KVM/arm64 updates for Linux 5.9:

- Split the VHE and nVHE hypervisor code bases, build the EL2 code
   separately, allowing for the VHE code to now be built with instrumentation
 
 - Level-based TLB invalidation support
 
 - Restructure of the vcpu register storage to accomodate the NV code
 
 - Pointer Authentication available for guests on nVHE hosts
 
 - Simplification of the system register table parsing
 
 - MMU cleanups and fixes
 
 - A number of post-32bit cleanups and other fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl8q5DEPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDQFAP/jtscnC5OxEOoGNW1gvg/1QI/BuU4zLvqQL1
 OEW72fUQlil7tmF/CbLLKnsBpxKmzO02C3wDdg3oaRi884bRtTXdok0nsFuCvrZD
 u/wrlMnP0zTjjk1uwIFfZJTx+nnUiT0jC6ffvGxB/jnTJk/8atvOUFL7ODFEfixz
 mS5g1jwwJkRmWKESFg7KGSghKuwXTvo4HVWCfME+t1rQwAa03stXFV8H5tkU6+cG
 BRIssxo7BkAV2AozwL7hgl/M6wd6QvbOrYJqgb67+sQ8qts0YNne96NN3InMedb1
 RENyDssXlA+VI0HoYyEbYnPtFy1Hoj1lOGDZLEZAEH1qcmWrV+hApnoSXSmuofvn
 QlfOWCyd92CZySu21MALRUVXbrKkA3zT2b9R93A5z7iEBPY+Wk0ryJCO6IxdZzF8
 48LNjtzb/Kd0SMU/issJlw+u6fJvLbpnSzXNsYYhiiTMUE9cbu2SEkq0SkonH0a4
 d3V8UifZyeffXsOfOAG0DJZOu/fWZp1/I3tfzujtG9rCb+jTQueJ4E1cFYrwSO6b
 sFNyiI1AzlwcCippG08zSUX61nGfKXBuMXuhIlMRk7GeiF95DmSXuxEgYndZX9I+
 E6zJr1iQk/1lrip41svDIIOBHuMbIeD/w1bsOKi7Zoa270MxB4r2Z3IqRMgosoE5
 l4YO9pl1
 =Ukr4
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-next-5.6

KVM/arm64 updates for Linux 5.9:

- Split the VHE and nVHE hypervisor code bases, build the EL2 code
  separately, allowing for the VHE code to now be built with instrumentation

- Level-based TLB invalidation support

- Restructure of the vcpu register storage to accomodate the NV code

- Pointer Authentication available for guests on nVHE hosts

- Simplification of the system register table parsing

- MMU cleanups and fixes

- A number of post-32bit cleanups and other fixes
This commit is contained in:
Paolo Bonzini 2020-08-09 12:58:23 -04:00
commit 0378daef0c
62 changed files with 2812 additions and 2375 deletions

View File

@ -1182,22 +1182,6 @@ config HARDEN_BRANCH_PREDICTOR
If unsure, say Y.
config HARDEN_EL2_VECTORS
bool "Harden EL2 vector mapping against system register leak" if EXPERT
default y
help
Speculation attacks against some high-performance processors can
be used to leak privileged information such as the vector base
register, resulting in a potential defeat of the EL2 layout
randomization.
This config option will map the vectors to a fixed location,
independent of the EL2 code mapping, so that revealing VBAR_EL2
to an attacker does not give away any extra information. This
only gets enabled on affected CPUs.
If unsure, say Y.
config ARM64_SSBD
bool "Speculative Store Bypass Disable" if EXPERT
default y
@ -1520,7 +1504,6 @@ menu "ARMv8.3 architectural features"
config ARM64_PTR_AUTH
bool "Enable support for pointer authentication"
default y
depends on !KVM || ARM64_VHE
depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
# Modern compilers insert a .note.gnu.property section note for PAC
# which is only understood by binutils starting with version 2.33.1.
@ -1547,8 +1530,7 @@ config ARM64_PTR_AUTH
The feature is detected at runtime. If the feature is not present in
hardware it will not be advertised to userspace/KVM guest nor will it
be enabled. However, KVM guest also require VHE mode and hence
CONFIG_ARM64_VHE=y option to use this feature.
be enabled.
If the feature is present on the boot CPU but not on a late CPU, then
the late CPU will be parked. Also, if the boot CPU does not have

View File

@ -42,33 +42,81 @@
#include <linux/mm.h>
/* Translate a kernel address of @sym into its equivalent linear mapping */
#define kvm_ksym_ref(sym) \
/*
* Translate name of a symbol defined in nVHE hyp to the name seen
* by kernel proper. All nVHE symbols are prefixed by the build system
* to avoid clashes with the VHE variants.
*/
#define kvm_nvhe_sym(sym) __kvm_nvhe_##sym
#define DECLARE_KVM_VHE_SYM(sym) extern char sym[]
#define DECLARE_KVM_NVHE_SYM(sym) extern char kvm_nvhe_sym(sym)[]
/*
* Define a pair of symbols sharing the same name but one defined in
* VHE and the other in nVHE hyp implementations.
*/
#define DECLARE_KVM_HYP_SYM(sym) \
DECLARE_KVM_VHE_SYM(sym); \
DECLARE_KVM_NVHE_SYM(sym)
#define CHOOSE_VHE_SYM(sym) sym
#define CHOOSE_NVHE_SYM(sym) kvm_nvhe_sym(sym)
#ifndef __KVM_NVHE_HYPERVISOR__
/*
* BIG FAT WARNINGS:
*
* - Don't be tempted to change the following is_kernel_in_hyp_mode()
* to has_vhe(). has_vhe() is implemented as a *final* capability,
* while this is used early at boot time, when the capabilities are
* not final yet....
*
* - Don't let the nVHE hypervisor have access to this, as it will
* pick the *wrong* symbol (yes, it runs at EL2...).
*/
#define CHOOSE_HYP_SYM(sym) (is_kernel_in_hyp_mode() ? CHOOSE_VHE_SYM(sym) \
: CHOOSE_NVHE_SYM(sym))
#else
/* The nVHE hypervisor shouldn't even try to access anything */
extern void *__nvhe_undefined_symbol;
#define CHOOSE_HYP_SYM(sym) __nvhe_undefined_symbol
#endif
/* Translate a kernel address @ptr into its equivalent linear mapping */
#define kvm_ksym_ref(ptr) \
({ \
void *val = &sym; \
void *val = (ptr); \
if (!is_kernel_in_hyp_mode()) \
val = lm_alias(&sym); \
val = lm_alias((ptr)); \
val; \
})
#define kvm_ksym_ref_nvhe(sym) kvm_ksym_ref(kvm_nvhe_sym(sym))
struct kvm;
struct kvm_vcpu;
struct kvm_s2_mmu;
extern char __kvm_hyp_init[];
extern char __kvm_hyp_init_end[];
DECLARE_KVM_NVHE_SYM(__kvm_hyp_init);
DECLARE_KVM_HYP_SYM(__kvm_hyp_vector);
#define __kvm_hyp_init CHOOSE_NVHE_SYM(__kvm_hyp_init)
#define __kvm_hyp_vector CHOOSE_HYP_SYM(__kvm_hyp_vector)
extern char __kvm_hyp_vector[];
#ifdef CONFIG_KVM_INDIRECT_VECTORS
extern atomic_t arm64_el2_vector_last_slot;
DECLARE_KVM_HYP_SYM(__bp_harden_hyp_vecs);
#define __bp_harden_hyp_vecs CHOOSE_HYP_SYM(__bp_harden_hyp_vecs)
#endif
extern void __kvm_flush_vm_context(void);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa);
extern void __kvm_tlb_flush_vmid(struct kvm *kvm);
extern void __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu);
extern void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
int level);
extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
extern void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu);
extern void __kvm_timer_set_cntvoff(u64 cntvoff);
extern int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu);
extern int __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
extern void __kvm_enable_ssbs(void);
@ -143,7 +191,6 @@ extern char __smccc_workaround_1_smc[__SMCCC_WORKAROUND_1_SMC_SZ];
.macro get_vcpu_ptr vcpu, ctxt
get_host_ctxt \ctxt, \vcpu
ldr \vcpu, [\ctxt, #HOST_CONTEXT_VCPU]
kern_hyp_va \vcpu
.endm
#endif

View File

@ -19,14 +19,6 @@ struct kvm_sys_reg_table {
size_t num;
};
struct kvm_sys_reg_target_table {
struct kvm_sys_reg_table table64;
struct kvm_sys_reg_table table32;
};
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table);
int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu);
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu);

