* the translation module.
|
||||
*/
|
||||
static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
|
||||
{
|
||||
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
||||
return ioread32(denali->host + DENALI_INDEXED_DATA);
|
||||
}
|
||||
|
||||
static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
|
||||
u32 data)
|
||||
{
|
||||
iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
|
||||
iowrite32(data, denali->host + DENALI_INDEXED_DATA);
|
||||
}
|
||||
|
||||
/*
|
||||
* Use the configuration feature register to determine the maximum number of
|
||||
* banks that the hardware supports.
|
||||
*/
|
||||
static void detect_max_banks(struct denali_nand_info *denali)
|
||||
static void denali_detect_max_banks(struct denali_nand_info *denali)
|
||||
{
|
||||
uint32_t features = ioread32(denali->reg + FEATURES);
|
||||
|
||||
denali->max_banks = 1 << (features & FEATURES__N_BANKS);
|
||||
denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
|
||||
|
||||
/* the encoding changed from rev 5.0 to 5.1 */
|
||||
if (denali->revision < 0x0501)
|
||||
@ -189,7 +211,7 @@ static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
|
||||
msecs_to_jiffies(1000));
|
||||
if (!time_left) {
|
||||
dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
|
||||
denali->irq_mask);
|
||||
irq_mask);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -208,73 +230,47 @@ static uint32_t denali_check_irq(struct denali_nand_info *denali)
|
||||
return irq_status;
|
||||
}
|
||||
|
||||
/*
|
||||
* This helper function setups the registers for ECC and whether or not
|
||||
* the spare area will be transferred.
|
||||
*/
|
||||
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
|
||||
bool transfer_spare)
|
||||
{
|
||||
int ecc_en_flag, transfer_spare_flag;
|
||||
|
||||
/* set ECC, transfer spare bits if needed */
|
||||
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
|
||||
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
|
||||
|
||||
/* Enable spare area/ECC per user's request. */
|
||||
iowrite32(ecc_en_flag, denali->reg + ECC_ENABLE);
|
||||
iowrite32(transfer_spare_flag, denali->reg + TRANSFER_SPARE_REG);
|
||||
}
|
||||
|
||||
static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
||||
int i;
|
||||
|
||||
iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
|
||||
denali->host + DENALI_HOST_ADDR);
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
buf[i] = ioread32(denali->host + DENALI_HOST_DATA);
|
||||
buf[i] = denali->host_read(denali, addr);
|
||||
}
|
||||
|
||||
static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
||||
int i;
|
||||
|
||||
iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
|
||||
denali->host + DENALI_HOST_ADDR);
|
||||
|
||||
for (i = 0; i < len; i++)
|
||||
iowrite32(buf[i], denali->host + DENALI_HOST_DATA);
|
||||
denali->host_write(denali, addr, buf[i]);
|
||||
}
|
||||
|
||||
static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
||||
uint16_t *buf16 = (uint16_t *)buf;
|
||||
int i;
|
||||
|
||||
iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
|
||||
denali->host + DENALI_HOST_ADDR);
|
||||
|
||||
for (i = 0; i < len / 2; i++)
|
||||
buf16[i] = ioread32(denali->host + DENALI_HOST_DATA);
|
||||
buf16[i] = denali->host_read(denali, addr);
|
||||
}
|
||||
|
||||
static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
|
||||
int len)
|
||||
{
|
||||
struct denali_nand_info *denali = mtd_to_denali(mtd);
|
||||
u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
|
||||
const uint16_t *buf16 = (const uint16_t *)buf;
|
||||
int i;
|
||||
|
||||
iowrite32(DENALI_MAP11_DATA | DENALI_BANK(denali),
|
||||
denali->host + DENALI_HOST_ADDR);
|
||||
|
||||
for (i = 0; i < len / 2; i++)
|
||||
iowrite32(buf16[i], denali->host + DENALI_HOST_DATA);
|
||||
denali->host_write(denali, addr, buf16[i]);
|
||||
}
|
||||
|
||||
static uint8_t denali_read_byte(struct mtd_info *mtd)
|
||||
@ -319,7 +315,7 @@ static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
|
||||
if (ctrl & NAND_CTRL_CHANGE)
|
||||
denali_reset_irq(denali);
|
||||
|
||||
denali_host_write(denali, DENALI_BANK(denali) | type, dat);
|
||||
denali->host_write(denali, DENALI_BANK(denali) | type, dat);
|
||||
}
|
||||
|
||||
static int denali_dev_ready(struct mtd_info *mtd)
|
||||
@ -389,7 +385,7 @@ static int denali_hw_ecc_fixup(struct mtd_info *mtd,
|
||||
return 0;
|
||||
}
|
||||
|
||||
max_bitflips = ecc_cor & ECC_COR_INFO__MAX_ERRORS;
|
||||
max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
|
||||
|
||||
/*
|
||||
* The register holds the maximum of per-sector corrected bitflips.
|
||||
@ -402,13 +398,6 @@ static int denali_hw_ecc_fixup(struct mtd_info *mtd,
|
||||
return max_bitflips;
|
||||
}
|
||||
|
||||
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
|
||||
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
|
||||
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
|
||||
#define ECC_ERROR_UNCORRECTABLE(x) ((x) & ERR_CORRECTION_INFO__ERROR_TYPE)
|
||||
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
|
||||
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
|
||||
|
||||
static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
||||
struct denali_nand_info *denali,
|
||||
unsigned long *uncor_ecc_flags, uint8_t *buf)
|
||||
@ -426,18 +415,20 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
||||
|
||||
do {
|
||||
err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
|
||||
err_sector = ECC_SECTOR(err_addr);
|
||||
err_byte = ECC_BYTE(err_addr);
|
||||
err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
|
||||
err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
|
||||
|
||||
err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
|
||||
err_cor_value = ECC_CORRECTION_VALUE(err_cor_info);
|
||||
err_device = ECC_ERR_DEVICE(err_cor_info);
|
||||
err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
|
||||
err_cor_info);
|
||||
err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
|
||||
err_cor_info);
|
||||
|
||||
/* reset the bitflip counter when crossing ECC sector */
|
||||
if (err_sector != prev_sector)
|
||||
bitflips = 0;
|
||||
|
||||
if (ECC_ERROR_UNCORRECTABLE(err_cor_info)) {
|
||||
if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
|
||||
/*
|
||||
* Check later if this is a real ECC error, or
|
||||
* an erased sector.
|
||||
@ -467,12 +458,11 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
||||
}
|
||||
|
||||
prev_sector = err_sector;
|
||||
} while (!ECC_LAST_ERR(err_cor_info));
|
||||
} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
|
||||
|
||||
/*
|
||||
* Once handle all ecc errors, controller will trigger a
|
||||
* ECC_TRANSACTION_DONE interrupt, so here just wait for
|
||||
* a while for this interrupt
|
||||
* Once handle all ECC errors, controller will trigger an
|
||||
* ECC_TRANSACTION_DONE interrupt.
|
||||
*/
|
||||
irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
|
||||
if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
|
||||
@ -481,13 +471,6 @@ static int denali_sw_ecc_fixup(struct mtd_info *mtd,
|
||||
return max_bitflips;
|
||||
}
|
||||
|
||||
/* programs the controller to either enable/disable DMA transfers */
|
||||
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
|
||||
{
|
||||
iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->reg + DMA_ENABLE);
|
||||
ioread32(denali->reg + DMA_ENABLE);
|
||||
}
|
||||
|
||||
static void denali_setup_dma64(struct denali_nand_info *denali,
|
||||
dma_addr_t dma_addr, int page, int write)
|
||||
{
|
||||
@ -502,14 +485,14 @@ static void denali_setup_dma64(struct denali_nand_info *denali,
|
||||
* 1. setup transfer type, interrupt when complete,
|
||||
* burst len = 64 bytes, the number of pages
|
||||
*/
|
||||
denali_host_write(denali, mode,
|
||||
0x01002000 | (64 << 16) | (write << 8) | page_count);
|
||||
denali->host_write(denali, mode,
|
||||
0x01002000 | (64 << 16) | (write << 8) | page_count);
|
||||
|
||||
/* 2. set memory low address */
|
||||
denali_host_write(denali, mode, dma_addr);
|
||||
denali->host_write(denali, mode, lower_32_bits(dma_addr));
|
||||
|
||||
/* 3. set memory high address */
|
||||
denali_host_write(denali, mode, (uint64_t)dma_addr >> 32);
|
||||
denali->host_write(denali, mode, upper_32_bits(dma_addr));
|
||||
}
|
||||
|
||||
static void denali_setup_dma32(struct denali_nand_info *denali,
|
||||
@ -523,32 +506,23 @@ static void denali_setup_dma32(struct denali_nand_info *denali,
|
||||
/* DMA is a four step process */
|
||||
|
||||
/* 1. setup transfer type and # of pages */
|
||||
denali_host_write(denali, mode | page,
|
||||
0x2000 | (write << 8) | page_count);
|
||||
denali->host_write(denali, mode | page,
|
||||
0x2000 | (write << 8) | page_count);
|
||||
|
||||
/* 2. set memory high address bits 23:8 */
|
||||
denali_host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
|
||||
denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
|
||||
|
||||
/* 3. set memory low address bits 23:8 */
|
||||
denali_host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
|
||||
denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
|
||||
|
||||
/* 4. interrupt when complete, burst len = 64 bytes */
|
||||
denali_host_write(denali, mode | 0x14000, 0x2400);
|
||||
}
|
||||
|
||||
static void denali_setup_dma(struct denali_nand_info *denali,
|
||||
dma_addr_t dma_addr, int page, int write)
|
||||
{
|
||||
if (denali->caps & DENALI_CAP_DMA_64BIT)
|
||||
denali_setup_dma64(denali, dma_addr, page, write);
|
||||
else
|
||||
denali_setup_dma32(denali, dma_addr, page, write);
|
||||
denali->host_write(denali, mode | 0x14000, 0x2400);
|
||||
}
|
||||
|
||||
static int denali_pio_read(struct denali_nand_info *denali, void *buf,
|
||||
size_t size, int page, int raw)
|
||||
{
|
||||
uint32_t addr = DENALI_BANK(denali) | page;
|
||||
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
||||
uint32_t *buf32 = (uint32_t *)buf;
|
||||
uint32_t irq_status, ecc_err_mask;
|
||||
int i;
|
||||
