Merge branch 'timers-clocksource-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'timers-clocksource-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  clocksource: convert mips to generic i8253 clocksource
  clocksource: convert x86 to generic i8253 clocksource
  clocksource: convert footbridge to generic i8253 clocksource
  clocksource: add common i8253 PIT clocksource
  blackfin: convert to clocksource_register_hz
  mips: convert to clocksource_register_hz/khz
  sparc: convert to clocksource_register_hz/khz
  alpha: convert to clocksource_register_hz
  microblaze: convert to clocksource_register_hz/khz
  ia64: convert to clocksource_register_hz/khz
  x86: Convert remaining x86 clocksources to clocksource_register_hz/khz
  Make clocksource name const
This commit is contained in:
Linus Torvalds 2011-05-19 17:44:13 -07:00
commit 0f1bdc1815
38 changed files with 157 additions and 355 deletions

View File

@ -0,0 +1,15 @@
#ifndef __ASMARM_I8253_H
#define __ASMARM_I8253_H
/* i8253A PIT registers */
#define PIT_MODE 0x43
#define PIT_CH0 0x40
#define PIT_LATCH ((PIT_TICK_RATE + HZ / 2) / HZ)
extern raw_spinlock_t i8253_lock;
#define outb_pit outb_p
#define inb_pit inb_p
#endif

View File

@ -4,6 +4,7 @@ menu "Footbridge Implementations"
config ARCH_CATS
bool "CATS"
select CLKSRC_I8253
select FOOTBRIDGE_HOST
select ISA
select ISA_DMA
@ -59,6 +60,7 @@ config ARCH_EBSA285_HOST
config ARCH_NETWINDER
bool "NetWinder"
select CLKSRC_I8253
select FOOTBRIDGE_HOST
select ISA
select ISA_DMA

View File

@ -10,53 +10,16 @@
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/timex.h>
#include <asm/irq.h>
#include <asm/i8253.h>
#include <asm/mach/time.h>
#include "common.h"
#define PIT_MODE 0x43
#define PIT_CH0 0x40
#define PIT_LATCH ((PIT_TICK_RATE + HZ / 2) / HZ)
static cycle_t pit_read(struct clocksource *cs)
{
unsigned long flags;
static int old_count;
static u32 old_jifs;
int count;
u32 jifs;
raw_local_irq_save(flags);
jifs = jiffies;
outb_p(0x00, PIT_MODE); /* latch the count */
count = inb_p(PIT_CH0); /* read the latched count */
count |= inb_p(PIT_CH0) << 8;
if (count > old_count && jifs == old_jifs)
count = old_count;
old_count = count;
old_jifs = jifs;
raw_local_irq_restore(flags);
count = (PIT_LATCH - 1) - count;
return (cycle_t)(jifs * PIT_LATCH) + count;
}
static struct clocksource pit_cs = {
.name = "pit",
.rating = 110,
.read = pit_read,
.mask = CLOCKSOURCE_MASK(32),
};
DEFINE_RAW_SPINLOCK(i8253_lock);
static void pit_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
@ -121,7 +84,7 @@ static void __init isa_timer_init(void)
pit_ce.max_delta_ns = clockevent_delta2ns(0x7fff, &pit_ce);
pit_ce.min_delta_ns = clockevent_delta2ns(0x000f, &pit_ce);
clocksource_register_hz(&pit_cs, PIT_TICK_RATE);
clocksource_i8253_init();
setup_irq(pit_ce.irq, &pit_timer_irq);
clockevents_register_device(&pit_ce);

View File

@ -23,29 +23,6 @@
#include <asm/gptimers.h>
#include <asm/nmi.h>
/* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
#if defined(CONFIG_CYCLES_CLOCKSOURCE)
@ -63,7 +40,6 @@ static struct clocksource bfin_cs_cycles = {
.rating = 400,
.read = bfin_read_cycles,
.mask = CLOCKSOURCE_MASK(64),
.shift = CYC2NS_SCALE_FACTOR,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -75,10 +51,7 @@ static inline unsigned long long bfin_cs_cycles_sched_clock(void)
static int __init bfin_cs_cycles_init(void)
{
bfin_cs_cycles.mult = \
clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
if (clocksource_register(&bfin_cs_cycles))
if (clocksource_register_hz(&bfin_cs_cycles, get_cclk()))
panic("failed to register clocksource");
return 0;
@ -111,7 +84,6 @@ static struct clocksource bfin_cs_gptimer0 = {
.rating = 350,
.read = bfin_read_gptimer0,
.mask = CLOCKSOURCE_MASK(32),
.shift = CYC2NS_SCALE_FACTOR,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -125,10 +97,7 @@ static int __init bfin_cs_gptimer0_init(void)
{
setup_gptimer0();
bfin_cs_gptimer0.mult = \
clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
if (clocksource_register(&bfin_cs_gptimer0))
if (clocksource_register_hz(&bfin_cs_gptimer0, get_sclk()))
panic("failed to register clocksource");
return 0;