View File

@ -124,33 +124,12 @@ static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr)
static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu)
{
return (unsigned long *)&vcpu_gp_regs(vcpu)->regs.pc;
}
static inline unsigned long *__vcpu_elr_el1(const struct kvm_vcpu *vcpu)
{
return (unsigned long *)&vcpu_gp_regs(vcpu)->elr_el1;
}
static inline unsigned long vcpu_read_elr_el1(const struct kvm_vcpu *vcpu)
{
if (vcpu->arch.sysregs_loaded_on_cpu)
return read_sysreg_el1(SYS_ELR);
else
return *__vcpu_elr_el1(vcpu);
}
static inline void vcpu_write_elr_el1(const struct kvm_vcpu *vcpu, unsigned long v)
{
if (vcpu->arch.sysregs_loaded_on_cpu)
write_sysreg_el1(v, SYS_ELR);
else
*__vcpu_elr_el1(vcpu) = v;
return (unsigned long *)&vcpu_gp_regs(vcpu)->pc;
}
static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu)
{
return (unsigned long *)&vcpu_gp_regs(vcpu)->regs.pstate;
return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate;
}
static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu)
@ -179,14 +158,14 @@ static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu)
static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu,
u8 reg_num)
{
return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs.regs[reg_num];
return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num];
}
static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num,
unsigned long val)
{
if (reg_num != 31)
vcpu_gp_regs(vcpu)->regs.regs[reg_num] = val;
vcpu_gp_regs(vcpu)->regs[reg_num] = val;
}
static inline unsigned long vcpu_read_spsr(const struct kvm_vcpu *vcpu)
@ -197,7 +176,7 @@ static inline unsigned long vcpu_read_spsr(const struct kvm_vcpu *vcpu)
if (vcpu->arch.sysregs_loaded_on_cpu)
return read_sysreg_el1(SYS_SPSR);
else
return vcpu_gp_regs(vcpu)->spsr[KVM_SPSR_EL1];
return __vcpu_sys_reg(vcpu, SPSR_EL1);
}
static inline void vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long v)
@ -210,7 +189,7 @@ static inline void vcpu_write_spsr(struct kvm_vcpu *vcpu, unsigned long v)
if (vcpu->arch.sysregs_loaded_on_cpu)
write_sysreg_el1(v, SYS_SPSR);
else
vcpu_gp_regs(vcpu)->spsr[KVM_SPSR_EL1] = v;
__vcpu_sys_reg(vcpu, SPSR_EL1) = v;
}
/*
@ -259,14 +238,14 @@ static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu)
return mode != PSR_MODE_EL0t;
}
static __always_inline u32 kvm_vcpu_get_hsr(const struct kvm_vcpu *vcpu)
static __always_inline u32 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu)
{
return vcpu->arch.fault.esr_el2;
}
static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu)
{
u32 esr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
if (esr & ESR_ELx_CV)
return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT;
@ -291,64 +270,64 @@ static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu)
static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_xVC_IMM_MASK;
return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK;
}
static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_ISV);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV);
}
static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC);
}
static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_SSE);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE);
}
static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_SF);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF);
}
static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu)
{
return (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT;
}
static __always_inline bool kvm_vcpu_dabt_iss1tw(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_S1PTW);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW);
}
static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WNR) ||
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR) ||
kvm_vcpu_dabt_iss1tw(vcpu); /* AF/DBM update */
}
static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_CM);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM);
}
static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu)
{
return 1 << ((kvm_vcpu_get_hsr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT);
}
/* This one is not specific to Data Abort */
static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu)
{
return !!(kvm_vcpu_get_hsr(vcpu) & ESR_ELx_IL);
return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL);
}
static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu)
{
return ESR_ELx_EC(kvm_vcpu_get_hsr(vcpu));
return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
}
static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
@ -358,15 +337,15 @@ static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu)
static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC;
return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC;
}
static __always_inline u8 kvm_vcpu_trap_get_fault_type(const struct kvm_vcpu *vcpu)
{
return kvm_vcpu_get_hsr(vcpu) & ESR_ELx_FSC_TYPE;
return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC_TYPE;
}
static __always_inline bool kvm_vcpu_dabt_isextabt(const struct kvm_vcpu *vcpu)
static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu)
{
switch (kvm_vcpu_trap_get_fault(vcpu)) {
case FSC_SEA:
@ -387,7 +366,7 @@ static __always_inline bool kvm_vcpu_dabt_isextabt(const struct kvm_vcpu *vcpu)
static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu)
{
u32 esr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
return ESR_ELx_SYS64_ISS_RT(esr);
}
@ -516,14 +495,14 @@ static __always_inline void kvm_skip_instr(struct kvm_vcpu *vcpu, bool is_wide_i
* Skip an instruction which has been emulated at hyp while most guest sysregs
* are live.
*/
static __always_inline void __hyp_text __kvm_skip_instr(struct kvm_vcpu *vcpu)
static __always_inline void __kvm_skip_instr(struct kvm_vcpu *vcpu)
{
*vcpu_pc(vcpu) = read_sysreg_el2(SYS_ELR);
vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
vcpu_gp_regs(vcpu)->pstate = read_sysreg_el2(SYS_SPSR);
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, SYS_SPSR);
write_sysreg_el2(vcpu_gp_regs(vcpu)->pstate, SYS_SPSR);
write_sysreg_el2(*vcpu_pc(vcpu), SYS_ELR);
}

View File

@ -66,19 +66,34 @@ struct kvm_vmid {
u32 vmid;
};
struct kvm_arch {
struct kvm_s2_mmu {
struct kvm_vmid vmid;
/* stage2 entry level table */
pgd_t *pgd;
phys_addr_t pgd_phys;
/* VTCR_EL2 value for this VM */
u64 vtcr;
/*
* stage2 entry level table
*
* Two kvm_s2_mmu structures in the same VM can point to the same
* pgd here. This happens when running a guest using a
* translation regime that isn't affected by its own stage-2
* translation, such as a non-VHE hypervisor running at vEL2, or
* for vEL1/EL0 with vHCR_EL2.VM == 0. In that case, we use the
* canonical stage-2 page tables.
*/
pgd_t *pgd;
phys_addr_t pgd_phys;
/* The last vcpu id that ran on each physical CPU */
int __percpu *last_vcpu_ran;
struct kvm *kvm;
};
struct kvm_arch {
struct kvm_s2_mmu mmu;
/* VTCR_EL2 value for this VM */
u64 vtcr;
/* The maximum number of vCPUs depends on the used GIC model */
int max_vcpus;
@ -159,6 +174,16 @@ enum vcpu_sysreg {
APGAKEYLO_EL1,
APGAKEYHI_EL1,
ELR_EL1,
SP_EL1,
SPSR_EL1,
CNTVOFF_EL2,
CNTV_CVAL_EL0,
CNTV_CTL_EL0,
CNTP_CVAL_EL0,
CNTP_CTL_EL0,
/* 32bit specific registers. Keep them at the end of the range */
DACR32_EL2, /* Domain Access Control Register */
IFSR32_EL2, /* Instruction Fault Status Register */
@ -210,7 +235,15 @@ enum vcpu_sysreg {
#define NR_COPRO_REGS (NR_SYS_REGS * 2)
struct kvm_cpu_context {
struct kvm_regs gp_regs;
struct user_pt_regs regs; /* sp = sp_el0 */
u64 spsr_abt;
u64 spsr_und;
u64 spsr_irq;
u64 spsr_fiq;
struct user_fpsimd_state fp_regs;
union {
u64 sys_regs[NR_SYS_REGS];
u32 copro[NR_COPRO_REGS];
@ -243,6 +276,9 @@ struct kvm_vcpu_arch {
void *sve_state;
unsigned int sve_max_vl;
/* Stage 2 paging state used by the hardware on next switch */
struct kvm_s2_mmu *hw_mmu;
/* HYP configuration */
u64 hcr_el2;
u32 mdcr_el2;
@ -327,7 +363,7 @@ struct kvm_vcpu_arch {
struct vcpu_reset_state reset_state;
/* True when deferrable sysregs are loaded on the physical CPU,
* see kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregs. */
* see kvm_vcpu_load_sysregs_vhe and kvm_vcpu_put_sysregs_vhe. */
bool sysregs_loaded_on_cpu;
/* Guest PV state */
@ -378,15 +414,20 @@ struct kvm_vcpu_arch {
#define vcpu_has_ptrauth(vcpu) false
#endif
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.gp_regs)
#define vcpu_gp_regs(v) (&(v)->arch.ctxt.regs)
/*
* Only use __vcpu_sys_reg if you know you want the memory backed version of a
* register, and not the one most recently accessed by a running VCPU. For
* example, for userspace access or for system registers that are never context
* switched, but only emulated.
* Only use __vcpu_sys_reg/ctxt_sys_reg if you know you want the
* memory backed version of a register, and not the one most recently
* accessed by a running VCPU. For example, for userspace access or
* for system registers that are never context switched, but only
* emulated.
*/
#define __vcpu_sys_reg(v,r) ((v)->arch.ctxt.sys_regs[(r)])
#define __ctxt_sys_reg(c,r) (&(c)->sys_regs[(r)])
#define ctxt_sys_reg(c,r) (*__ctxt_sys_reg(c,r))
#define __vcpu_sys_reg(v,r) (ctxt_sys_reg(&(v)->arch.ctxt, (r)))
u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg);
void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
@ -442,6 +483,18 @@ void kvm_arm_resume_guest(struct kvm *kvm);
u64 __kvm_call_hyp(void *hypfn, ...);
#define kvm_call_hyp_nvhe(f, ...) \
do { \
DECLARE_KVM_NVHE_SYM(f); \
__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__); \
} while(0)
#define kvm_call_hyp_nvhe_ret(f, ...) \
({ \
DECLARE_KVM_NVHE_SYM(f); \
__kvm_call_hyp(kvm_ksym_ref_nvhe(f), ##__VA_ARGS__); \
})
/*
* The couple of isb() below are there to guarantee the same behaviour
* on VHE as on !VHE, where the eret to EL1 acts as a context
@ -453,7 +506,7 @@ u64 __kvm_call_hyp(void *hypfn, ...);
f(__VA_ARGS__); \
isb(); \
} else { \
__kvm_call_hyp(kvm_ksym_ref(f), ##__VA_ARGS__); \
kvm_call_hyp_nvhe(f, ##__VA_ARGS__); \
} \
} while(0)
@ -465,8 +518,7 @@ u64 __kvm_call_hyp(void *hypfn, ...);
ret = f(__VA_ARGS__); \
isb(); \
} else { \
ret = __kvm_call_hyp(kvm_ksym_ref(f), \
##__VA_ARGS__); \
ret = kvm_call_hyp_nvhe_ret(f, ##__VA_ARGS__); \
} \
\
ret; \
@ -518,7 +570,7 @@ DECLARE_PER_CPU(kvm_host_data_t, kvm_host_data);
static inline void kvm_init_host_cpu_context(struct kvm_cpu_context *cpu_ctxt)
{
/* The host's MPIDR is immutable, so let's set it up at boot time */
cpu_ctxt->sys_regs[MPIDR_EL1] = read_cpuid_mpidr();
ctxt_sys_reg(cpu_ctxt, MPIDR_EL1) = read_cpuid_mpidr();
}
static inline bool kvm_arch_requires_vhe(void)
@ -619,8 +671,8 @@ static inline int kvm_arm_have_ssbd(void)
}
}
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu);
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu);
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu);
int kvm_set_ipa_limit(void);