@ -560,9 +534,8 @@ static int denali_pio_read(struct denali_nand_info *denali, void *buf,
|
||||
|
||||
denali_reset_irq(denali);
|
||||
|
||||
iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
|
||||
for (i = 0; i < size / 4; i++)
|
||||
*buf32++ = ioread32(denali->host + DENALI_HOST_DATA);
|
||||
*buf32++ = denali->host_read(denali, addr);
|
||||
|
||||
irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
|
||||
if (!(irq_status & INTR__PAGE_XFER_INC))
|
||||
@ -577,16 +550,15 @@ static int denali_pio_read(struct denali_nand_info *denali, void *buf,
|
||||
static int denali_pio_write(struct denali_nand_info *denali,
|
||||
const void *buf, size_t size, int page, int raw)
|
||||
{
|
||||
uint32_t addr = DENALI_BANK(denali) | page;
|
||||
u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
|
||||
const uint32_t *buf32 = (uint32_t *)buf;
|
||||
uint32_t irq_status;
|
||||
int i;
|
||||
|
||||
denali_reset_irq(denali);
|
||||
|
||||
iowrite32(DENALI_MAP01 | addr, denali->host + DENALI_HOST_ADDR);
|
||||
for (i = 0; i < size / 4; i++)
|
||||
iowrite32(*buf32++, denali->host + DENALI_HOST_DATA);
|
||||
denali->host_write(denali, addr, *buf32++);
|
||||
|
||||
irq_status = denali_wait_for_irq(denali,
|
||||
INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
|
||||
@ -635,19 +607,19 @@ static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
|
||||
ecc_err_mask = INTR__ECC_ERR;
|
||||
}
|
||||
|
||||
denali_enable_dma(denali, true);
|
||||
iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
|
||||
|
||||
denali_reset_irq(denali);
|
||||
denali_setup_dma(denali, dma_addr, page, write);
|
||||
denali->setup_dma(denali, dma_addr, page, write);
|
||||
|
||||
/* wait for operation to complete */
|
||||
irq_status = denali_wait_for_irq(denali, irq_mask);
|
||||
if (!(irq_status & INTR__DMA_CMD_COMP))
|
||||
ret = -EIO;
|
||||
else if (irq_status & ecc_err_mask)
|
||||
ret = -EBADMSG;
|
||||
|
||||
denali_enable_dma(denali, false);
|
||||
iowrite32(0, denali->reg + DMA_ENABLE);
|
||||
|
||||
dma_unmap_single(denali->dev, dma_addr, size, dir);
|
||||
|
||||
if (irq_status & INTR__ERASED_PAGE)
|
||||
@ -659,7 +631,9 @@ static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
|
||||
static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
|
||||
size_t size, int page, int raw, int write)
|
||||
{
|
||||
setup_ecc_for_xfer(denali, !raw, raw);
|
||||
iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
|
||||
iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
|
||||
denali->reg + TRANSFER_SPARE_REG);
|
||||
|
||||
if (denali->dma_avail)
|
||||
return denali_dma_xfer(denali, buf, size, page, raw, write);
|
||||
@ -970,8 +944,8 @@ static int denali_erase(struct mtd_info *mtd, int page)
|
||||
|
||||
denali_reset_irq(denali);
|
||||
|
||||
denali_host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
|
||||
DENALI_ERASE);
|
||||
denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
|
||||
DENALI_ERASE);
|
||||
|
||||
/* wait for erase to complete or failure to occur */
|
||||
irq_status = denali_wait_for_irq(denali,
|
||||
@ -1009,7 +983,7 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + ACC_CLKS);
|
||||
tmp &= ~ACC_CLKS__VALUE;
|
||||
tmp |= acc_clks;
|
||||
tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
|
||||
iowrite32(tmp, denali->reg + ACC_CLKS);
|
||||
|
||||
/* tRWH -> RE_2_WE */
|
||||
@ -1018,7 +992,7 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + RE_2_WE);
|
||||
tmp &= ~RE_2_WE__VALUE;
|
||||
tmp |= re_2_we;
|
||||
tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
|
||||
iowrite32(tmp, denali->reg + RE_2_WE);
|
||||
|
||||
/* tRHZ -> RE_2_RE */
|
||||
@ -1027,16 +1001,22 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + RE_2_RE);
|
||||
tmp &= ~RE_2_RE__VALUE;
|
||||
tmp |= re_2_re;
|
||||
tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
|
||||
iowrite32(tmp, denali->reg + RE_2_RE);
|
||||
|
||||
/* tWHR -> WE_2_RE */
|
||||
we_2_re = DIV_ROUND_UP(timings->tWHR_min, t_clk);
|
||||
/*
|
||||
* tCCS, tWHR -> WE_2_RE
|
||||
*
|
||||
* With WE_2_RE properly set, the Denali controller automatically takes
|
||||
* care of the delay; the driver need not set NAND_WAIT_TCCS.
|
||||
*/
|
||||
we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min),
|
||||
t_clk);
|
||||
we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
|
||||
|
||||
tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
|
||||
tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
|
||||
tmp |= we_2_re;
|
||||
tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
|
||||
iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
|
||||
|
||||
/* tADL -> ADDR_2_DATA */
|
||||
@ -1050,8 +1030,8 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
|
||||
|
||||
tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
|
||||
tmp &= ~addr_2_data_mask;
|
||||
tmp |= addr_2_data;
|
||||
tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
|
||||
tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
|
||||
iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
|
||||
|
||||
/* tREH, tWH -> RDWR_EN_HI_CNT */
|
||||
@ -1061,7 +1041,7 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
|
||||
tmp &= ~RDWR_EN_HI_CNT__VALUE;
|
||||
tmp |= rdwr_en_hi;
|
||||
tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
|
||||
iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
|
||||
|
||||
/* tRP, tWP -> RDWR_EN_LO_CNT */
|
||||
@ -1075,7 +1055,7 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
|
||||
tmp &= ~RDWR_EN_LO_CNT__VALUE;
|
||||
tmp |= rdwr_en_lo;
|
||||
tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
|
||||
iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
|
||||
|
||||
/* tCS, tCEA -> CS_SETUP_CNT */
|
||||
@ -1086,7 +1066,7 @@ static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
|
||||
|
||||
tmp = ioread32(denali->reg + CS_SETUP_CNT);
|
||||
tmp &= ~CS_SETUP_CNT__VALUE;
|
||||
tmp |= cs_setup;
|
||||
tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
|
||||
iowrite32(tmp, denali->reg + CS_SETUP_CNT);
|
||||
|
||||
return 0;
|
||||
@ -1131,15 +1111,11 @@ static void denali_hw_init(struct denali_nand_info *denali)
|
||||
* if this value is 0, just let it be.
|
||||
*/
|
||||
denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
|
||||
detect_max_banks(denali);
|
||||
denali_detect_max_banks(denali);
|
||||
iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
|
||||
iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
|
||||
|
||||
iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
|
||||
|
||||
/* Should set value for these registers when init */
|
||||
iowrite32(0, denali->reg + TWO_ROW_ADDR_CYCLES);
|
||||
iowrite32(1, denali->reg + ECC_ENABLE);
|
||||
}
|
||||
|
||||
int denali_calc_ecc_bytes(int step_size, int strength)
|
||||
@ -1211,22 +1187,6 @@ static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
|
||||
.free = denali_ooblayout_free,
|
||||
};
|
||||
|
||||
/* initialize driver data structures */
|
||||
static void denali_drv_init(struct denali_nand_info *denali)
|
||||
{
|
||||
/*
|
||||
* the completion object will be used to notify
|
||||
* the callee that the interrupt is done
|
||||
*/
|
||||
init_completion(&denali->complete);
|
||||
|
||||
/*
|
||||
* the spinlock will be used to synchronize the ISR with any
|
||||
* element that might be access shared data (interrupt status)
|
||||
*/
|
||||
spin_lock_init(&denali->irq_lock);
|
||||
}
|
||||
|
||||
static int denali_multidev_fixup(struct denali_nand_info *denali)
|
||||
{
|
||||
struct nand_chip *chip = &denali->nand;
|
||||
@ -1282,15 +1242,17 @@ int denali_init(struct denali_nand_info *denali)
|
||||
{
|
||||
struct nand_chip *chip = &denali->nand;
|
||||
struct mtd_info *mtd = nand_to_mtd(chip);
|
||||
u32 features = ioread32(denali->reg + FEATURES);
|
||||
int ret;
|
||||
|
||||
mtd->dev.parent = denali->dev;
|
||||
denali_hw_init(denali);
|
||||
denali_drv_init(denali);
|
||||
|
||||
init_completion(&denali->complete);
|
||||
spin_lock_init(&denali->irq_lock);
|
||||
|
||||
denali_clear_irq_all(denali);
|
||||
|
||||
/* Request IRQ after all the hardware initialization is finished */
|
||||
ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
|
||||
IRQF_SHARED, DENALI_NAND_NAME, denali);
|
||||
if (ret) {
|
||||
@ -1308,7 +1270,6 @@ int denali_init(struct denali_nand_info *denali)
|
||||
if (!mtd->name)
|
||||
mtd->name = "denali-nand";
|
||||
|
||||
/* register the driver with the NAND core subsystem */
|
||||
chip->select_chip = denali_select_chip;
|
||||
chip->read_byte = denali_read_byte;
|
||||
chip->write_byte = denali_write_byte;
|
||||
@ -1317,15 +1278,18 @@ int denali_init(struct denali_nand_info *denali)
|
||||
chip->dev_ready = denali_dev_ready;
|
||||
chip->waitfunc = denali_waitfunc;
|
||||
|
||||
if (features & FEATURES__INDEX_ADDR) {
|
||||
denali->host_read = denali_indexed_read;
|
||||
denali->host_write = denali_indexed_write;
|
||||
} else {
|
||||
denali->host_read = denali_direct_read;
|
||||
denali->host_write = denali_direct_write;
|
||||
}
|
||||
|
||||
/* clk rate info is needed for setup_data_interface */
|
||||
if (denali->clk_x_rate)
|
||||
chip->setup_data_interface = denali_setup_data_interface;
|
||||
|
||||
/*
|
||||
* scan for NAND devices attached to the controller
|
||||
* this is the first stage in a two step process to register
|
||||
* with the nand subsystem
|
||||
*/
|
||||
ret = nand_scan_ident(mtd, denali->max_banks, NULL);
|
||||
if (ret)
|
||||
goto disable_irq;
|
||||
@ -1347,20 +1311,15 @@ int denali_init(struct denali_nand_info *denali)
|
||||
if (denali->dma_avail) {
|
||||
chip->options |= NAND_USE_BOUNCE_BUFFER;
|
||||
chip->buf_align = 16;
|
||||
if (denali->caps & DENALI_CAP_DMA_64BIT)
|
||||
denali->setup_dma = denali_setup_dma64;
|
||||
else
|
||||
denali->setup_dma = denali_setup_dma32;
|
||||
}
|
||||
|
||||
/*
|
||||
* second stage of the NAND scan
|
||||
* this stage requires information regarding ECC and
|
||||
* bad block management.