View File

@ -31,8 +31,6 @@ static struct clocksource clocksource_cyclone = {
.rating = 300,
.read = read_cyclone,
.mask = (1LL << 40) - 1,
.mult = 0, /*to be calculated*/
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -118,9 +116,7 @@ int __init init_cyclone_clock(void)
/* initialize last tick */
cyclone_mc = cyclone_timer;
clocksource_cyclone.fsys_mmio = cyclone_timer;
clocksource_cyclone.mult = clocksource_hz2mult(CYCLONE_TIMER_FREQ,
clocksource_cyclone.shift);
clocksource_register(&clocksource_cyclone);
clocksource_register_hz(&clocksource_cyclone, CYCLONE_TIMER_FREQ);
return 0;
}

View File

@ -73,8 +73,6 @@ static struct clocksource clocksource_itc = {
.rating = 350,
.read = itc_get_cycles,
.mask = CLOCKSOURCE_MASK(64),
.mult = 0, /*to be calculated*/
.shift = 16,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
#ifdef CONFIG_PARAVIRT
.resume = paravirt_clocksource_resume,
@ -365,11 +363,8 @@ ia64_init_itm (void)
ia64_cpu_local_tick();
if (!itc_clocksource) {
/* Sort out mult/shift values: */
clocksource_itc.mult =
clocksource_hz2mult(local_cpu_data->itc_freq,
clocksource_itc.shift);
clocksource_register(&clocksource_itc);
clocksource_register_hz(&clocksource_itc,
local_cpu_data->itc_freq);
itc_clocksource = &clocksource_itc;
}
}

View File

@ -33,8 +33,6 @@ static struct clocksource clocksource_sn2 = {
.rating = 450,
.read = read_sn2,
.mask = (1LL << 55) - 1,
.mult = 0,
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -57,9 +55,7 @@ ia64_sn_udelay (unsigned long usecs)
void __init sn_timer_init(void)
{
clocksource_sn2.fsys_mmio = RTC_COUNTER_ADDR;
clocksource_sn2.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
clocksource_sn2.shift);
clocksource_register(&clocksource_sn2);
clocksource_register_hz(&clocksource_sn2, sn_rtc_cycles_per_second);
ia64_udelay = &ia64_sn_udelay;
}

View File

@ -217,16 +217,12 @@ static struct clocksource clocksource_microblaze = {
.rating = 300,
.read = microblaze_read,
.mask = CLOCKSOURCE_MASK(32),
.shift = 8, /* I can shift it */
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int __init microblaze_clocksource_init(void)
{
clocksource_microblaze.mult =
clocksource_hz2mult(timer_clock_freq,
clocksource_microblaze.shift);
if (clocksource_register(&clocksource_microblaze))
if (clocksource_register_hz(&clocksource_microblaze, timer_clock_freq))
panic("failed to register clocksource");
/* stop timer1 */

View File

@ -2395,6 +2395,7 @@ config MMU
config I8253
bool
select CLKSRC_I8253
select MIPS_EXTERNAL_TIMER
config ZONE_DMA32

View File

@ -141,8 +141,7 @@ static int __init alchemy_time_init(unsigned int m2int)
goto cntr_err;
/* register counter1 clocksource and event device */
clocksource_set_clock(&au1x_counter1_clocksource, 32768);
clocksource_register(&au1x_counter1_clocksource);
clocksource_register_hz(&au1x_counter1_clocksource, 32768);
cd->shift = 32;
cd->mult = div_sc(32768, NSEC_PER_SEC, cd->shift);