View File

@ -12,8 +12,6 @@
#include <asm/alternative.h>
#include <asm/sysreg.h>
#define __hyp_text __section(.hyp.text) notrace __noscs
#define read_sysreg_elx(r,nvh,vh) \
({ \
u64 reg; \
@ -63,17 +61,20 @@ void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if);
void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if);
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu);
#ifdef __KVM_NVHE_HYPERVISOR__
void __timer_enable_traps(struct kvm_vcpu *vcpu);
void __timer_disable_traps(struct kvm_vcpu *vcpu);
#endif
#ifdef __KVM_NVHE_HYPERVISOR__
void __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt);
void __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt);
#else
void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt);
void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt);
void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt);
void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt);
void __sysreg32_save_state(struct kvm_vcpu *vcpu);
void __sysreg32_restore_state(struct kvm_vcpu *vcpu);
#endif
void __debug_switch_to_guest(struct kvm_vcpu *vcpu);
void __debug_switch_to_host(struct kvm_vcpu *vcpu);
@ -81,11 +82,17 @@ void __debug_switch_to_host(struct kvm_vcpu *vcpu);
void __fpsimd_save_state(struct user_fpsimd_state *fp_regs);
void __fpsimd_restore_state(struct user_fpsimd_state *fp_regs);
#ifndef __KVM_NVHE_HYPERVISOR__
void activate_traps_vhe_load(struct kvm_vcpu *vcpu);
void deactivate_traps_vhe_put(void);
#endif
u64 __guest_enter(struct kvm_vcpu *vcpu, struct kvm_cpu_context *host_ctxt);
void __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt);
#ifdef __KVM_NVHE_HYPERVISOR__
void __noreturn __hyp_do_panic(unsigned long, ...);
#endif
#endif /* __ARM64_KVM_HYP_H__ */

View File

@ -134,8 +134,8 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
void free_hyp_pgds(void);
void stage2_unmap_vm(struct kvm *kvm);
int kvm_alloc_stage2_pgd(struct kvm *kvm);
void kvm_free_stage2_pgd(struct kvm *kvm);
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
phys_addr_t pa, unsigned long size, bool writable);
@ -577,13 +577,13 @@ static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
}
static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
{
struct kvm_vmid *vmid = &kvm->arch.vmid;
struct kvm_vmid *vmid = &mmu->vmid;
u64 vmid_field, baddr;
u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
baddr = kvm->arch.pgd_phys;
baddr = mmu->pgd_phys;
vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
}
@ -592,10 +592,10 @@ static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
* Must be called from hyp code running at EL2 with an updated VTTBR
* and interrupts disabled.
*/
static __always_inline void __load_guest_stage2(struct kvm *kvm)
static __always_inline void __load_guest_stage2(struct kvm_s2_mmu *mmu)
{
write_sysreg(kvm->arch.vtcr, vtcr_el2);
write_sysreg(kvm_get_vttbr(kvm), vttbr_el2);
write_sysreg(kern_hyp_va(mmu->kvm)->arch.vtcr, vtcr_el2);
write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
/*
* ARM errata 1165522 and 1530923 require the actual execution of the

View File

@ -61,44 +61,36 @@
/*
* Both ptrauth_switch_to_guest and ptrauth_switch_to_host macros will
* check for the presence of one of the cpufeature flag
* ARM64_HAS_ADDRESS_AUTH_ARCH or ARM64_HAS_ADDRESS_AUTH_IMP_DEF and
* check for the presence ARM64_HAS_ADDRESS_AUTH, which is defined as
* (ARM64_HAS_ADDRESS_AUTH_ARCH || ARM64_HAS_ADDRESS_AUTH_IMP_DEF) and
* then proceed ahead with the save/restore of Pointer Authentication
* key registers.
* key registers if enabled for the guest.
*/
.macro ptrauth_switch_to_guest g_ctxt, reg1, reg2, reg3
alternative_if ARM64_HAS_ADDRESS_AUTH_ARCH
b 1000f
alternative_if_not ARM64_HAS_ADDRESS_AUTH
b .L__skip_switch\@
alternative_else_nop_endif
alternative_if_not ARM64_HAS_ADDRESS_AUTH_IMP_DEF
b 1001f
alternative_else_nop_endif
1000:
ldr \reg1, [\g_ctxt, #(VCPU_HCR_EL2 - VCPU_CONTEXT)]
mrs \reg1, hcr_el2
and \reg1, \reg1, #(HCR_API | HCR_APK)
cbz \reg1, 1001f
cbz \reg1, .L__skip_switch\@
add \reg1, \g_ctxt, #CPU_APIAKEYLO_EL1
ptrauth_restore_state \reg1, \reg2, \reg3
1001:
.L__skip_switch\@:
.endm
.macro ptrauth_switch_to_host g_ctxt, h_ctxt, reg1, reg2, reg3
alternative_if ARM64_HAS_ADDRESS_AUTH_ARCH
b 2000f
alternative_if_not ARM64_HAS_ADDRESS_AUTH
b .L__skip_switch\@
alternative_else_nop_endif
alternative_if_not ARM64_HAS_ADDRESS_AUTH_IMP_DEF
b 2001f
alternative_else_nop_endif
2000:
ldr \reg1, [\g_ctxt, #(VCPU_HCR_EL2 - VCPU_CONTEXT)]
mrs \reg1, hcr_el2
and \reg1, \reg1, #(HCR_API | HCR_APK)
cbz \reg1, 2001f
cbz \reg1, .L__skip_switch\@
add \reg1, \g_ctxt, #CPU_APIAKEYLO_EL1
ptrauth_save_state \reg1, \reg2, \reg3
add \reg1, \h_ctxt, #CPU_APIAKEYLO_EL1
ptrauth_restore_state \reg1, \reg2, \reg3
isb
2001:
.L__skip_switch\@:
.endm
#else /* !CONFIG_ARM64_PTR_AUTH */