|
||||
*/
|
||||
|
||||
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
||||
chip->bbt_options |= NAND_BBT_NO_OOB;
|
||||
|
||||
chip->ecc.mode = NAND_ECC_HW_SYNDROME;
|
||||
|
||||
/* no subpage writes on denali */
|
||||
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
||||
|
||||
ret = denali_ecc_setup(mtd, chip, denali);
|
||||
@ -1373,12 +1332,15 @@ int denali_init(struct denali_nand_info *denali)
|
||||
"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
|
||||
chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
|
||||
|
||||
iowrite32(MAKE_ECC_CORRECTION(chip->ecc.strength, 1),
|
||||
iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
|
||||
FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
|
||||
denali->reg + ECC_CORRECTION);
|
||||
iowrite32(mtd->erasesize / mtd->writesize,
|
||||
denali->reg + PAGES_PER_BLOCK);
|
||||
iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
|
||||
denali->reg + DEVICE_WIDTH);
|
||||
iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
|
||||
denali->reg + TWO_ROW_ADDR_CYCLES);
|
||||
iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
|
||||
iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
|
||||
|
||||
@ -1441,7 +1403,6 @@ disable_irq:
|
||||
}
|
||||
EXPORT_SYMBOL(denali_init);
|
||||
|
||||
/* driver exit point */
|
||||
void denali_remove(struct denali_nand_info *denali)
|
||||
{
|
||||
struct mtd_info *mtd = nand_to_mtd(&denali->nand);
|
||||
|
@ -10,18 +10,16 @@
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License along with
|
||||
* this program; if not, write to the Free Software Foundation, Inc.,
|
||||
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __DENALI_H__
|
||||
#define __DENALI_H__
|
||||
|
||||
#include <linux/bitops.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/mtd/rawnand.h>
|
||||
#include <linux/spinlock_types.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#define DEVICE_RESET 0x0
|
||||
#define DEVICE_RESET__BANK(bank) BIT(bank)
|
||||
@ -111,9 +109,6 @@
|
||||
#define ECC_CORRECTION 0x1b0
|
||||
#define ECC_CORRECTION__VALUE GENMASK(4, 0)
|
||||
#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16)
|
||||
#define MAKE_ECC_CORRECTION(val, thresh) \
|
||||
(((val) & (ECC_CORRECTION__VALUE)) | \
|
||||
(((thresh) << 16) & (ECC_CORRECTION__ERASE_THRESHOLD)))
|
||||
|
||||
#define READ_MODE 0x1c0
|
||||
#define READ_MODE__VALUE GENMASK(3, 0)
|
||||
@ -255,13 +250,13 @@
|
||||
|
||||
#define ECC_ERROR_ADDRESS 0x630
|
||||
#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0)
|
||||
#define ECC_ERROR_ADDRESS__SECTOR_NR GENMASK(15, 12)
|
||||
#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12)
|
||||
|
||||
#define ERR_CORRECTION_INFO 0x640
|
||||
#define ERR_CORRECTION_INFO__BYTEMASK GENMASK(7, 0)
|
||||
#define ERR_CORRECTION_INFO__DEVICE_NR GENMASK(11, 8)
|
||||
#define ERR_CORRECTION_INFO__ERROR_TYPE BIT(14)
|
||||
#define ERR_CORRECTION_INFO__LAST_ERR_INFO BIT(15)
|
||||
#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0)
|
||||
#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8)
|
||||
#define ERR_CORRECTION_INFO__UNCOR BIT(14)
|
||||
#define ERR_CORRECTION_INFO__LAST_ERR BIT(15)
|
||||
|
||||
#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10)
|
||||
#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8)
|
||||
@ -310,23 +305,24 @@ struct denali_nand_info {
|
||||
struct device *dev;
|
||||
void __iomem *reg; /* Register Interface */
|
||||
void __iomem *host; /* Host Data/Command Interface */
|
||||
|
||||
/* elements used by ISR */
|
||||
struct completion complete;
|
||||
spinlock_t irq_lock;
|
||||
uint32_t irq_mask;
|
||||
uint32_t irq_status;
|
||||
spinlock_t irq_lock; /* protect irq_mask and irq_status */
|
||||
u32 irq_mask; /* interrupts we are waiting for */
|
||||
u32 irq_status; /* interrupts that have happened */
|
||||
int irq;
|
||||
|
||||
void *buf;
|
||||
void *buf; /* for syndrome layout conversion */
|
||||
dma_addr_t dma_addr;
|
||||
int dma_avail;
|
||||
int dma_avail; /* can support DMA? */
|
||||
int devs_per_cs; /* devices connected in parallel */
|
||||
int oob_skip_bytes;
|
||||
int oob_skip_bytes; /* number of bytes reserved for BBM */
|
||||
int max_banks;
|
||||
unsigned int revision;
|
||||
unsigned int caps;
|
||||
unsigned int revision; /* IP revision */
|
||||
unsigned int caps; /* IP capability (or quirk) */
|
||||
const struct nand_ecc_caps *ecc_caps;
|
||||
u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
|
||||
void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
|
||||
void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
|
||||
int page, int write);
|
||||
};
|
||||
|
||||
#define DENALI_CAP_HW_ECC_FIXUP BIT(0)
|
||||
|
@ -12,15 +12,16 @@
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*/
|
||||
|
||||
#include <linux/clk.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/ioport.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/platform_device.h>
|
||||
|
||||
#include "denali.h"
|
||||
|
||||
@ -155,7 +156,6 @@ static struct platform_driver denali_dt_driver = {
|
||||
.of_match_table = denali_nand_dt_ids,
|
||||
},
|
||||
};
|
||||
|
||||
module_platform_driver(denali_dt_driver);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
@ -11,6 +11,9 @@
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
* more details.