View File

@ -105,8 +105,7 @@ unsigned long long notrace sched_clock(void)
void __init plat_time_init(void)
{
clocksource_mips.rating = 300;
clocksource_set_clock(&clocksource_mips, octeon_get_clock_rate());
clocksource_register(&clocksource_mips);
clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
}
static u64 octeon_udelay_factor;

View File

@ -12,8 +12,13 @@
#define PIT_CH0 0x40
#define PIT_CH2 0x42
#define PIT_LATCH LATCH
extern raw_spinlock_t i8253_lock;
extern void setup_pit_timer(void);
#define inb_pit inb_p
#define outb_pit outb_p
#endif /* __ASM_I8253_H */

View File

@ -84,12 +84,6 @@ static inline int init_mips_clocksource(void)
#endif
}
static inline void clocksource_set_clock(struct clocksource *cs,
unsigned int clock)
{
clocksource_calc_mult_shift(cs, clock, 4);
}
static inline void clockevent_set_clock(struct clock_event_device *cd,
unsigned int clock)
{

View File

@ -121,8 +121,7 @@ void __init plat_time_init(void)
clockevents_register_device(&jz4740_clockevent);
clocksource_set_clock(&jz4740_clocksource, clk_rate);
ret = clocksource_register(&jz4740_clocksource);
ret = clocksource_register_hz(&jz4740_clocksource, clk_rate);
if (ret)
printk(KERN_ERR "Failed to register clocksource: %d\n", ret);

View File

@ -51,8 +51,7 @@ void __init txx9_clocksource_init(unsigned long baseaddr,
{
struct txx9_tmr_reg __iomem *tmrptr;
clocksource_set_clock(&txx9_clocksource.cs, TIMER_CLK(imbusclk));
clocksource_register(&txx9_clocksource.cs);
clocksource_register_hz(&txx9_clocksource.cs, TIMER_CLK(imbusclk));
tmrptr = ioremap(baseaddr, sizeof(struct txx9_tmr_reg));
__raw_writel(TCR_BASE, &tmrptr->tcr);

View File

@ -49,6 +49,5 @@ void __init sb1480_clocksource_init(void)
plldiv = G_BCM1480_SYS_PLL_DIV(__raw_readq(IOADDR(A_SCD_SYSTEM_CFG)));
zbbus = ((plldiv >> 1) * 50000000) + ((plldiv & 1) * 25000000);
clocksource_set_clock(cs, zbbus);
clocksource_register(cs);
clocksource_register_hz(cs, zbbus);
}

View File

@ -59,7 +59,5 @@ void __init dec_ioasic_clocksource_init(void)
printk(KERN_INFO "I/O ASIC clock frequency %dHz\n", freq);
clocksource_dec.rating = 200 + freq / 10000000;
clocksource_set_clock(&clocksource_dec, freq);
clocksource_register(&clocksource_dec);
clocksource_register_hz(&clocksource_dec, freq);
}

View File

@ -78,9 +78,7 @@ static void __init powertv_c0_hpt_clocksource_init(void)
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
clocksource_register(&clocksource_mips);
clocksource_register_hz(&clocksource_mips, mips_hpt_frequency);
}
/**
@ -130,43 +128,16 @@ static struct clocksource clocksource_tim_c = {
/**
* powertv_tim_c_clocksource_init - set up a clock source for the TIM_C clock
*
* The hard part here is coming up with a constant k and shift s such that
* the 48-bit TIM_C value multiplied by k doesn't overflow and that value,
* when shifted right by s, yields the corresponding number of nanoseconds.
* We know that TIM_C counts at 27 MHz/8, so each cycle corresponds to
* 1 / (27,000,000/8) seconds. Multiply that by a billion and you get the
* number of nanoseconds. Since the TIM_C value has 48 bits and the math is
* done in 64 bits, avoiding an overflow means that k must be less than
* 64 - 48 = 16 bits.
* 1 / (27,000,000/8) seconds.
*/
static void __init powertv_tim_c_clocksource_init(void)
{
int prescale;
unsigned long dividend;
unsigned long k;
int s;
const int max_k_bits = (64 - 48) - 1;
const unsigned long billion = 1000000000;
const unsigned long counts_per_second = 27000000 / 8;
prescale = BITS_PER_LONG - ilog2(billion) - 1;
dividend = billion << prescale;
k = dividend / counts_per_second;
s = ilog2(k) - max_k_bits;
if (s < 0)
s = prescale;
else {
k >>= s;
s += prescale;
}
clocksource_tim_c.mult = k;
clocksource_tim_c.shift = s;
clocksource_tim_c.rating = 200;
clocksource_register(&clocksource_tim_c);
clocksource_register_hz(&clocksource_tim_c, counts_per_second);
tim_c = (struct tim_c *) asic_reg_addr(tim_ch);
}