View File

@ -45,13 +45,6 @@ struct bp_hardening_data {
bp_hardening_cb_t fn;
};
#if (defined(CONFIG_HARDEN_BRANCH_PREDICTOR) || \
defined(CONFIG_HARDEN_EL2_VECTORS))
extern char __bp_harden_hyp_vecs[];
extern atomic_t arm64_el2_vector_last_slot;
#endif /* CONFIG_HARDEN_BRANCH_PREDICTOR || CONFIG_HARDEN_EL2_VECTORS */
#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
DECLARE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);

View File

@ -85,10 +85,17 @@ static inline bool is_kernel_in_hyp_mode(void)
static __always_inline bool has_vhe(void)
{
if (cpus_have_final_cap(ARM64_HAS_VIRT_HOST_EXTN))
/*
* The following macros are defined for code specic to VHE/nVHE.
* If has_vhe() is inlined into those compilation units, it can
* be determined statically. Otherwise fall back to caps.
*/
if (__is_defined(__KVM_VHE_HYPERVISOR__))
return true;
return false;
else if (__is_defined(__KVM_NVHE_HYPERVISOR__))
return false;
else
return cpus_have_final_cap(ARM64_HAS_VIRT_HOST_EXTN);
}
#endif /* __ASSEMBLY__ */

View File

@ -102,13 +102,12 @@ int main(void)
DEFINE(VCPU_FAULT_DISR, offsetof(struct kvm_vcpu, arch.fault.disr_el1));
DEFINE(VCPU_WORKAROUND_FLAGS, offsetof(struct kvm_vcpu, arch.workaround_flags));
DEFINE(VCPU_HCR_EL2, offsetof(struct kvm_vcpu, arch.hcr_el2));
DEFINE(CPU_GP_REGS, offsetof(struct kvm_cpu_context, gp_regs));
DEFINE(CPU_USER_PT_REGS, offsetof(struct kvm_cpu_context, regs));
DEFINE(CPU_APIAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APIAKEYLO_EL1]));
DEFINE(CPU_APIBKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APIBKEYLO_EL1]));
DEFINE(CPU_APDAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APDAKEYLO_EL1]));
DEFINE(CPU_APDBKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APDBKEYLO_EL1]));
DEFINE(CPU_APGAKEYLO_EL1, offsetof(struct kvm_cpu_context, sys_regs[APGAKEYLO_EL1]));
DEFINE(CPU_USER_PT_REGS, offsetof(struct kvm_regs, regs));
DEFINE(HOST_CONTEXT_VCPU, offsetof(struct kvm_cpu_context, __hyp_running_vcpu));
DEFINE(HOST_DATA_CONTEXT, offsetof(struct kvm_host_data, host_ctxt));
#endif

View File

@ -632,7 +632,7 @@ has_neoverse_n1_erratum_1542419(const struct arm64_cpu_capabilities *entry,
return is_midr_in_range(midr, &range) && has_dic;
}
#if defined(CONFIG_HARDEN_EL2_VECTORS)
#ifdef CONFIG_RANDOMIZE_BASE
static const struct midr_range ca57_a72[] = {
MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
@ -891,7 +891,7 @@ const struct arm64_cpu_capabilities arm64_errata[] = {
.type = ARM64_CPUCAP_LOCAL_CPU_ERRATUM,
.matches = check_branch_predictor,
},
#ifdef CONFIG_HARDEN_EL2_VECTORS
#ifdef CONFIG_RANDOMIZE_BASE
{
.desc = "EL2 vector hardening",
.capability = ARM64_HARDEN_EL2_VECTORS,

View File

@ -51,4 +51,58 @@ __efistub__ctype = _ctype;
#endif
#ifdef CONFIG_KVM
/*
* KVM nVHE code has its own symbol namespace prefixed with __kvm_nvhe_, to
* separate it from the kernel proper. The following symbols are legally
* accessed by it, therefore provide aliases to make them linkable.
* Do not include symbols which may not be safely accessed under hypervisor
* memory mappings.
*/
#define KVM_NVHE_ALIAS(sym) __kvm_nvhe_##sym = sym;
/* Alternative callbacks for init-time patching of nVHE hyp code. */
KVM_NVHE_ALIAS(arm64_enable_wa2_handling);
KVM_NVHE_ALIAS(kvm_patch_vector_branch);
KVM_NVHE_ALIAS(kvm_update_va_mask);
/* Global kernel state accessed by nVHE hyp code. */
KVM_NVHE_ALIAS(arm64_ssbd_callback_required);
KVM_NVHE_ALIAS(kvm_host_data);
KVM_NVHE_ALIAS(kvm_vgic_global_state);
/* Kernel constant needed to compute idmap addresses. */
KVM_NVHE_ALIAS(kimage_voffset);
/* Kernel symbols used to call panic() from nVHE hyp code (via ERET). */
KVM_NVHE_ALIAS(__hyp_panic_string);
KVM_NVHE_ALIAS(panic);
/* Vectors installed by hyp-init on reset HVC. */
KVM_NVHE_ALIAS(__hyp_stub_vectors);
/* IDMAP TCR_EL1.T0SZ as computed by the EL1 init code */
KVM_NVHE_ALIAS(idmap_t0sz);
/* Kernel symbol used by icache_is_vpipt(). */
KVM_NVHE_ALIAS(__icache_flags);
/* Kernel symbols needed for cpus_have_final/const_caps checks. */
KVM_NVHE_ALIAS(arm64_const_caps_ready);
KVM_NVHE_ALIAS(cpu_hwcap_keys);
KVM_NVHE_ALIAS(cpu_hwcaps);
/* Static keys which are set if a vGIC trap should be handled in hyp. */
KVM_NVHE_ALIAS(vgic_v2_cpuif_trap);
KVM_NVHE_ALIAS(vgic_v3_cpuif_trap);
/* Static key checked in pmr_sync(). */
#ifdef CONFIG_ARM64_PSEUDO_NMI
KVM_NVHE_ALIAS(gic_pmr_sync);
#endif
#endif /* CONFIG_KVM */
#endif /* __ARM64_KERNEL_IMAGE_VARS_H */

View File

@ -58,7 +58,7 @@ config KVM_ARM_PMU
virtual machines.
config KVM_INDIRECT_VECTORS
def_bool HARDEN_BRANCH_PREDICTOR || HARDEN_EL2_VECTORS
def_bool HARDEN_BRANCH_PREDICTOR || RANDOMIZE_BASE
endif # KVM

View File

@ -13,8 +13,8 @@ obj-$(CONFIG_KVM) += hyp/
kvm-y := $(KVM)/kvm_main.o $(KVM)/coalesced_mmio.o $(KVM)/eventfd.o \
$(KVM)/vfio.o $(KVM)/irqchip.o \
arm.o mmu.o mmio.o psci.o perf.o hypercalls.o pvtime.o \
inject_fault.o regmap.o va_layout.o hyp.o hyp-init.o handle_exit.o \
guest.o debug.o reset.o sys_regs.o sys_regs_generic_v8.o \
inject_fault.o regmap.o va_layout.o hyp.o handle_exit.o \
guest.o debug.o reset.o sys_regs.o \
vgic-sys-reg-v3.o fpsimd.o pmu.o \
aarch32.o arch_timer.o \
vgic/vgic.o vgic/vgic-init.o \