|
||||
*/
|
||||
|
||||
#include <linux/errno.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/pci.h>
|
||||
@ -106,7 +109,6 @@ failed_remap_reg:
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* driver exit point */
|
||||
static void denali_pci_remove(struct pci_dev *dev)
|
||||
{
|
||||
struct denali_nand_info *denali = pci_get_drvdata(dev);
|
||||
@ -122,5 +124,4 @@ static struct pci_driver denali_pci_driver = {
|
||||
.probe = denali_pci_probe,
|
||||
.remove = denali_pci_remove,
|
||||
};
|
||||
|
||||
module_pci_driver(denali_pci_driver);
|
||||
|
@ -705,8 +705,7 @@ static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int colu
|
||||
if (page_addr != -1) {
|
||||
WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
|
||||
WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
|
||||
/* One more address cycle for higher density devices */
|
||||
if (this->chipsize & 0x0c000000) {
|
||||
if (this->options & NAND_ROW_ADDR_3) {
|
||||
WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
|
||||
printk("high density\n");
|
||||
}
|
||||
|
@ -23,7 +23,7 @@
|
||||
#include <linux/slab.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/gpio.h>
|
||||
#include <linux/gpio/consumer.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/rawnand.h>
|
||||
@ -31,12 +31,16 @@
|
||||
#include <linux/mtd/nand-gpio.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of_gpio.h>
|
||||
|
||||
struct gpiomtd {
|
||||
void __iomem *io_sync;
|
||||
struct nand_chip nand_chip;
|
||||
struct gpio_nand_platdata plat;
|
||||
struct gpio_desc *nce; /* Optional chip enable */
|
||||
struct gpio_desc *cle;
|
||||
struct gpio_desc *ale;
|
||||
struct gpio_desc *rdy;
|
||||
struct gpio_desc *nwp; /* Optional write protection */
|
||||
};
|
||||
|
||||
static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd)
|
||||
@ -78,11 +82,10 @@ static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
|
||||
gpio_nand_dosync(gpiomtd);
|
||||
|
||||
if (ctrl & NAND_CTRL_CHANGE) {
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nce))
|
||||
gpio_set_value(gpiomtd->plat.gpio_nce,
|
||||
!(ctrl & NAND_NCE));
|
||||
gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE));
|
||||
gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE));
|
||||
if (gpiomtd->nce)
|
||||
gpiod_set_value(gpiomtd->nce, !(ctrl & NAND_NCE));
|
||||
gpiod_set_value(gpiomtd->cle, !!(ctrl & NAND_CLE));
|
||||
gpiod_set_value(gpiomtd->ale, !!(ctrl & NAND_ALE));
|
||||
gpio_nand_dosync(gpiomtd);
|
||||
}
|
||||
if (cmd == NAND_CMD_NONE)
|
||||
@ -96,7 +99,7 @@ static int gpio_nand_devready(struct mtd_info *mtd)
|
||||
{
|
||||
struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
|
||||
|
||||
return gpio_get_value(gpiomtd->plat.gpio_rdy);
|
||||
return gpiod_get_value(gpiomtd->rdy);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_OF
|
||||
@ -123,12 +126,6 @@ static int gpio_nand_get_config_of(const struct device *dev,
|
||||
}
|
||||
}
|
||||
|
||||
plat->gpio_rdy = of_get_gpio(dev->of_node, 0);
|
||||
plat->gpio_nce = of_get_gpio(dev->of_node, 1);
|
||||
plat->gpio_ale = of_get_gpio(dev->of_node, 2);
|
||||
plat->gpio_cle = of_get_gpio(dev->of_node, 3);
|
||||
plat->gpio_nwp = of_get_gpio(dev->of_node, 4);
|
||||
|
||||
if (!of_property_read_u32(dev->of_node, "chip-delay", &val))
|
||||
plat->chip_delay = val;
|
||||
|
||||
@ -201,10 +198,11 @@ static int gpio_nand_remove(struct platform_device *pdev)
|
||||
|
||||
nand_release(nand_to_mtd(&gpiomtd->nand_chip));
|
||||
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
|
||||
gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nce))
|
||||
gpio_set_value(gpiomtd->plat.gpio_nce, 1);
|
||||
/* Enable write protection and disable the chip */
|
||||
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
|
||||
gpiod_set_value(gpiomtd->nwp, 0);
|
||||
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
|
||||
gpiod_set_value(gpiomtd->nce, 0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -215,66 +213,66 @@ static int gpio_nand_probe(struct platform_device *pdev)
|
||||
struct nand_chip *chip;
|
||||
struct mtd_info *mtd;
|
||||
struct resource *res;
|
||||
struct device *dev = &pdev->dev;
|
||||
int ret = 0;
|
||||
|
||||
if (!pdev->dev.of_node && !dev_get_platdata(&pdev->dev))
|
||||
if (!dev->of_node && !dev_get_platdata(dev))
|
||||
return -EINVAL;
|
||||
|
||||
gpiomtd = devm_kzalloc(&pdev->dev, sizeof(*gpiomtd), GFP_KERNEL);
|
||||
gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL);
|
||||
if (!gpiomtd)
|
||||
return -ENOMEM;
|
||||
|
||||
chip = &gpiomtd->nand_chip;
|
||||
|
||||
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||||
chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
|
||||
chip->IO_ADDR_R = devm_ioremap_resource(dev, res);
|
||||
if (IS_ERR(chip->IO_ADDR_R))
|
||||
return PTR_ERR(chip->IO_ADDR_R);
|
||||
|
||||
res = gpio_nand_get_io_sync(pdev);
|
||||
if (res) {
|
||||
gpiomtd->io_sync = devm_ioremap_resource(&pdev->dev, res);
|
||||
gpiomtd->io_sync = devm_ioremap_resource(dev, res);
|
||||
if (IS_ERR(gpiomtd->io_sync))
|
||||
return PTR_ERR(gpiomtd->io_sync);
|
||||
}
|
||||
|
||||
ret = gpio_nand_get_config(&pdev->dev, &gpiomtd->plat);
|
||||
ret = gpio_nand_get_config(dev, &gpiomtd->plat);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nce)) {
|
||||
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nce,
|
||||
"NAND NCE");
|
||||
if (ret)
|
||||
return ret;
|
||||
gpio_direction_output(gpiomtd->plat.gpio_nce, 1);
|
||||
/* Just enable the chip */
|
||||
gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH);
|
||||
if (IS_ERR(gpiomtd->nce))
|
||||
return PTR_ERR(gpiomtd->nce);
|
||||
|
||||
/* We disable write protection once we know probe() will succeed */
|
||||
gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW);
|
||||
if (IS_ERR(gpiomtd->nwp)) {
|
||||
ret = PTR_ERR(gpiomtd->nwp);
|
||||
goto out_ce;
|
||||
}
|
||||
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) {
|
||||
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_nwp,
|
||||
"NAND NWP");
|
||||
if (ret)
|
||||
return ret;
|
||||
gpiomtd->nwp = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW);
|
||||
if (IS_ERR(gpiomtd->nwp)) {
|
||||
ret = PTR_ERR(gpiomtd->nwp);
|
||||
goto out_ce;
|
||||
}
|
||||
|
||||
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_ale, "NAND ALE");
|
||||
if (ret)
|
||||
return ret;
|
||||
gpio_direction_output(gpiomtd->plat.gpio_ale, 0);
|
||||
gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW);
|
||||
if (IS_ERR(gpiomtd->cle)) {
|
||||
ret = PTR_ERR(gpiomtd->cle);
|
||||
goto out_ce;
|
||||
}
|
||||
|
||||
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_cle, "NAND CLE");
|
||||
if (ret)
|
||||
return ret;
|
||||
gpio_direction_output(gpiomtd->plat.gpio_cle, 0);
|
||||
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_rdy)) {
|
||||
ret = devm_gpio_request(&pdev->dev, gpiomtd->plat.gpio_rdy,
|
||||
"NAND RDY");
|
||||
if (ret)
|
||||
return ret;
|
||||
gpio_direction_input(gpiomtd->plat.gpio_rdy);
|
||||
gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN);
|
||||
if (IS_ERR(gpiomtd->rdy)) {
|
||||
ret = PTR_ERR(gpiomtd->rdy);
|
||||
goto out_ce;
|
||||
}
|
||||
/* Using RDY pin */
|
||||
if (gpiomtd->rdy)
|
||||
chip->dev_ready = gpio_nand_devready;
|
||||
}
|
||||
|
||||
nand_set_flash_node(chip, pdev->dev.of_node);
|
||||
chip->IO_ADDR_W = chip->IO_ADDR_R;
|
||||
@ -285,12 +283,13 @@ static int gpio_nand_probe(struct platform_device *pdev)
|
||||
chip->cmd_ctrl = gpio_nand_cmd_ctrl;
|
||||
|
||||
mtd = nand_to_mtd(chip);
|
||||
mtd->dev.parent = &pdev->dev;
|
||||
mtd->dev.parent = dev;
|
||||
|
||||
platform_set_drvdata(pdev, gpiomtd);
|
||||
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
|
||||
gpio_direction_output(gpiomtd->plat.gpio_nwp, 1);
|
||||
/* Disable write protection, if wired up */
|
||||
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
|
||||
gpiod_direction_output(gpiomtd->nwp, 1);
|
||||
|
||||
ret = nand_scan(mtd, 1);
|
||||
if (ret)
|
||||
@ -305,8 +304,11 @@ static int gpio_nand_probe(struct platform_device *pdev)
|
||||
return 0;
|
||||
|
||||
err_wp:
|
||||
if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
|
||||
gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
|
||||
if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
|
||||
gpiod_set_value(gpiomtd->nwp, 0);
|
||||
out_ce:
|
||||
if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
|
||||
gpiod_set_value(gpiomtd->nce, 0);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -432,8 +432,7 @@ static void set_addr(struct mtd_info *mtd, int column, int page_addr)
|
||||
host->addr_value[0] |= (page_addr & 0xffff)
|
||||
<< (host->addr_cycle * 8);
|
||||
host->addr_cycle += 2;
|
||||
/* One more address cycle for devices > 128MiB */
|
||||
if (chip->chipsize > (128 << 20)) {
|
||||
if (chip->options & NAND_ROW_ADDR_3) {
|
||||
host->addr_cycle += 1;
|
||||
if (host->command == NAND_CMD_ERASE1)
|
||||
host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16;
|
||||
|
@ -115,6 +115,11 @@ static irqreturn_t mtk_ecc_irq(int irq, void *id)
|
||||
op = ECC_DECODE;
|
||||
dec = readw(ecc->regs + ECC_DECDONE);
|
||||
if (dec & ecc->sectors) {
|
||||
/*
|
||||
* Clear decode IRQ status once again to ensure that
|
||||
* there will be no extra IRQ.
|
||||
*/
|
||||
readw(ecc->regs + ECC_DECIRQ_STA);
|
||||
ecc->sectors = 0;
|
||||
complete(&ecc->done);
|
||||
} else {
|
||||
@ -130,8 +135,6 @@ static irqreturn_t mtk_ecc_irq(int irq, void *id)
|
||||
}
|
||||
}
|
||||
|
||||
writel(0, ecc->regs + ECC_IRQ_REG(op));
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
@ -307,6 +310,12 @@ void mtk_ecc_disable(struct mtk_ecc *ecc)
|
||||
|
||||
/* disable it */
|
||||
mtk_ecc_wait_idle(ecc, op);
|
||||
if (op == ECC_DECODE)
|
||||
/*
|
||||
* Clear decode IRQ status in case there is a timeout to wait
|
||||
* decode IRQ.