View File

@ -30,9 +30,7 @@ int __init init_r4k_clocksource(void)
/* Calculate a somewhat reasonable rating value */
clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
clocksource_set_clock(&clocksource_mips, mips_hpt_frequency);
clocksource_register(&clocksource_mips);
clocksource_register_hz(&clocksource_mips, mips_hpt_frequency);
return 0;
}

View File

@ -65,6 +65,5 @@ void __init sb1250_clocksource_init(void)
IOADDR(A_SCD_TIMER_REGISTER(SB1250_HPT_NUM,
R_SCD_TIMER_CFG)));
clocksource_set_clock(cs, V_SCD_TIMER_FREQ);
clocksource_register(cs);
clocksource_register_hz(cs, V_SCD_TIMER_FREQ);
}

View File

@ -125,87 +125,11 @@ void __init setup_pit_timer(void)
setup_irq(0, &irq0);
}
/*
* Since the PIT overflows every tick, its not very useful
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static cycle_t pit_read(struct clocksource *cs)
{
unsigned long flags;
int count;
u32 jifs;
static int old_count;
static u32 old_jifs;
raw_spin_lock_irqsave(&i8253_lock, flags);
/*
* Although our caller may have the read side of xtime_lock,
* this is now a seqlock, and we are cheating in this routine
* by having side effects on state that we cannot undo if
* there is a collision on the seqlock and our caller has to
* retry. (Namely, old_jifs and old_count.) So we must treat
* jiffies as volatile despite the lock. We read jiffies
* before latching the timer count to guarantee that although
* the jiffies value might be older than the count (that is,
* the counter may underflow between the last point where
* jiffies was incremented and the point where we latch the
* count), it cannot be newer.
*/
jifs = jiffies;
outb_p(0x00, PIT_MODE); /* latch the count ASAP */
count = inb_p(PIT_CH0); /* read the latched count */
count |= inb_p(PIT_CH0) << 8;
/* VIA686a test code... reset the latch if count > max + 1 */
if (count > LATCH) {
outb_p(0x34, PIT_MODE);
outb_p(LATCH & 0xff, PIT_CH0);
outb(LATCH >> 8, PIT_CH0);
count = LATCH - 1;
}
/*
* It's possible for count to appear to go the wrong way for a
* couple of reasons:
*
* 1. The timer counter underflows, but we haven't handled the
* resulting interrupt and incremented jiffies yet.
* 2. Hardware problem with the timer, not giving us continuous time,
* the counter does small "jumps" upwards on some Pentium systems,
* (see c't 95/10 page 335 for Neptun bug.)
*
* Previous attempts to handle these cases intelligently were
* buggy, so we just do the simple thing now.
*/
if (count > old_count && jifs == old_jifs) {
count = old_count;
}
old_count = count;
old_jifs = jifs;
raw_spin_unlock_irqrestore(&i8253_lock, flags);
count = (LATCH - 1) - count;
return (cycle_t)(jifs * LATCH) + count;
}
static struct clocksource clocksource_pit = {
.name = "pit",
.rating = 110,
.read = pit_read,
.mask = CLOCKSOURCE_MASK(32),
.mult = 0,
.shift = 20,
};
static int __init init_pit_clocksource(void)
{
if (num_possible_cpus() > 1) /* PIT does not scale! */
return 0;
clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
return clocksource_register(&clocksource_pit);
return clocksource_i8253_init();
}
arch_initcall(init_pit_clocksource);