View File

@ -51,6 +51,93 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
struct arch_timer_context *timer,
enum kvm_arch_timer_regs treg);
u32 timer_get_ctl(struct arch_timer_context *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
case TIMER_PTIMER:
return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
default:
WARN_ON(1);
return 0;
}
}
u64 timer_get_cval(struct arch_timer_context *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
case TIMER_PTIMER:
return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
default:
WARN_ON(1);
return 0;
}
}
static u64 timer_get_offset(struct arch_timer_context *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
default:
return 0;
}
}
static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
break;
case TIMER_PTIMER:
__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
break;
default:
WARN_ON(1);
}
}
static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
break;
case TIMER_PTIMER:
__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
break;
default:
WARN_ON(1);
}
}
static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch(arch_timer_ctx_index(ctxt)) {
case TIMER_VTIMER:
__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
break;
default:
WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
}
}
u64 kvm_phys_timer_read(void)
{
return timecounter->cc->read(timecounter->cc);
@ -124,8 +211,8 @@ static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
{
u64 cval, now;
cval = timer_ctx->cnt_cval;
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
cval = timer_get_cval(timer_ctx);
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
if (now < cval) {
u64 ns;
@ -144,8 +231,8 @@ static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
{
WARN_ON(timer_ctx && timer_ctx->loaded);
return timer_ctx &&
!(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
(timer_ctx->cnt_ctl & ARCH_TIMER_CTRL_ENABLE);
((timer_get_ctl(timer_ctx) &
(ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
}
/*
@ -256,8 +343,8 @@ static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
if (!kvm_timer_irq_can_fire(timer_ctx))
return false;
cval = timer_ctx->cnt_cval;
now = kvm_phys_timer_read() - timer_ctx->cntvoff;
cval = timer_get_cval(timer_ctx);
now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
return cval <= now;
}
@ -350,8 +437,8 @@ static void timer_save_state(struct arch_timer_context *ctx)
switch (index) {
case TIMER_VTIMER:
ctx->cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
ctx->cnt_cval = read_sysreg_el0(SYS_CNTV_CVAL);
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
/* Disable the timer */
write_sysreg_el0(0, SYS_CNTV_CTL);
@ -359,8 +446,8 @@ static void timer_save_state(struct arch_timer_context *ctx)
break;
case TIMER_PTIMER:
ctx->cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
ctx->cnt_cval = read_sysreg_el0(SYS_CNTP_CVAL);
timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
/* Disable the timer */
write_sysreg_el0(0, SYS_CNTP_CTL);
@ -429,14 +516,14 @@ static void timer_restore_state(struct arch_timer_context *ctx)
switch (index) {
case TIMER_VTIMER:
write_sysreg_el0(ctx->cnt_cval, SYS_CNTV_CVAL);
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
isb();
write_sysreg_el0(ctx->cnt_ctl, SYS_CNTV_CTL);
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
break;
case TIMER_PTIMER:
write_sysreg_el0(ctx->cnt_cval, SYS_CNTP_CVAL);
write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
isb();
write_sysreg_el0(ctx->cnt_ctl, SYS_CNTP_CTL);
write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
break;
case NR_KVM_TIMERS:
BUG();
@ -528,7 +615,7 @@ void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
kvm_timer_vcpu_load_nogic(vcpu);
}
set_cntvoff(map.direct_vtimer->cntvoff);
set_cntvoff(timer_get_offset(map.direct_vtimer));
kvm_timer_unblocking(vcpu);
@ -615,7 +702,7 @@ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
}
}
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = vcpu_timer(vcpu);
@ -639,8 +726,8 @@ int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
* resets the timer to be disabled and unmasked and is compliant with
* the ARMv7 architecture.
*/
vcpu_vtimer(vcpu)->cnt_ctl = 0;
vcpu_ptimer(vcpu)->cnt_ctl = 0;
timer_set_ctl(vcpu_vtimer(vcpu), 0);
timer_set_ctl(vcpu_ptimer(vcpu), 0);
if (timer->enabled) {
kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
@ -668,13 +755,13 @@ static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
mutex_lock(&kvm->lock);
kvm_for_each_vcpu(i, tmp, kvm)
vcpu_vtimer(tmp)->cntvoff = cntvoff;
timer_set_offset(vcpu_vtimer(tmp), cntvoff);
/*
* When called from the vcpu create path, the CPU being created is not
* included in the loop above, so we just set it here as well.
*/
vcpu_vtimer(vcpu)->cntvoff = cntvoff;
timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
mutex_unlock(&kvm->lock);
}
@ -684,9 +771,12 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
vtimer->vcpu = vcpu;
ptimer->vcpu = vcpu;
/* Synchronize cntvoff across all vtimers of a VM. */
update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
ptimer->cntvoff = 0;
timer_set_offset(ptimer, 0);
hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
timer->bg_timer.function = kvm_bg_timer_expire;
@ -704,9 +794,6 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
vtimer->vcpu = vcpu;
ptimer->vcpu = vcpu;
}
static void kvm_timer_init_interrupt(void *info)
@ -756,10 +843,12 @@ static u64 read_timer_ctl(struct arch_timer_context *timer)
* UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
* regardless of ENABLE bit for our implementation convenience.
*/
u32 ctl = timer_get_ctl(timer);
if (!kvm_timer_compute_delta(timer))
return timer->cnt_ctl | ARCH_TIMER_CTRL_IT_STAT;
else
return timer->cnt_ctl;
ctl |= ARCH_TIMER_CTRL_IT_STAT;
return ctl;
}
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
@ -795,8 +884,8 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
switch (treg) {
case TIMER_REG_TVAL:
val = timer->cnt_cval - kvm_phys_timer_read() + timer->cntvoff;
val &= lower_32_bits(val);
val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
val = lower_32_bits(val);
break;
case TIMER_REG_CTL:
@ -804,11 +893,11 @@ static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
break;
case TIMER_REG_CVAL:
val = timer->cnt_cval;
val = timer_get_cval(timer);
break;
case TIMER_REG_CNT:
val = kvm_phys_timer_read() - timer->cntvoff;
val = kvm_phys_timer_read() - timer_get_offset(timer);
break;
default:
@ -842,15 +931,15 @@ static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
{
switch (treg) {
case TIMER_REG_TVAL:
timer->cnt_cval = kvm_phys_timer_read() - timer->cntvoff + (s32)val;
timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
break;
case TIMER_REG_CTL:
timer->cnt_ctl = val & ~ARCH_TIMER_CTRL_IT_STAT;
timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
break;
case TIMER_REG_CVAL:
timer->cnt_cval = val;
timer_set_cval(timer, val);
break;
default:

View File

@ -106,22 +106,15 @@ static int kvm_arm_default_max_vcpus(void)
*/
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
int ret, cpu;
int ret;
ret = kvm_arm_setup_stage2(kvm, type);
if (ret)
return ret;
kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
if (!kvm->arch.last_vcpu_ran)
return -ENOMEM;
for_each_possible_cpu(cpu)
*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
ret = kvm_alloc_stage2_pgd(kvm);
ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
if (ret)
goto out_fail_alloc;
return ret;
ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
if (ret)
@ -129,18 +122,12 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm_vgic_early_init(kvm);
/* Mark the initial VMID generation invalid */
kvm->arch.vmid.vmid_gen = 0;
/* The maximum number of VCPUs is limited by the host's GIC model */
kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
return ret;
out_free_stage2_pgd:
kvm_free_stage2_pgd(kvm);
out_fail_alloc:
free_percpu(kvm->arch.last_vcpu_ran);
kvm->arch.last_vcpu_ran = NULL;
kvm_free_stage2_pgd(&kvm->arch.mmu);
return ret;
}
@ -160,9 +147,6 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
kvm_vgic_destroy(kvm);
free_percpu(kvm->arch.last_vcpu_ran);
kvm->arch.last_vcpu_ran = NULL;
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
if (kvm->vcpus[i]) {
kvm_vcpu_destroy(kvm->vcpus[i]);
@ -281,6 +265,8 @@ int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
kvm_arm_pvtime_vcpu_init(&vcpu->arch);
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
err = kvm_vgic_vcpu_init(vcpu);
if (err)
return err;
@ -336,16 +322,18 @@ void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct kvm_s2_mmu *mmu;
int *last_ran;
last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
mmu = vcpu->arch.hw_mmu;
last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
/*
* We might get preempted before the vCPU actually runs, but
* over-invalidation doesn't affect correctness.
*/
if (*last_ran != vcpu->vcpu_id) {
kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
*last_ran = vcpu->vcpu_id;
}
@ -353,7 +341,8 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
kvm_vgic_load(vcpu);
kvm_timer_vcpu_load(vcpu);
kvm_vcpu_load_sysregs(vcpu);
if (has_vhe())
kvm_vcpu_load_sysregs_vhe(vcpu);
kvm_arch_vcpu_load_fp(vcpu);
kvm_vcpu_pmu_restore_guest(vcpu);
if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
@ -371,7 +360,8 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_put_fp(vcpu);
kvm_vcpu_put_sysregs(vcpu);
if (has_vhe())
kvm_vcpu_put_sysregs_vhe(vcpu);
kvm_timer_vcpu_put(vcpu);
kvm_vgic_put(vcpu);
kvm_vcpu_pmu_restore_host(vcpu);
@ -468,7 +458,6 @@ static bool need_new_vmid_gen(struct kvm_vmid *vmid)
/**
* update_vmid - Update the vmid with a valid VMID for the current generation
* @kvm: The guest that struct vmid belongs to
* @vmid: The stage-2 VMID information struct
*/
static void update_vmid(struct kvm_vmid *vmid)
@ -680,7 +669,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
*/
cond_resched();
update_vmid(&vcpu->kvm->arch.vmid);
update_vmid(&vcpu->arch.hw_mmu->vmid);
check_vcpu_requests(vcpu);
@ -729,13 +718,13 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
*/
smp_store_mb(vcpu->mode, IN_GUEST_MODE);
if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
kvm_request_pending(vcpu)) {
vcpu->mode = OUTSIDE_GUEST_MODE;
isb(); /* Ensure work in x_flush_hwstate is committed */
kvm_pmu_sync_hwstate(vcpu);
if (static_branch_unlikely(&userspace_irqchip_in_use))
kvm_timer_sync_hwstate(vcpu);
kvm_timer_sync_user(vcpu);
kvm_vgic_sync_hwstate(vcpu);
local_irq_enable();
preempt_enable();
@ -750,11 +739,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
trace_kvm_entry(*vcpu_pc(vcpu));
guest_enter_irqoff();
if (has_vhe()) {
ret = kvm_vcpu_run_vhe(vcpu);
} else {
ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
}
ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
vcpu->mode = OUTSIDE_GUEST_MODE;
vcpu->stat.exits++;
@ -784,7 +769,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
* timer virtual interrupt state.
*/
if (static_branch_unlikely(&userspace_irqchip_in_use))
kvm_timer_sync_hwstate(vcpu);
kvm_timer_sync_user(vcpu);
kvm_arch_vcpu_ctxsync_fp(vcpu);
@ -1287,7 +1272,7 @@ static void cpu_init_hyp_mode(void)
* so that we can use adr_l to access per-cpu variables in EL2.
*/
tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
(unsigned long)kvm_ksym_ref(kvm_host_data));
(unsigned long)kvm_ksym_ref(&kvm_host_data));
pgd_ptr = kvm_mmu_get_httbr();
hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
@ -1308,7 +1293,7 @@ static void cpu_init_hyp_mode(void)
*/
if (this_cpu_has_cap(ARM64_SSBS) &&
arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
kvm_call_hyp(__kvm_enable_ssbs);
kvm_call_hyp_nvhe(__kvm_enable_ssbs);
}
}