|
||||
*/
|
||||
readw(ecc->regs + ECC_DECIRQ_STA);
|
||||
writew(0, ecc->regs + ECC_IRQ_REG(op));
|
||||
writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
|
||||
|
||||
|
@ -415,7 +415,7 @@ static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
||||
* waits for completion. */
|
||||
static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
||||
{
|
||||
pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
|
||||
dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
|
||||
|
||||
writew(cmd, NFC_V1_V2_FLASH_CMD);
|
||||
writew(NFC_CMD, NFC_V1_V2_CONFIG2);
|
||||
@ -431,7 +431,7 @@ static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
|
||||
udelay(1);
|
||||
}
|
||||
if (max_retries < 0)
|
||||
pr_debug("%s: RESET failed\n", __func__);
|
||||
dev_dbg(host->dev, "%s: RESET failed\n", __func__);
|
||||
} else {
|
||||
/* Wait for operation to complete */
|
||||
wait_op_done(host, useirq);
|
||||
@ -454,7 +454,7 @@ static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
|
||||
* a NAND command. */
|
||||
static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
|
||||
{
|
||||
pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
|
||||
dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
|
||||
|
||||
writew(addr, NFC_V1_V2_FLASH_ADDR);
|
||||
writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
|
||||
@ -607,7 +607,7 @@ static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
|
||||
uint16_t ecc_status = get_ecc_status_v1(host);
|
||||
|
||||
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
|
||||
pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
|
||||
dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n");
|
||||
return -EBADMSG;
|
||||
}
|
||||
|
||||
@ -634,7 +634,7 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
|
||||
do {
|
||||
err = ecc_stat & ecc_bit_mask;
|
||||
if (err > err_limit) {
|
||||
printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
|
||||
dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n");
|
||||
return -EBADMSG;
|
||||
} else {
|
||||
ret += err;
|
||||
@ -642,7 +642,7 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
|
||||
ecc_stat >>= 4;
|
||||
} while (--no_subpages);
|
||||
|
||||
pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
|
||||
dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
@ -673,7 +673,7 @@ static u_char mxc_nand_read_byte(struct mtd_info *mtd)
|
||||
host->buf_start++;
|
||||
}
|
||||
|
||||
pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
|
||||
dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
|
||||
return ret;
|
||||
}
|
||||
|
||||
@ -859,8 +859,7 @@ static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
|
||||
host->devtype_data->send_addr(host,
|
||||
(page_addr >> 8) & 0xff, true);
|
||||
} else {
|
||||
/* One more address cycle for higher density devices */
|
||||
if (mtd->size >= 0x4000000) {
|
||||
if (nand_chip->options & NAND_ROW_ADDR_3) {
|
||||
/* paddr_8 - paddr_15 */
|
||||
host->devtype_data->send_addr(host,
|
||||
(page_addr >> 8) & 0xff,
|
||||
@ -1212,7 +1211,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
|
||||
struct nand_chip *nand_chip = mtd_to_nand(mtd);
|
||||
struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
|
||||
|
||||
pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
|
||||
dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
|
||||
command, column, page_addr);
|
||||
|
||||
/* Reset command state information */
|
||||
|
@ -115,7 +115,7 @@ static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
|
||||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||||
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
||||
|
||||
if (section)
|
||||
if (section || !ecc->total)
|
||||
return -ERANGE;
|
||||
|
||||
oobregion->length = ecc->total;
|
||||
@ -727,8 +727,7 @@ static void nand_command(struct mtd_info *mtd, unsigned int command,
|
||||
chip->cmd_ctrl(mtd, page_addr, ctrl);
|
||||
ctrl &= ~NAND_CTRL_CHANGE;
|
||||
chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
|
||||
/* One more address cycle for devices > 32MiB */
|
||||
if (chip->chipsize > (32 << 20))
|
||||
if (chip->options & NAND_ROW_ADDR_3)
|
||||
chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
|
||||
}
|
||||
chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
||||
@ -854,8 +853,7 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
|
||||
chip->cmd_ctrl(mtd, page_addr, ctrl);
|
||||
chip->cmd_ctrl(mtd, page_addr >> 8,
|
||||
NAND_NCE | NAND_ALE);
|
||||
/* One more address cycle for devices > 128MiB */
|
||||
if (chip->chipsize > (128 << 20))
|
||||
if (chip->options & NAND_ROW_ADDR_3)
|
||||
chip->cmd_ctrl(mtd, page_addr >> 16,
|
||||
NAND_NCE | NAND_ALE);
|
||||
}
|
||||
@ -1246,6 +1244,7 @@ int nand_reset(struct nand_chip *chip, int chipnr)
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(nand_reset);
|
||||
|
||||
/**
|
||||
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
|
||||
@ -2799,15 +2798,18 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const uint8_t *buf)
|
||||
{
|
||||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||||
int chipnr = (int)(to >> chip->chip_shift);
|
||||
struct mtd_oob_ops ops;
|
||||
int ret;
|
||||
|
||||
/* Wait for the device to get ready */
|
||||
panic_nand_wait(mtd, chip, 400);
|
||||
|
||||
/* Grab the device */
|
||||
panic_nand_get_device(chip, mtd, FL_WRITING);
|
||||
|
||||
chip->select_chip(mtd, chipnr);
|
||||
|
||||
/* Wait for the device to get ready */
|
||||
panic_nand_wait(mtd, chip, 400);
|
||||
|
||||
memset(&ops, 0, sizeof(ops));
|
||||
ops.len = len;
|
||||
ops.datbuf = (uint8_t *)buf;
|
||||
@ -3999,6 +4001,9 @@ ident_done:
|
||||
chip->chip_shift += 32 - 1;
|
||||
}
|
||||
|
||||
if (chip->chip_shift - chip->page_shift > 16)
|
||||
chip->options |= NAND_ROW_ADDR_3;
|
||||
|
||||
chip->badblockbits = 8;
|
||||
chip->erase = single_erase;
|
||||
|
||||
@ -4700,6 +4705,19 @@ int nand_scan_tail(struct mtd_info *mtd)
|
||||
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
|
||||
break;
|
||||
default:
|
||||
/*
|
||||
* Expose the whole OOB area to users if ECC_NONE
|
||||
* is passed. We could do that for all kind of
|
||||
* ->oobsize, but we must keep the old large/small
|
||||
* page with ECC layout when ->oobsize <= 128 for
|
||||
* compatibility reasons.
|
||||
*/
|
||||
if (ecc->mode == NAND_ECC_NONE) {
|
||||
mtd_set_ooblayout(mtd,
|
||||
&nand_ooblayout_lp_ops);
|
||||
break;
|
||||
}
|
||||
|
||||
WARN(1, "No oob scheme defined for oobsize %d\n",
|
||||
mtd->oobsize);
|
||||
ret = -EINVAL;
|
||||
|
@ -154,7 +154,7 @@ static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
|
||||
if (page_addr != -1) {
|
||||
write_addr_reg(nand, page_addr);
|
||||
|
||||
if (chip->chipsize > (128 << 20)) {
|
||||
if (chip->options & NAND_ROW_ADDR_3) {
|
||||
write_addr_reg(nand, page_addr >> 8);
|
||||
write_addr_reg(nand, page_addr >> 16 | ENDADDR);
|
||||
} else {
|
||||
|
@ -1133,129 +1133,172 @@ static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
|
||||
0x97, 0x79, 0xe5, 0x24, 0xb5};
|
||||
|
||||
/**
|
||||
* omap_calculate_ecc_bch - Generate bytes of ECC bytes
|
||||
* _omap_calculate_ecc_bch - Generate ECC bytes for one sector
|
||||
* @mtd: MTD device structure
|
||||
* @dat: The pointer to data on which ecc is computed
|
||||
* @ecc_code: The ecc_code buffer
|
||||
* @i: The sector number (for a multi sector page)
|
||||
*
|
||||
* Support calculating of BCH4/8 ecc vectors for the page
|
||||
* Support calculating of BCH4/8/16 ECC vectors for one sector
|
||||
* within a page. Sector number is in @i.
|
||||
*/
|
||||
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
|
||||
const u_char *dat, u_char *ecc_calc)
|
||||
static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
|
||||
const u_char *dat, u_char *ecc_calc, int i)
|
||||
{
|
||||
struct omap_nand_info *info = mtd_to_omap(mtd);
|
||||
int eccbytes = info->nand.ecc.bytes;
|
||||
struct gpmc_nand_regs *gpmc_regs = &info->reg;
|
||||
u8 *ecc_code;
|
||||
unsigned long nsectors, bch_val1, bch_val2, bch_val3, bch_val4;
|
||||
unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
|
||||
u32 val;
|
||||
int i, j;
|
||||
int j;
|
||||
|
||||
ecc_code = ecc_calc;
|
||||
switch (info->ecc_opt) {
|
||||
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
||||
case OMAP_ECC_BCH8_CODE_HW:
|
||||
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
|
||||
bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
|
||||
*ecc_code++ = (bch_val4 & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val3 & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val2 & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val1 & 0xFF);
|
||||
break;
|
||||
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
||||
case OMAP_ECC_BCH4_CODE_HW:
|
||||
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
|
||||
((bch_val1 >> 28) & 0xF);
|
||||
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 & 0xF) << 4);
|
||||
break;
|
||||
case OMAP_ECC_BCH16_CODE_HW:
|
||||
val = readl(gpmc_regs->gpmc_bch_result6[i]);
|
||||
ecc_code[0] = ((val >> 8) & 0xFF);
|
||||
ecc_code[1] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result5[i]);
|
||||
ecc_code[2] = ((val >> 24) & 0xFF);
|
||||
ecc_code[3] = ((val >> 16) & 0xFF);
|
||||
ecc_code[4] = ((val >> 8) & 0xFF);
|
||||
ecc_code[5] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result4[i]);
|
||||
ecc_code[6] = ((val >> 24) & 0xFF);
|
||||
ecc_code[7] = ((val >> 16) & 0xFF);
|
||||
ecc_code[8] = ((val >> 8) & 0xFF);
|
||||
ecc_code[9] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result3[i]);
|
||||
ecc_code[10] = ((val >> 24) & 0xFF);
|
||||
ecc_code[11] = ((val >> 16) & 0xFF);
|
||||
ecc_code[12] = ((val >> 8) & 0xFF);
|
||||
ecc_code[13] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result2[i]);
|
||||
ecc_code[14] = ((val >> 24) & 0xFF);
|
||||
ecc_code[15] = ((val >> 16) & 0xFF);
|
||||
ecc_code[16] = ((val >> 8) & 0xFF);
|
||||
ecc_code[17] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
ecc_code[18] = ((val >> 24) & 0xFF);
|
||||
ecc_code[19] = ((val >> 16) & 0xFF);
|
||||
ecc_code[20] = ((val >> 8) & 0xFF);
|
||||
ecc_code[21] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
ecc_code[22] = ((val >> 24) & 0xFF);
|
||||
ecc_code[23] = ((val >> 16) & 0xFF);
|
||||
ecc_code[24] = ((val >> 8) & 0xFF);
|
||||
ecc_code[25] = ((val >> 0) & 0xFF);
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* ECC scheme specific syndrome customizations */
|
||||
switch (info->ecc_opt) {
|
||||
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
||||
/* Add constant polynomial to remainder, so that
|
||||
* ECC of blank pages results in 0x0 on reading back
|
||||
*/
|
||||
for (j = 0; j < eccbytes; j++)
|
||||
ecc_calc[j] ^= bch4_polynomial[j];
|
||||
break;
|
||||
case OMAP_ECC_BCH4_CODE_HW:
|
||||
/* Set 8th ECC byte as 0x0 for ROM compatibility */
|
||||
ecc_calc[eccbytes - 1] = 0x0;
|
||||
break;
|
||||
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
||||
/* Add constant polynomial to remainder, so that
|
||||
* ECC of blank pages results in 0x0 on reading back
|
||||
*/
|
||||
for (j = 0; j < eccbytes; j++)
|
||||
ecc_calc[j] ^= bch8_polynomial[j];
|
||||
break;
|
||||
case OMAP_ECC_BCH8_CODE_HW:
|
||||
/* Set 14th ECC byte as 0x0 for ROM compatibility */
|
||||
ecc_calc[eccbytes - 1] = 0x0;
|
||||
break;
|
||||
case OMAP_ECC_BCH16_CODE_HW:
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
|
||||
* @mtd: MTD device structure
|
||||
* @dat: The pointer to data on which ecc is computed
|
||||
* @ecc_code: The ecc_code buffer
|
||||
*
|
||||
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
|
||||
* when SW based correction is required as ECC is required for one sector
|
||||
* at a time.