View File

@ -201,8 +201,6 @@ static struct clocksource clocksource_mfgpt = {
.rating = 120, /* Functional for real use, but not desired */
.read = mfgpt_read,
.mask = CLOCKSOURCE_MASK(32),
.mult = 0,
.shift = 22,
};
int __init init_mfgpt_clocksource(void)
@ -210,8 +208,7 @@ int __init init_mfgpt_clocksource(void)
if (num_possible_cpus() > 1) /* MFGPT does not scale! */
return 0;
clocksource_mfgpt.mult = clocksource_hz2mult(MFGPT_TICK_RATE, 22);
return clocksource_register(&clocksource_mfgpt);
return clocksource_register_hz(&clocksource_mfgpt, MFGPT_TICK_RATE);
}
arch_initcall(init_mfgpt_clocksource);

View File

@ -163,8 +163,7 @@ static void __init hub_rt_clocksource_init(void)
{
struct clocksource *cs = &hub_rt_clocksource;
clocksource_set_clock(cs, CYCLES_PER_SEC);
clocksource_register(cs);
clocksource_register_hz(cs, CYCLES_PER_SEC);
}
void __init plat_time_init(void)

View File

@ -8,6 +8,7 @@ config 64BIT
config X86_32
def_bool !64BIT
select CLKSRC_I8253
config X86_64
def_bool 64BIT

View File

@ -6,6 +6,8 @@
#define PIT_CH0 0x40
#define PIT_CH2 0x42
#define PIT_LATCH LATCH
extern raw_spinlock_t i8253_lock;
extern struct clock_event_device *global_clock_event;

View File

@ -177,7 +177,6 @@ static struct clocksource clocksource_apbt = {
.rating = APBT_CLOCKSOURCE_RATING,
.read = apbt_read_clocksource,
.mask = APBT_MASK,
.shift = APBT_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.resume = apbt_restart_clocksource,
};
@ -543,14 +542,7 @@ static int apbt_clocksource_register(void)
if (t1 == apbt_read_clocksource(&clocksource_apbt))
panic("APBT counter not counting. APBT disabled\n");
/*
* initialize and register APBT clocksource
* convert that to ns/clock cycle
* mult = (ns/c) * 2^APBT_SHIFT
*/
clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
(unsigned long) apbt_freq, APBT_SHIFT);
clocksource_register(&clocksource_apbt);
clocksource_register_khz(&clocksource_apbt, (u32)apbt_freq*1000);
return 0;
}

View File

@ -117,81 +117,6 @@ void __init setup_pit_timer(void)
}
#ifndef CONFIG_X86_64
/*
* Since the PIT overflows every tick, its not very useful
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static cycle_t pit_read(struct clocksource *cs)
{
static int old_count;
static u32 old_jifs;
unsigned long flags;
int count;
u32 jifs;
raw_spin_lock_irqsave(&i8253_lock, flags);
/*
* Although our caller may have the read side of xtime_lock,
* this is now a seqlock, and we are cheating in this routine
* by having side effects on state that we cannot undo if
* there is a collision on the seqlock and our caller has to
* retry. (Namely, old_jifs and old_count.) So we must treat
* jiffies as volatile despite the lock. We read jiffies
* before latching the timer count to guarantee that although
* the jiffies value might be older than the count (that is,
* the counter may underflow between the last point where
* jiffies was incremented and the point where we latch the
* count), it cannot be newer.
*/
jifs = jiffies;
outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
count = inb_pit(PIT_CH0); /* read the latched count */
count |= inb_pit(PIT_CH0) << 8;
/* VIA686a test code... reset the latch if count > max + 1 */
if (count > LATCH) {
outb_pit(0x34, PIT_MODE);
outb_pit(LATCH & 0xff, PIT_CH0);
outb_pit(LATCH >> 8, PIT_CH0);
count = LATCH - 1;
}
/*
* It's possible for count to appear to go the wrong way for a
* couple of reasons:
*
* 1. The timer counter underflows, but we haven't handled the
* resulting interrupt and incremented jiffies yet.
* 2. Hardware problem with the timer, not giving us continuous time,
* the counter does small "jumps" upwards on some Pentium systems,
* (see c't 95/10 page 335 for Neptun bug.)
*
* Previous attempts to handle these cases intelligently were
* buggy, so we just do the simple thing now.
*/
if (count > old_count && jifs == old_jifs)
count = old_count;
old_count = count;
old_jifs = jifs;
raw_spin_unlock_irqrestore(&i8253_lock, flags);
count = (LATCH - 1) - count;
return (cycle_t)(jifs * LATCH) + count;
}
static struct clocksource pit_cs = {
.name = "pit",
.rating = 110,
.read = pit_read,
.mask = CLOCKSOURCE_MASK(32),
.mult = 0,
.shift = 20,
};
static int __init init_pit_clocksource(void)
{
/*
@ -205,10 +130,7 @@ static int __init init_pit_clocksource(void)
pit_ce.mode != CLOCK_EVT_MODE_PERIODIC)
return 0;
pit_cs.mult = clocksource_hz2mult(CLOCK_TICK_RATE, pit_cs.shift);
return clocksource_register(&pit_cs);
return clocksource_i8253_init();
}
arch_initcall(init_pit_clocksource);
#endif /* !CONFIG_X86_64 */