View File

@ -85,7 +85,7 @@ void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
WARN_ON_ONCE(!irqs_disabled());
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.gp_regs.fp_regs,
fpsimd_bind_state_to_cpu(&vcpu->arch.ctxt.fp_regs,
vcpu->arch.sve_state,
vcpu->arch.sve_max_vl);
@ -109,12 +109,10 @@ void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
local_irq_save(flags);
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED) {
u64 *guest_zcr = &vcpu->arch.ctxt.sys_regs[ZCR_EL1];
fpsimd_save_and_flush_cpu_state();
if (guest_has_sve)
*guest_zcr = read_sysreg_s(SYS_ZCR_EL12);
__vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_s(SYS_ZCR_EL12);
} else if (host_has_sve) {
/*
* The FPSIMD/SVE state in the CPU has not been touched, and we

View File

@ -101,19 +101,69 @@ static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
return size;
}
static int validate_core_offset(const struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
u64 off = core_reg_offset_from_id(reg->id);
int size = core_reg_size_from_offset(vcpu, off);
if (size < 0)
return -EINVAL;
return NULL;
if (KVM_REG_SIZE(reg->id) != size)
return -EINVAL;
return NULL;
return 0;
switch (off) {
case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
KVM_REG_ARM_CORE_REG(regs.regs[30]):
off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
off /= 2;
return &vcpu->arch.ctxt.regs.regs[off];
case KVM_REG_ARM_CORE_REG(regs.sp):
return &vcpu->arch.ctxt.regs.sp;
case KVM_REG_ARM_CORE_REG(regs.pc):
return &vcpu->arch.ctxt.regs.pc;
case KVM_REG_ARM_CORE_REG(regs.pstate):
return &vcpu->arch.ctxt.regs.pstate;
case KVM_REG_ARM_CORE_REG(sp_el1):
return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
case KVM_REG_ARM_CORE_REG(elr_el1):
return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
return &vcpu->arch.ctxt.spsr_abt;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
return &vcpu->arch.ctxt.spsr_und;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
return &vcpu->arch.ctxt.spsr_irq;
case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
return &vcpu->arch.ctxt.spsr_fiq;
case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
off /= 4;
return &vcpu->arch.ctxt.fp_regs.vregs[off];
case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
return &vcpu->arch.ctxt.fp_regs.fpsr;
case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
return &vcpu->arch.ctxt.fp_regs.fpcr;
default:
return NULL;
}
}
static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
@ -125,8 +175,8 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
* off the index in the "array".
*/
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
struct kvm_regs *regs = vcpu_gp_regs(vcpu);
int nr_regs = sizeof(*regs) / sizeof(__u32);
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
void *addr;
u32 off;
/* Our ID is an index into the kvm_regs struct. */
@ -135,10 +185,11 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
return -ENOENT;
if (validate_core_offset(vcpu, reg))
addr = core_reg_addr(vcpu, reg);
if (!addr)
return -EINVAL;
if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
return -EFAULT;
return 0;
@ -147,10 +198,9 @@ static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
struct kvm_regs *regs = vcpu_gp_regs(vcpu);
int nr_regs = sizeof(*regs) / sizeof(__u32);
int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
__uint128_t tmp;
void *valp = &tmp;
void *valp = &tmp, *addr;
u64 off;
int err = 0;
@ -160,7 +210,8 @@ static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
(off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
return -ENOENT;
if (validate_core_offset(vcpu, reg))
addr = core_reg_addr(vcpu, reg);
if (!addr)
return -EINVAL;
if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
@ -198,7 +249,7 @@ static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
}
}
memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
memcpy(addr, valp, KVM_REG_SIZE(reg->id));
if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
int i;

View File

@ -89,7 +89,7 @@ static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
*/
static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
{
if (kvm_vcpu_get_hsr(vcpu) & ESR_ELx_WFx_ISS_WFE) {
if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_WFx_ISS_WFE) {
trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
vcpu->stat.wfe_exit_stat++;
kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
@ -119,13 +119,13 @@ static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
{
struct kvm_run *run = vcpu->run;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
int ret = 0;
run->exit_reason = KVM_EXIT_DEBUG;
run->debug.arch.hsr = hsr;
run->debug.arch.hsr = esr;
switch (ESR_ELx_EC(hsr)) {
switch (ESR_ELx_EC(esr)) {
case ESR_ELx_EC_WATCHPT_LOW:
run->debug.arch.far = vcpu->arch.fault.far_el2;
/* fall through */
@ -135,8 +135,8 @@ static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
case ESR_ELx_EC_BRK64:
break;
default:
kvm_err("%s: un-handled case hsr: %#08x\n",
__func__, (unsigned int) hsr);
kvm_err("%s: un-handled case esr: %#08x\n",
__func__, (unsigned int) esr);
ret = -1;
break;
}
@ -146,10 +146,10 @@ static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
{
u32 hsr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
kvm_pr_unimpl("Unknown exception class: hsr: %#08x -- %s\n",
hsr, esr_get_class_string(hsr));
kvm_pr_unimpl("Unknown exception class: esr: %#08x -- %s\n",
esr, esr_get_class_string(esr));
kvm_inject_undefined(vcpu);
return 1;
@ -200,10 +200,10 @@ static exit_handle_fn arm_exit_handlers[] = {
static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
{
u32 hsr = kvm_vcpu_get_hsr(vcpu);
u8 hsr_ec = ESR_ELx_EC(hsr);
u32 esr = kvm_vcpu_get_esr(vcpu);
u8 esr_ec = ESR_ELx_EC(esr);
return arm_exit_handlers[hsr_ec];
return arm_exit_handlers[esr_ec];
}
/*
@ -242,15 +242,15 @@ int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
struct kvm_run *run = vcpu->run;
if (ARM_SERROR_PENDING(exception_index)) {
u8 hsr_ec = ESR_ELx_EC(kvm_vcpu_get_hsr(vcpu));
u8 esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(vcpu));
/*
* HVC/SMC already have an adjusted PC, which we need
* to correct in order to return to after having
* injected the SError.
*/
if (hsr_ec == ESR_ELx_EC_HVC32 || hsr_ec == ESR_ELx_EC_HVC64 ||
hsr_ec == ESR_ELx_EC_SMC32 || hsr_ec == ESR_ELx_EC_SMC64) {
if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64 ||
esr_ec == ESR_ELx_EC_SMC32 || esr_ec == ESR_ELx_EC_SMC64) {
u32 adj = kvm_vcpu_trap_il_is32bit(vcpu) ? 4 : 2;
*vcpu_pc(vcpu) -= adj;
}
@ -307,5 +307,5 @@ void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
exception_index = ARM_EXCEPTION_CODE(exception_index);
if (exception_index == ARM_EXCEPTION_EL1_SERROR)
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_hsr(vcpu));
kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
}