|
||||
*/
|
||||
static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
|
||||
const u_char *dat, u_char *ecc_calc)
|
||||
{
|
||||
return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
|
||||
* @mtd: MTD device structure
|
||||
* @dat: The pointer to data on which ecc is computed
|
||||
* @ecc_code: The ecc_code buffer
|
||||
*
|
||||
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
|
||||
*/
|
||||
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
|
||||
const u_char *dat, u_char *ecc_calc)
|
||||
{
|
||||
struct omap_nand_info *info = mtd_to_omap(mtd);
|
||||
int eccbytes = info->nand.ecc.bytes;
|
||||
unsigned long nsectors;
|
||||
int i, ret;
|
||||
|
||||
nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
|
||||
for (i = 0; i < nsectors; i++) {
|
||||
ecc_code = ecc_calc;
|
||||
switch (info->ecc_opt) {
|
||||
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
||||
case OMAP_ECC_BCH8_CODE_HW:
|
||||
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
|
||||
bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
|
||||
*ecc_code++ = (bch_val4 & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val3 & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val2 & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
|
||||
*ecc_code++ = (bch_val1 & 0xFF);
|
||||
break;
|
||||
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
||||
case OMAP_ECC_BCH4_CODE_HW:
|
||||
bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
|
||||
*ecc_code++ = ((bch_val2 & 0xF) << 4) |
|
||||
((bch_val1 >> 28) & 0xF);
|
||||
*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
|
||||
*ecc_code++ = ((bch_val1 & 0xF) << 4);
|
||||
break;
|
||||
case OMAP_ECC_BCH16_CODE_HW:
|
||||
val = readl(gpmc_regs->gpmc_bch_result6[i]);
|
||||
ecc_code[0] = ((val >> 8) & 0xFF);
|
||||
ecc_code[1] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result5[i]);
|
||||
ecc_code[2] = ((val >> 24) & 0xFF);
|
||||
ecc_code[3] = ((val >> 16) & 0xFF);
|
||||
ecc_code[4] = ((val >> 8) & 0xFF);
|
||||
ecc_code[5] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result4[i]);
|
||||
ecc_code[6] = ((val >> 24) & 0xFF);
|
||||
ecc_code[7] = ((val >> 16) & 0xFF);
|
||||
ecc_code[8] = ((val >> 8) & 0xFF);
|
||||
ecc_code[9] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result3[i]);
|
||||
ecc_code[10] = ((val >> 24) & 0xFF);
|
||||
ecc_code[11] = ((val >> 16) & 0xFF);
|
||||
ecc_code[12] = ((val >> 8) & 0xFF);
|
||||
ecc_code[13] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result2[i]);
|
||||
ecc_code[14] = ((val >> 24) & 0xFF);
|
||||
ecc_code[15] = ((val >> 16) & 0xFF);
|
||||
ecc_code[16] = ((val >> 8) & 0xFF);
|
||||
ecc_code[17] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result1[i]);
|
||||
ecc_code[18] = ((val >> 24) & 0xFF);
|
||||
ecc_code[19] = ((val >> 16) & 0xFF);
|
||||
ecc_code[20] = ((val >> 8) & 0xFF);
|
||||
ecc_code[21] = ((val >> 0) & 0xFF);
|
||||
val = readl(gpmc_regs->gpmc_bch_result0[i]);
|
||||
ecc_code[22] = ((val >> 24) & 0xFF);
|
||||
ecc_code[23] = ((val >> 16) & 0xFF);
|
||||
ecc_code[24] = ((val >> 8) & 0xFF);
|
||||
ecc_code[25] = ((val >> 0) & 0xFF);
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* ECC scheme specific syndrome customizations */
|
||||
switch (info->ecc_opt) {
|
||||
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
|
||||
/* Add constant polynomial to remainder, so that
|
||||
* ECC of blank pages results in 0x0 on reading back */
|
||||
for (j = 0; j < eccbytes; j++)
|
||||
ecc_calc[j] ^= bch4_polynomial[j];
|
||||
break;
|
||||
case OMAP_ECC_BCH4_CODE_HW:
|
||||
/* Set 8th ECC byte as 0x0 for ROM compatibility */
|
||||
ecc_calc[eccbytes - 1] = 0x0;
|
||||
break;
|
||||
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
|
||||
/* Add constant polynomial to remainder, so that
|
||||
* ECC of blank pages results in 0x0 on reading back */
|
||||
for (j = 0; j < eccbytes; j++)
|
||||
ecc_calc[j] ^= bch8_polynomial[j];
|
||||
break;
|
||||
case OMAP_ECC_BCH8_CODE_HW:
|
||||
/* Set 14th ECC byte as 0x0 for ROM compatibility */
|
||||
ecc_calc[eccbytes - 1] = 0x0;
|
||||
break;
|
||||
case OMAP_ECC_BCH16_CODE_HW:
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
ecc_calc += eccbytes;
|
||||
ecc_calc += eccbytes;
|
||||
}
|
||||
|
||||
return 0;
|
||||
@ -1496,7 +1539,7 @@ static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
chip->write_buf(mtd, buf, mtd->writesize);
|
||||
|
||||
/* Update ecc vector from GPMC result registers */
|
||||
chip->ecc.calculate(mtd, buf, &ecc_calc[0]);
|
||||
omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
|
||||
|
||||
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
||||
chip->ecc.total);
|
||||
@ -1508,6 +1551,72 @@ static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* omap_write_subpage_bch - BCH hardware ECC based subpage write
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @offset: column address of subpage within the page
|
||||
* @data_len: data length
|
||||
* @buf: data buffer
|
||||
* @oob_required: must write chip->oob_poi to OOB
|
||||
* @page: page number to write
|
||||
*
|
||||
* OMAP optimized subpage write method.
|
||||
*/
|
||||
static int omap_write_subpage_bch(struct mtd_info *mtd,
|
||||
struct nand_chip *chip, u32 offset,
|
||||
u32 data_len, const u8 *buf,
|
||||
int oob_required, int page)
|
||||
{
|
||||
u8 *ecc_calc = chip->buffers->ecccalc;
|
||||
int ecc_size = chip->ecc.size;
|
||||
int ecc_bytes = chip->ecc.bytes;
|
||||
int ecc_steps = chip->ecc.steps;
|
||||
u32 start_step = offset / ecc_size;
|
||||
u32 end_step = (offset + data_len - 1) / ecc_size;
|
||||
int step, ret = 0;
|
||||
|
||||
/*
|
||||
* Write entire page at one go as it would be optimal
|
||||
* as ECC is calculated by hardware.
|
||||
* ECC is calculated for all subpages but we choose
|
||||
* only what we want.