View File

@ -26,8 +26,6 @@
#include <asm/x86_init.h>
#include <asm/reboot.h>
#define KVM_SCALE 22
static int kvmclock = 1;
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
@ -120,8 +118,6 @@ static struct clocksource kvm_clock = {
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.mult = 1 << KVM_SCALE,
.shift = KVM_SCALE,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -203,7 +199,7 @@ void __init kvmclock_init(void)
machine_ops.crash_shutdown = kvm_crash_shutdown;
#endif
kvm_get_preset_lpj();
clocksource_register(&kvm_clock);
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
pv_info.paravirt_enabled = 1;
pv_info.name = "KVM";

View File

@ -913,8 +913,6 @@ static struct clocksource lguest_clock = {
.rating = 200,
.read = lguest_clock_read,
.mask = CLOCKSOURCE_MASK(64),
.mult = 1 << 22,
.shift = 22,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -997,7 +995,7 @@ static void lguest_time_init(void)
/* Set up the timer interrupt (0) to go to our simple timer routine */
irq_set_handler(0, lguest_time_irq);
clocksource_register(&lguest_clock);
clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
/* We can't set cpumask in the initializer: damn C limitations! Set it
* here and register our timer device. */

View File

@ -40,7 +40,6 @@ static struct clocksource clocksource_uv = {
.rating = 400,
.read = uv_read_rtc,
.mask = (cycle_t)UVH_RTC_REAL_TIME_CLOCK_MASK,
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -372,14 +371,11 @@ static __init int uv_rtc_setup_clock(void)
if (!is_uv_system())
return -ENODEV;
clocksource_uv.mult = clocksource_hz2mult(sn_rtc_cycles_per_second,
clocksource_uv.shift);
/* If single blade, prefer tsc */
if (uv_num_possible_blades() == 1)
clocksource_uv.rating = 250;
rc = clocksource_register(&clocksource_uv);
rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
if (rc)
printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
else

View File

@ -26,8 +26,6 @@
#include "xen-ops.h"
#define XEN_SHIFT 22
/* Xen may fire a timer up to this many ns early */
#define TIMER_SLOP 100000
#define NS_PER_TICK (1000000000LL / HZ)
@ -211,8 +209,6 @@ static struct clocksource xen_clocksource __read_mostly = {
.rating = 400,
.read = xen_clocksource_get_cycles,
.mask = ~0,
.mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
.shift = XEN_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -448,7 +444,7 @@ static void __init xen_time_init(void)
int cpu = smp_processor_id();
struct timespec tp;
clocksource_register(&xen_clocksource);
clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
/* Successfully turned off 100Hz tick, so we have the

View File

@ -119,4 +119,7 @@ source "drivers/platform/Kconfig"
source "drivers/clk/Kconfig"
source "drivers/hwspinlock/Kconfig"
source "drivers/clocksource/Kconfig"
endmenu

View File

@ -84,8 +84,6 @@ static struct clocksource clocksource_hpet = {
.rating = 250,
.read = read_hpet,
.mask = CLOCKSOURCE_MASK(64),
.mult = 0, /* to be calculated */
.shift = 10,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static struct clocksource *hpet_clocksource;
@ -934,9 +932,7 @@ int hpet_alloc(struct hpet_data *hdp)
if (!hpet_clocksource) {
hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
clocksource_hpet.shift);
clocksource_register(&clocksource_hpet);
clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
hpetp->hp_clocksource = &clocksource_hpet;
hpet_clocksource = &clocksource_hpet;
}