View File

@ -3,18 +3,12 @@
# Makefile for Kernel-based Virtual Machine module, HYP part
#
ccflags-y += -fno-stack-protector -DDISABLE_BRANCH_PROFILING \
$(DISABLE_STACKLEAK_PLUGIN)
incdir := $(srctree)/$(src)/include
subdir-asflags-y := -I$(incdir)
subdir-ccflags-y := -I$(incdir) \
-fno-stack-protector \
-DDISABLE_BRANCH_PROFILING \
$(DISABLE_STACKLEAK_PLUGIN)
obj-$(CONFIG_KVM) += hyp.o
hyp-y := vgic-v3-sr.o timer-sr.o aarch32.o vgic-v2-cpuif-proxy.o sysreg-sr.o \
debug-sr.o entry.o switch.o fpsimd.o tlb.o hyp-entry.o
# KVM code is run at a different exception code with a different map, so
# compiler instrumentation that inserts callbacks or checks into the code may
# cause crashes. Just disable it.
GCOV_PROFILE := n
KASAN_SANITIZE := n
UBSAN_SANITIZE := n
KCOV_INSTRUMENT := n
obj-$(CONFIG_KVM) += vhe/ nvhe/
obj-$(CONFIG_KVM_INDIRECT_VECTORS) += smccc_wa.o

View File

@ -44,14 +44,14 @@ static const unsigned short cc_map[16] = {
/*
* Check if a trapped instruction should have been executed or not.
*/
bool __hyp_text kvm_condition_valid32(const struct kvm_vcpu *vcpu)
bool kvm_condition_valid32(const struct kvm_vcpu *vcpu)
{
unsigned long cpsr;
u32 cpsr_cond;
int cond;
/* Top two bits non-zero? Unconditional. */
if (kvm_vcpu_get_hsr(vcpu) >> 30)
if (kvm_vcpu_get_esr(vcpu) >> 30)
return true;
/* Is condition field valid? */
@ -93,7 +93,7 @@ bool __hyp_text kvm_condition_valid32(const struct kvm_vcpu *vcpu)
*
* IT[7:0] -> CPSR[26:25],CPSR[15:10]
*/
static void __hyp_text kvm_adjust_itstate(struct kvm_vcpu *vcpu)
static void kvm_adjust_itstate(struct kvm_vcpu *vcpu)
{
unsigned long itbits, cond;
unsigned long cpsr = *vcpu_cpsr(vcpu);
@ -123,7 +123,7 @@ static void __hyp_text kvm_adjust_itstate(struct kvm_vcpu *vcpu)
* kvm_skip_instr - skip a trapped instruction and proceed to the next
* @vcpu: The vcpu pointer
*/
void __hyp_text kvm_skip_instr32(struct kvm_vcpu *vcpu, bool is_wide_instr)
void kvm_skip_instr32(struct kvm_vcpu *vcpu, bool is_wide_instr)
{
u32 pc = *vcpu_pc(vcpu);
bool is_thumb;

View File

@ -16,12 +16,10 @@
#include <asm/kvm_mmu.h>
#include <asm/kvm_ptrauth.h>
#define CPU_GP_REG_OFFSET(x) (CPU_GP_REGS + x)
#define CPU_XREG_OFFSET(x) CPU_GP_REG_OFFSET(CPU_USER_PT_REGS + 8*x)
#define CPU_XREG_OFFSET(x) (CPU_USER_PT_REGS + 8*x)
#define CPU_SP_EL0_OFFSET (CPU_XREG_OFFSET(30) + 8)
.text
.pushsection .hyp.text, "ax"
/*
* We treat x18 as callee-saved as the host may use it as a platform

View File

@ -9,7 +9,6 @@
#include <asm/fpsimdmacros.h>
.text
.pushsection .hyp.text, "ax"
SYM_FUNC_START(__fpsimd_save_state)
fpsimd_save x0, 1

View File

@ -16,7 +16,6 @@
#include <asm/mmu.h>
.text
.pushsection .hyp.text, "ax"
.macro do_el2_call
/*
@ -40,6 +39,7 @@ el1_sync: // Guest trapped into EL2
ccmp x0, #ESR_ELx_EC_HVC32, #4, ne
b.ne el1_trap
#ifdef __KVM_NVHE_HYPERVISOR__
mrs x1, vttbr_el2 // If vttbr is valid, the guest
cbnz x1, el1_hvc_guest // called HVC
@ -74,6 +74,7 @@ el1_sync: // Guest trapped into EL2
eret
sb
#endif /* __KVM_NVHE_HYPERVISOR__ */
el1_hvc_guest:
/*
@ -180,6 +181,7 @@ el2_error:
eret
sb
#ifdef __KVM_NVHE_HYPERVISOR__
SYM_FUNC_START(__hyp_do_panic)
mov lr, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
PSR_MODE_EL1h)
@ -189,6 +191,7 @@ SYM_FUNC_START(__hyp_do_panic)
eret
sb
SYM_FUNC_END(__hyp_do_panic)
#endif
SYM_CODE_START(__hyp_panic)
get_host_ctxt x0, x1
@ -318,20 +321,4 @@ SYM_CODE_START(__bp_harden_hyp_vecs)
1: .org __bp_harden_hyp_vecs + __BP_HARDEN_HYP_VECS_SZ
.org 1b
SYM_CODE_END(__bp_harden_hyp_vecs)
.popsection
SYM_CODE_START(__smccc_workaround_1_smc)
esb
sub sp, sp, #(8 * 4)
stp x2, x3, [sp, #(8 * 0)]
stp x0, x1, [sp, #(8 * 2)]
mov w0, #ARM_SMCCC_ARCH_WORKAROUND_1
smc #0
ldp x2, x3, [sp, #(8 * 0)]
ldp x0, x1, [sp, #(8 * 2)]
add sp, sp, #(8 * 4)
1: .org __smccc_workaround_1_smc + __SMCCC_WORKAROUND_1_SMC_SZ
.org 1b
SYM_CODE_END(__smccc_workaround_1_smc)
#endif