|
||||
*/
|
||||
|
||||
/* Enable GPMC ECC engine */
|
||||
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
|
||||
|
||||
/* Write data */
|
||||
chip->write_buf(mtd, buf, mtd->writesize);
|
||||
|
||||
for (step = 0; step < ecc_steps; step++) {
|
||||
/* mask ECC of un-touched subpages by padding 0xFF */
|
||||
if (step < start_step || step > end_step)
|
||||
memset(ecc_calc, 0xff, ecc_bytes);
|
||||
else
|
||||
ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
buf += ecc_size;
|
||||
ecc_calc += ecc_bytes;
|
||||
}
|
||||
|
||||
/* copy calculated ECC for whole page to chip->buffer->oob */
|
||||
/* this include masked-value(0xFF) for unwritten subpages */
|
||||
ecc_calc = chip->buffers->ecccalc;
|
||||
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
||||
chip->ecc.total);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* write OOB buffer to NAND device */
|
||||
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* omap_read_page_bch - BCH ecc based page read function for entire page
|
||||
* @mtd: mtd info structure
|
||||
@ -1544,7 +1653,7 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
chip->ecc.total);
|
||||
|
||||
/* Calculate ecc bytes */
|
||||
chip->ecc.calculate(mtd, buf, ecc_calc);
|
||||
omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
|
||||
|
||||
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
||||
chip->ecc.total);
|
||||
@ -1588,8 +1697,7 @@ static bool is_elm_present(struct omap_nand_info *info,
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool omap2_nand_ecc_check(struct omap_nand_info *info,
|
||||
struct omap_nand_platform_data *pdata)
|
||||
static bool omap2_nand_ecc_check(struct omap_nand_info *info)
|
||||
{
|
||||
bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
|
||||
|
||||
@ -1804,7 +1912,6 @@ static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
|
||||
static int omap_nand_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct omap_nand_info *info;
|
||||
struct omap_nand_platform_data *pdata = NULL;
|
||||
struct mtd_info *mtd;
|
||||
struct nand_chip *nand_chip;
|
||||
int err;
|
||||
@ -1821,29 +1928,10 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
|
||||
info->pdev = pdev;
|
||||
|
||||
if (dev->of_node) {
|
||||
if (omap_get_dt_info(dev, info))
|
||||
return -EINVAL;
|
||||
} else {
|
||||
pdata = dev_get_platdata(&pdev->dev);
|
||||
if (!pdata) {
|
||||
dev_err(&pdev->dev, "platform data missing\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
err = omap_get_dt_info(dev, info);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
info->gpmc_cs = pdata->cs;
|
||||
info->reg = pdata->reg;
|
||||
info->ecc_opt = pdata->ecc_opt;
|
||||
if (pdata->dev_ready)
|
||||
dev_info(&pdev->dev, "pdata->dev_ready is deprecated\n");
|
||||
|
||||
info->xfer_type = pdata->xfer_type;
|
||||
info->devsize = pdata->devsize;
|
||||
info->elm_of_node = pdata->elm_of_node;
|
||||
info->flash_bbt = pdata->flash_bbt;
|
||||
}
|
||||
|
||||
platform_set_drvdata(pdev, info);
|
||||
info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
|
||||
if (!info->ops) {
|
||||
dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
|
||||
@ -2002,7 +2090,7 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
goto return_error;
|
||||
}
|
||||
|
||||
if (!omap2_nand_ecc_check(info, pdata)) {
|
||||
if (!omap2_nand_ecc_check(info)) {
|
||||
err = -EINVAL;
|
||||
goto return_error;
|
||||
}
|
||||
@ -2044,7 +2132,7 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
nand_chip->ecc.strength = 4;
|
||||
nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
|
||||
nand_chip->ecc.correct = nand_bch_correct_data;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
|
||||
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
|
||||
/* Reserve one byte for the OMAP marker */
|
||||
oobbytes_per_step = nand_chip->ecc.bytes + 1;
|
||||
@ -2066,9 +2154,9 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
nand_chip->ecc.strength = 4;
|
||||
nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
|
||||
nand_chip->ecc.correct = omap_elm_correct_data;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
|
||||
nand_chip->ecc.read_page = omap_read_page_bch;
|
||||
nand_chip->ecc.write_page = omap_write_page_bch;
|
||||
nand_chip->ecc.write_subpage = omap_write_subpage_bch;
|
||||
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
||||
oobbytes_per_step = nand_chip->ecc.bytes;
|
||||
|
||||
@ -2087,7 +2175,7 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
nand_chip->ecc.strength = 8;
|
||||
nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
|
||||
nand_chip->ecc.correct = nand_bch_correct_data;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw;
|
||||
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
|
||||
/* Reserve one byte for the OMAP marker */
|
||||
oobbytes_per_step = nand_chip->ecc.bytes + 1;
|
||||
@ -2109,9 +2197,9 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
nand_chip->ecc.strength = 8;
|
||||
nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
|
||||
nand_chip->ecc.correct = omap_elm_correct_data;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
|
||||
nand_chip->ecc.read_page = omap_read_page_bch;
|
||||
nand_chip->ecc.write_page = omap_write_page_bch;
|
||||
nand_chip->ecc.write_subpage = omap_write_subpage_bch;
|
||||
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
||||
oobbytes_per_step = nand_chip->ecc.bytes;
|
||||
|
||||
@ -2131,9 +2219,9 @@ static int omap_nand_probe(struct platform_device *pdev)
|
||||
nand_chip->ecc.strength = 16;
|
||||
nand_chip->ecc.hwctl = omap_enable_hwecc_bch;
|
||||
nand_chip->ecc.correct = omap_elm_correct_data;
|
||||
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
|
||||
nand_chip->ecc.read_page = omap_read_page_bch;
|
||||
nand_chip->ecc.write_page = omap_write_page_bch;
|
||||
nand_chip->ecc.write_subpage = omap_write_subpage_bch;
|
||||
mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
|
||||
oobbytes_per_step = nand_chip->ecc.bytes;
|
||||
|
||||
@ -2167,10 +2255,9 @@ scan_tail:
|
||||
if (err)
|
||||
goto return_error;
|
||||
|
||||
if (dev->of_node)
|
||||
mtd_device_register(mtd, NULL, 0);
|
||||
else
|
||||
mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
|
||||
err = mtd_device_register(mtd, NULL, 0);
|
||||
if (err)
|
||||
goto return_error;
|
||||
|
||||
platform_set_drvdata(pdev, mtd);
|
||||
|
||||
|
@ -30,6 +30,8 @@
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/platform_data/mtd-nand-pxa3xx.h>
|
||||
#include <linux/mfd/syscon.h>
|
||||
#include <linux/regmap.h>
|
||||
|
||||
#define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200)
|
||||
#define NAND_STOP_DELAY msecs_to_jiffies(40)
|
||||
@ -45,6 +47,10 @@
|
||||
*/
|
||||
#define INIT_BUFFER_SIZE 2048
|
||||
|
||||
/* System control register and bit to enable NAND on some SoCs */
|
||||
#define GENCONF_SOC_DEVICE_MUX 0x208
|
||||
#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
|
||||
|
||||
/* registers and bit definitions */
|
||||
#define NDCR (0x00) /* Control register */
|
||||
#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */
|
||||
@ -174,6 +180,7 @@ enum {
|
||||
enum pxa3xx_nand_variant {
|
||||
PXA3XX_NAND_VARIANT_PXA,
|
||||
PXA3XX_NAND_VARIANT_ARMADA370,
|
||||
PXA3XX_NAND_VARIANT_ARMADA_8K,
|
||||
};
|
||||
|
||||
struct pxa3xx_nand_host {
|
||||
@ -425,6 +432,10 @@ static const struct of_device_id pxa3xx_nand_dt_ids[] = {
|
||||
.compatible = "marvell,armada370-nand",
|
||||
.data = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
|
||||
},
|
||||
{
|
||||
.compatible = "marvell,armada-8k-nand",
|
||||
.data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K,
|
||||
},
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
|
||||
@ -825,7 +836,8 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
|
||||
info->retcode = ERR_UNCORERR;
|
||||
if (status & NDSR_CORERR) {
|
||||
info->retcode = ERR_CORERR;
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 &&
|
||||
if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
|
||||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) &&
|
||||
info->ecc_bch)
|
||||
info->ecc_err_cnt = NDSR_ERR_CNT(status);
|
||||
else
|
||||
@ -888,7 +900,8 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
|
||||
nand_writel(info, NDCB0, info->ndcb2);
|
||||
|
||||
/* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
|
||||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
|
||||
nand_writel(info, NDCB0, info->ndcb3);
|
||||
}
|
||||
|
||||
@ -1671,7 +1684,8 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd)
|
||||
chip->options |= NAND_BUSWIDTH_16;
|
||||
|
||||
/* Device detection must be done with ECC disabled */
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370)
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
|
||||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
|
||||
nand_writel(info, NDECCCTRL, 0x0);
|
||||
|
||||
if (pdata->flash_bbt)
|
||||
@ -1709,7 +1723,8 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd)
|
||||
* (aka splitted) command handling,
|
||||
*/
|
||||
if (mtd->writesize > PAGE_CHUNK_SIZE) {
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370) {
|
||||
if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
|
||||
info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) {
|
||||
chip->cmdfunc = nand_cmdfunc_extended;
|
||||
} else {
|
||||
dev_err(&info->pdev->dev,
|
||||
@ -1928,6 +1943,24 @@ static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
|
||||
if (!of_id)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Some SoCs like A7k/A8k need to enable manually the NAND
|
||||
* controller to avoid being bootloader dependent. This is done
|
||||
* through the use of a single bit in the System Functions registers.
|
||||
*/
|
||||
if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) {
|
||||
struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
|
||||
pdev->dev.of_node, "marvell,system-controller");
|
||||
u32 reg;
|
||||
|
||||
if (IS_ERR(sysctrl_base))
|
||||
return PTR_ERR(sysctrl_base);
|
||||
|
||||
regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®);
|
||||
reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN;
|
||||
regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
|
||||
}
|
||||
|
||||
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
|
||||
if (!pdata)
|
||||
return -ENOMEM;
|
||||
|
@ -22,6 +22,7 @@
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/dma/qcom_bam_dma.h>
|
||||
|
||||
/* NANDc reg offsets */
|
||||
#define NAND_FLASH_CMD 0x00
|
||||
@ -199,6 +200,15 @@ nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
|
||||
*/
|
||||
#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
|
||||
|
||||
/* Returns the NAND register physical address */
|
||||
#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
|
||||
|
||||
/* Returns the dma address for reg read buffer */
|
||||
#define reg_buf_dma_addr(chip, vaddr) \
|
||||
((chip)->reg_read_dma + \
|
||||
((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
|
||||
|
||||
#define QPIC_PER_CW_CMD_ELEMENTS 32
|
||||
#define QPIC_PER_CW_CMD_SGL 32
|
||||
#define QPIC_PER_CW_DATA_SGL 8
|
||||
|
||||
@ -221,8 +231,13 @@ nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
|
||||
/*
|
||||
* This data type corresponds to the BAM transaction which will be used for all
|
||||
* NAND transfers.
|
||||
* @bam_ce - the array of BAM command elements
|
||||
* @cmd_sgl - sgl for NAND BAM command pipe
|
||||
* @data_sgl - sgl for NAND BAM consumer/producer pipe
|
||||
* @bam_ce_pos - the index in bam_ce which is available for next sgl
|
||||
* @bam_ce_start - the index in bam_ce which marks the start position ce
|
||||
* for current sgl. It will be used for size calculation
|
||||
* for current sgl
|
||||
* @cmd_sgl_pos - current index in command sgl.
|
||||
* @cmd_sgl_start - start index in command sgl.
|
||||
* @tx_sgl_pos - current index in data sgl for tx.
|
||||
@ -231,8 +246,11 @@ nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \
|
||||
* @rx_sgl_start - start index in data sgl for rx.