View File

@ -0,0 +1,2 @@
config CLKSRC_I8253
bool

View File

@ -6,3 +6,4 @@ obj-$(CONFIG_CS5535_CLOCK_EVENT_SRC) += cs5535-clockevt.o
obj-$(CONFIG_SH_TIMER_CMT) += sh_cmt.o
obj-$(CONFIG_SH_TIMER_MTU2) += sh_mtu2.o
obj-$(CONFIG_SH_TIMER_TMU) += sh_tmu.o
obj-$(CONFIG_CLKSRC_I8253) += i8253.o

View File

@ -29,8 +29,6 @@ static struct clocksource clocksource_cyclone = {
.rating = 250,
.read = read_cyclone,
.mask = CYCLONE_TIMER_MASK,
.mult = 10,
.shift = 0,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
@ -108,12 +106,8 @@ static int __init init_cyclone_clocksource(void)
}
cyclone_ptr = cyclone_timer;
/* sort out mult/shift values: */
clocksource_cyclone.shift = 22;
clocksource_cyclone.mult = clocksource_hz2mult(CYCLONE_TIMER_FREQ,
clocksource_cyclone.shift);
return clocksource_register(&clocksource_cyclone);
return clocksource_register_hz(&clocksource_cyclone,
CYCLONE_TIMER_FREQ);
}
arch_initcall(init_cyclone_clocksource);

View File

@ -0,0 +1,88 @@
/*
* i8253 PIT clocksource
*/
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/timex.h>
#include <asm/i8253.h>
/*
* Since the PIT overflows every tick, its not very useful
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static cycle_t i8253_read(struct clocksource *cs)
{
static int old_count;
static u32 old_jifs;
unsigned long flags;
int count;
u32 jifs;
raw_spin_lock_irqsave(&i8253_lock, flags);
/*
* Although our caller may have the read side of xtime_lock,
* this is now a seqlock, and we are cheating in this routine
* by having side effects on state that we cannot undo if
* there is a collision on the seqlock and our caller has to
* retry. (Namely, old_jifs and old_count.) So we must treat
* jiffies as volatile despite the lock. We read jiffies
* before latching the timer count to guarantee that although
* the jiffies value might be older than the count (that is,
* the counter may underflow between the last point where
* jiffies was incremented and the point where we latch the
* count), it cannot be newer.
*/
jifs = jiffies;
outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
count = inb_pit(PIT_CH0); /* read the latched count */
count |= inb_pit(PIT_CH0) << 8;
/* VIA686a test code... reset the latch if count > max + 1 */
if (count > LATCH) {
outb_pit(0x34, PIT_MODE);
outb_pit(PIT_LATCH & 0xff, PIT_CH0);
outb_pit(PIT_LATCH >> 8, PIT_CH0);
count = PIT_LATCH - 1;
}
/*
* It's possible for count to appear to go the wrong way for a
* couple of reasons:
*
* 1. The timer counter underflows, but we haven't handled the
* resulting interrupt and incremented jiffies yet.
* 2. Hardware problem with the timer, not giving us continuous time,
* the counter does small "jumps" upwards on some Pentium systems,
* (see c't 95/10 page 335 for Neptun bug.)
*
* Previous attempts to handle these cases intelligently were
* buggy, so we just do the simple thing now.
*/
if (count > old_count && jifs == old_jifs)
count = old_count;
old_count = count;
old_jifs = jifs;
raw_spin_unlock_irqrestore(&i8253_lock, flags);
count = (PIT_LATCH - 1) - count;
return (cycle_t)(jifs * PIT_LATCH) + count;
}
static struct clocksource i8253_cs = {
.name = "pit",
.rating = 110,
.read = i8253_read,
.mask = CLOCKSOURCE_MASK(32),
};
int __init clocksource_i8253_init(void)
{
return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE);
}

View File

@ -161,7 +161,7 @@ struct clocksource {
/*
* First part of structure is read mostly
*/
char *name;
const char *name;
struct list_head list;
int rating;
cycle_t (*read)(struct clocksource *cs);
@ -341,4 +341,6 @@ static inline void update_vsyscall_tz(void)
extern void timekeeping_notify(struct clocksource *clock);
extern int clocksource_i8253_init(void);
#endif /* _LINUX_CLOCKSOURCE_H */