|
||||
*/
|
||||
struct bam_transaction {
|
||||
struct bam_cmd_element *bam_ce;
|
||||
struct scatterlist *cmd_sgl;
|
||||
struct scatterlist *data_sgl;
|
||||
u32 bam_ce_pos;
|
||||
u32 bam_ce_start;
|
||||
u32 cmd_sgl_pos;
|
||||
u32 cmd_sgl_start;
|
||||
u32 tx_sgl_pos;
|
||||
@ -307,7 +325,8 @@ struct nandc_regs {
|
||||
* controller
|
||||
* @dev: parent device
|
||||
* @base: MMIO base
|
||||
* @base_dma: physical base address of controller registers
|
||||
* @base_phys: physical base address of controller registers
|
||||
* @base_dma: dma base address of controller registers
|
||||
* @core_clk: controller clock
|
||||
* @aon_clk: another controller clock
|
||||
*
|
||||
@ -340,6 +359,7 @@ struct qcom_nand_controller {
|
||||
struct device *dev;
|
||||
|
||||
void __iomem *base;
|
||||
phys_addr_t base_phys;
|
||||
dma_addr_t base_dma;
|
||||
|
||||
struct clk *core_clk;
|
||||
@ -462,7 +482,8 @@ alloc_bam_transaction(struct qcom_nand_controller *nandc)
|
||||
|
||||
bam_txn_size =
|
||||
sizeof(*bam_txn) + num_cw *
|
||||
((sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
|
||||
((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
|
||||
(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
|
||||
(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
|
||||
|
||||
bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
|
||||
@ -472,6 +493,10 @@ alloc_bam_transaction(struct qcom_nand_controller *nandc)
|
||||
bam_txn = bam_txn_buf;
|
||||
bam_txn_buf += sizeof(*bam_txn);
|
||||
|
||||
bam_txn->bam_ce = bam_txn_buf;
|
||||
bam_txn_buf +=
|
||||
sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
|
||||
|
||||
bam_txn->cmd_sgl = bam_txn_buf;
|
||||
bam_txn_buf +=
|
||||
sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
|
||||
@ -489,6 +514,8 @@ static void clear_bam_transaction(struct qcom_nand_controller *nandc)
|
||||
if (!nandc->props->is_bam)
|
||||
return;
|
||||
|
||||
bam_txn->bam_ce_pos = 0;
|
||||
bam_txn->bam_ce_start = 0;
|
||||
bam_txn->cmd_sgl_pos = 0;
|
||||
bam_txn->cmd_sgl_start = 0;
|
||||
bam_txn->tx_sgl_pos = 0;
|
||||
@ -733,6 +760,66 @@ static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepares the command descriptor for BAM DMA which will be used for NAND
|
||||
* register reads and writes. The command descriptor requires the command
|
||||
* to be formed in command element type so this function uses the command
|
||||
* element from bam transaction ce array and fills the same with required
|
||||
* data. A single SGL can contain multiple command elements so
|
||||
* NAND_BAM_NEXT_SGL will be used for starting the separate SGL
|
||||
* after the current command element.
|
||||
*/
|
||||
static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
|
||||
int reg_off, const void *vaddr,
|
||||
int size, unsigned int flags)
|
||||
{
|
||||
int bam_ce_size;
|
||||
int i, ret;
|
||||
struct bam_cmd_element *bam_ce_buffer;
|
||||
struct bam_transaction *bam_txn = nandc->bam_txn;
|
||||
|
||||
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
|
||||
|
||||
/* fill the command desc */
|
||||
for (i = 0; i < size; i++) {
|
||||
if (read)
|
||||
bam_prep_ce(&bam_ce_buffer[i],
|
||||
nandc_reg_phys(nandc, reg_off + 4 * i),
|
||||
BAM_READ_COMMAND,
|
||||
reg_buf_dma_addr(nandc,
|
||||
(__le32 *)vaddr + i));
|
||||
else
|
||||
bam_prep_ce_le32(&bam_ce_buffer[i],
|
||||
nandc_reg_phys(nandc, reg_off + 4 * i),
|
||||
BAM_WRITE_COMMAND,
|
||||
*((__le32 *)vaddr + i));
|
||||
}
|
||||
|
||||
bam_txn->bam_ce_pos += size;
|
||||
|
||||
/* use the separate sgl after this command */
|
||||
if (flags & NAND_BAM_NEXT_SGL) {
|
||||
bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
|
||||
bam_ce_size = (bam_txn->bam_ce_pos -
|
||||
bam_txn->bam_ce_start) *
|
||||
sizeof(struct bam_cmd_element);
|
||||
sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
|
||||
bam_ce_buffer, bam_ce_size);
|
||||
bam_txn->cmd_sgl_pos++;
|
||||
bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
|
||||
|
||||
if (flags & NAND_BAM_NWD) {
|
||||
ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
|
||||
DMA_PREP_FENCE |
|
||||
DMA_PREP_CMD);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Prepares the data descriptor for BAM DMA which will be used for NAND
|
||||
* data reads and writes.
|
||||
@ -851,19 +938,22 @@ static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
|
||||
{
|
||||
bool flow_control = false;
|
||||
void *vaddr;
|
||||
int size;
|
||||
|
||||
if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
|
||||
flow_control = true;
|
||||
vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
|
||||
nandc->reg_read_pos += num_regs;
|
||||
|
||||
if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
|
||||
first = dev_cmd_reg_addr(nandc, first);
|
||||
|
||||
size = num_regs * sizeof(u32);
|
||||
vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
|
||||
nandc->reg_read_pos += num_regs;
|
||||
if (nandc->props->is_bam)
|
||||
return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
|
||||
num_regs, flags);
|
||||
|
||||
return prep_adm_dma_desc(nandc, true, first, vaddr, size, flow_control);
|
||||
if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
|
||||
flow_control = true;
|
||||
|
||||
return prep_adm_dma_desc(nandc, true, first, vaddr,
|
||||
num_regs * sizeof(u32), flow_control);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -880,13 +970,9 @@ static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
|
||||
bool flow_control = false;
|
||||
struct nandc_regs *regs = nandc->regs;
|
||||
void *vaddr;
|
||||
int size;
|
||||
|
||||
vaddr = offset_to_nandc_reg(regs, first);
|
||||
|
||||
if (first == NAND_FLASH_CMD)
|
||||
flow_control = true;
|
||||
|
||||
if (first == NAND_ERASED_CW_DETECT_CFG) {
|
||||
if (flags & NAND_ERASED_CW_SET)
|
||||
vaddr = ®s->erased_cw_detect_cfg_set;
|
||||
@ -903,10 +989,15 @@ static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
|
||||
if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
|
||||
first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
|
||||
|
||||
size = num_regs * sizeof(u32);
|
||||
if (nandc->props->is_bam)
|
||||
return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
|
||||
num_regs, flags);
|
||||
|
||||
return prep_adm_dma_desc(nandc, false, first, vaddr, size,
|
||||
flow_control);
|
||||
if (first == NAND_FLASH_CMD)
|
||||
flow_control = true;
|
||||
|
||||
return prep_adm_dma_desc(nandc, false, first, vaddr,
|
||||
num_regs * sizeof(u32), flow_control);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1170,7 +1261,8 @@ static int submit_descs(struct qcom_nand_controller *nandc)
|
||||
}
|
||||
|
||||
if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
|
||||
r = prepare_bam_async_desc(nandc, nandc->cmd_chan, 0);
|
||||
r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
|
||||
DMA_PREP_CMD);
|
||||
if (r)
|
||||
return r;
|
||||
}
|
||||
@ -2705,6 +2797,7 @@ static int qcom_nandc_probe(struct platform_device *pdev)
|
||||
if (IS_ERR(nandc->base))
|
||||
return PTR_ERR(nandc->base);
|
||||
|
||||
nandc->base_phys = res->start;
|
||||
nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
|
||||
|
||||
nandc->core_clk = devm_clk_get(dev, "core");
|
||||
|
@ -1094,14 +1094,11 @@ MODULE_DEVICE_TABLE(of, of_flctl_match);
|
||||
|
||||
static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
|
||||
{
|
||||
const struct of_device_id *match;
|
||||
struct flctl_soc_config *config;
|
||||
const struct flctl_soc_config *config;
|
||||
struct sh_flctl_platform_data *pdata;
|
||||
|
||||
match = of_match_device(of_flctl_match, dev);
|
||||
if (match)
|
||||
config = (struct flctl_soc_config *)match->data;
|
||||
else {
|
||||
config = of_device_get_match_data(dev);
|
||||
if (!config) {
|
||||
dev_err(dev, "%s: no OF configuration attached\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
|
@ -4,11 +4,6 @@
|
||||
#include <linux/mtd/rawnand.h>
|
||||
|
||||
struct gpio_nand_platdata {
|
||||
int gpio_nce;
|
||||
int gpio_nwp;
|
||||
int gpio_cle;
|
||||
int gpio_ale;
|
||||
int gpio_rdy;
|
||||
void (*adjust_parts)(struct gpio_nand_platdata *, size_t);
|
||||
struct mtd_partition *parts;
|
||||
unsigned int num_parts;
|
||||
|
@ -177,6 +177,9 @@ enum nand_ecc_algo {
|
||||
*/
|
||||
#define NAND_NEED_SCRAMBLING 0x00002000
|
||||
|
||||
/* Device needs 3rd row address cycle */
|
||||
#define NAND_ROW_ADDR_3 0x00004000
|
||||
|
||||
/* Options valid for Samsung large page devices */
|
||||
#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
|
||||
|
||||
|
@ -66,21 +66,4 @@ struct gpmc_nand_regs {
|
||||
/* Deprecated. Do not use */
|
||||
void __iomem *gpmc_status;
|
||||
};
|
||||
|
||||
struct omap_nand_platform_data {
|
||||
int cs;
|
||||
struct mtd_partition *parts;
|
||||
int nr_parts;
|
||||
bool flash_bbt;
|
||||
enum nand_io xfer_type;
|
||||
int devsize;
|
||||
enum omap_ecc ecc_opt;
|
||||
|
||||
struct device_node *elm_of_node;
|
||||
|
||||
/* deprecated */
|
||||
struct gpmc_nand_regs reg;
|
||||
struct device_node *of_node;
|
||||
bool dev_ready;
|
||||
};
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user