View File

@ -4,6 +4,9 @@
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#ifndef __ARM64_KVM_HYP_DEBUG_SR_H__
#define __ARM64_KVM_HYP_DEBUG_SR_H__
#include <linux/compiler.h>
#include <linux/kvm_host.h>
@ -85,53 +88,8 @@
default: write_debug(ptr[0], reg, 0); \
}
static void __hyp_text __debug_save_spe_nvhe(u64 *pmscr_el1)
{
u64 reg;
/* Clear pmscr in case of early return */
*pmscr_el1 = 0;
/* SPE present on this CPU? */
if (!cpuid_feature_extract_unsigned_field(read_sysreg(id_aa64dfr0_el1),
ID_AA64DFR0_PMSVER_SHIFT))
return;
/* Yes; is it owned by EL3? */
reg = read_sysreg_s(SYS_PMBIDR_EL1);
if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT))
return;
/* No; is the host actually using the thing? */
reg = read_sysreg_s(SYS_PMBLIMITR_EL1);
if (!(reg & BIT(SYS_PMBLIMITR_EL1_E_SHIFT)))
return;
/* Yes; save the control register and disable data generation */
*pmscr_el1 = read_sysreg_s(SYS_PMSCR_EL1);
write_sysreg_s(0, SYS_PMSCR_EL1);
isb();
/* Now drain all buffered data to memory */
psb_csync();
dsb(nsh);
}
static void __hyp_text __debug_restore_spe_nvhe(u64 pmscr_el1)
{
if (!pmscr_el1)
return;
/* The host page table is installed, but not yet synchronised */
isb();
/* Re-enable data generation */
write_sysreg_s(pmscr_el1, SYS_PMSCR_EL1);
}
static void __hyp_text __debug_save_state(struct kvm_vcpu *vcpu,
struct kvm_guest_debug_arch *dbg,
struct kvm_cpu_context *ctxt)
static void __debug_save_state(struct kvm_guest_debug_arch *dbg,
struct kvm_cpu_context *ctxt)
{
u64 aa64dfr0;
int brps, wrps;
@ -145,12 +103,11 @@ static void __hyp_text __debug_save_state(struct kvm_vcpu *vcpu,
save_debug(dbg->dbg_wcr, dbgwcr, wrps);
save_debug(dbg->dbg_wvr, dbgwvr, wrps);
ctxt->sys_regs[MDCCINT_EL1] = read_sysreg(mdccint_el1);
ctxt_sys_reg(ctxt, MDCCINT_EL1) = read_sysreg(mdccint_el1);
}
static void __hyp_text __debug_restore_state(struct kvm_vcpu *vcpu,
struct kvm_guest_debug_arch *dbg,
struct kvm_cpu_context *ctxt)
static void __debug_restore_state(struct kvm_guest_debug_arch *dbg,
struct kvm_cpu_context *ctxt)
{
u64 aa64dfr0;
int brps, wrps;
@ -165,23 +122,16 @@ static void __hyp_text __debug_restore_state(struct kvm_vcpu *vcpu,
restore_debug(dbg->dbg_wcr, dbgwcr, wrps);
restore_debug(dbg->dbg_wvr, dbgwvr, wrps);
write_sysreg(ctxt->sys_regs[MDCCINT_EL1], mdccint_el1);
write_sysreg(ctxt_sys_reg(ctxt, MDCCINT_EL1), mdccint_el1);
}
void __hyp_text __debug_switch_to_guest(struct kvm_vcpu *vcpu)
static inline void __debug_switch_to_guest_common(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
struct kvm_guest_debug_arch *host_dbg;
struct kvm_guest_debug_arch *guest_dbg;
/*
* Non-VHE: Disable and flush SPE data generation
* VHE: The vcpu can run, but it can't hide.
*/
if (!has_vhe())
__debug_save_spe_nvhe(&vcpu->arch.host_debug_state.pmscr_el1);
if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY))
return;
@ -190,20 +140,17 @@ void __hyp_text __debug_switch_to_guest(struct kvm_vcpu *vcpu)
host_dbg = &vcpu->arch.host_debug_state.regs;
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
__debug_save_state(vcpu, host_dbg, host_ctxt);
__debug_restore_state(vcpu, guest_dbg, guest_ctxt);
__debug_save_state(host_dbg, host_ctxt);
__debug_restore_state(guest_dbg, guest_ctxt);
}
void __hyp_text __debug_switch_to_host(struct kvm_vcpu *vcpu)
static inline void __debug_switch_to_host_common(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
struct kvm_guest_debug_arch *host_dbg;
struct kvm_guest_debug_arch *guest_dbg;
if (!has_vhe())
__debug_restore_spe_nvhe(vcpu->arch.host_debug_state.pmscr_el1);
if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY))
return;
@ -212,13 +159,10 @@ void __hyp_text __debug_switch_to_host(struct kvm_vcpu *vcpu)
host_dbg = &vcpu->arch.host_debug_state.regs;
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
__debug_save_state(vcpu, guest_dbg, guest_ctxt);
__debug_restore_state(vcpu, host_dbg, host_ctxt);
__debug_save_state(guest_dbg, guest_ctxt);
__debug_restore_state(host_dbg, host_ctxt);
vcpu->arch.flags &= ~KVM_ARM64_DEBUG_DIRTY;
}
u32 __hyp_text __kvm_get_mdcr_el2(void)
{
return read_sysreg(mdcr_el2);
}
#endif /* __ARM64_KVM_HYP_DEBUG_SR_H__ */

View File

@ -0,0 +1,511 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#ifndef __ARM64_KVM_HYP_SWITCH_H__
#define __ARM64_KVM_HYP_SWITCH_H__
#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
extern const char __hyp_panic_string[];
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
{
/*
* When the system doesn't support FP/SIMD, we cannot rely on
* the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
* abort on the very first access to FP and thus we should never
* see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
* trap the accesses.
*/
if (!system_supports_fpsimd() ||
vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
KVM_ARM64_FP_HOST);
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
}
/* Save the 32-bit only FPSIMD system register state */
static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
if (!vcpu_el1_is_32bit(vcpu))
return;
__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
}
static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
/*
* We are about to set CPTR_EL2.TFP to trap all floating point
* register accesses to EL2, however, the ARM ARM clearly states that
* traps are only taken to EL2 if the operation would not otherwise
* trap to EL1. Therefore, always make sure that for 32-bit guests,
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
* it will cause an exception.
*/
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
write_sysreg(1 << 30, fpexc32_el2);
isb();
}
}
static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
{
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
write_sysreg(1 << 15, hstr_el2);
/*
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
* PMSELR_EL0 to make sure it never contains the cycle
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
* EL1 instead of being trapped to EL2.
*/
write_sysreg(0, pmselr_el0);
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}
static inline void __deactivate_traps_common(void)
{
write_sysreg(0, hstr_el2);
write_sysreg(0, pmuserenr_el0);
}
static inline void ___activate_traps(struct kvm_vcpu *vcpu)
{
u64 hcr = vcpu->arch.hcr_el2;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
hcr |= HCR_TVM;
write_sysreg(hcr, hcr_el2);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
}
static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
{
/*
* If we pended a virtual abort, preserve it until it gets
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
* the crucial bit is "On taking a vSError interrupt,
* HCR_EL2.VSE is cleared to 0."
*/
if (vcpu->arch.hcr_el2 & HCR_VSE) {
vcpu->arch.hcr_el2 &= ~HCR_VSE;
vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
}
}
static inline void __activate_vm(struct kvm_s2_mmu *mmu)
{
__load_guest_stage2(mmu);
}
static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
u64 par, tmp;
/*
* Resolve the IPA the hard way using the guest VA.
*
* Stage-1 translation already validated the memory access
* rights. As such, we can use the EL1 translation regime, and
* don't have to distinguish between EL0 and EL1 access.
*
* We do need to save/restore PAR_EL1 though, as we haven't
* saved the guest context yet, and we may return early...
*/
par = read_sysreg(par_el1);
asm volatile("at s1e1r, %0" : : "r" (far));
isb();
tmp = read_sysreg(par_el1);
write_sysreg(par, par_el1);
if (unlikely(tmp & SYS_PAR_EL1_F))
return false; /* Translation failed, back to guest */
/* Convert PAR to HPFAR format */
*hpfar = PAR_TO_HPFAR(tmp);
return true;
}
static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
{
u8 ec;
u64 esr;
u64 hpfar, far;
esr = vcpu->arch.fault.esr_el2;
ec = ESR_ELx_EC(esr);
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
return true;
far = read_sysreg_el2(SYS_FAR);
/*
* The HPFAR can be invalid if the stage 2 fault did not
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
* bit is clear) and one of the two following cases are true:
* 1. The fault was due to a permission fault
* 2. The processor carries errata 834220
*
* Therefore, for all non S1PTW faults where we either have a
* permission fault or the errata workaround is enabled, we
* resolve the IPA using the AT instruction.
*/
if (!(esr & ESR_ELx_S1PTW) &&
(cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
(esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
if (!__translate_far_to_hpfar(far, &hpfar))
return false;
} else {
hpfar = read_sysreg(hpfar_el2);
}
vcpu->arch.fault.far_el2 = far;
vcpu->arch.fault.hpfar_el2 = hpfar;
return true;
}
/* Check for an FPSIMD/SVE trap and handle as appropriate */
static inline bool __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
{
bool vhe, sve_guest, sve_host;
u8 esr_ec;
if (!system_supports_fpsimd())
return false;
/*
* Currently system_supports_sve() currently implies has_vhe(),
* so the check is redundant. However, has_vhe() can be determined
* statically and helps the compiler remove dead code.
*/
if (has_vhe() && system_supports_sve()) {
sve_guest = vcpu_has_sve(vcpu);
sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
vhe = true;
} else {
sve_guest = false;
sve_host = false;
vhe = has_vhe();
}
esr_ec = kvm_vcpu_trap_get_class(vcpu);
if (esr_ec != ESR_ELx_EC_FP_ASIMD &&
esr_ec != ESR_ELx_EC_SVE)
return false;
/* Don't handle SVE traps for non-SVE vcpus here: */
if (!sve_guest)
if (esr_ec != ESR_ELx_EC_FP_ASIMD)
return false;
/* Valid trap. Switch the context: */
if (vhe) {
u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
if (sve_guest)
reg |= CPACR_EL1_ZEN;
write_sysreg(reg, cpacr_el1);
} else {
write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
cptr_el2);
}
isb();
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
/*
* In the SVE case, VHE is assumed: it is enforced by
* Kconfig and kvm_arch_init().
*/
if (sve_host) {
struct thread_struct *thread = container_of(
vcpu->arch.host_fpsimd_state,
struct thread_struct, uw.fpsimd_state);
sve_save_state(sve_pffr(thread),
&vcpu->arch.host_fpsimd_state->fpsr);
} else {
__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
}
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
}
if (sve_guest) {
sve_load_state(vcpu_sve_pffr(vcpu),
&vcpu->arch.ctxt.fp_regs.fpsr,
sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
write_sysreg_s(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR_EL12);
} else {
__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
}
/* Skip restoring fpexc32 for AArch64 guests */
if (!(read_sysreg(hcr_el2) & HCR_RW))
write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
return true;
}
static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
{
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
int rt = kvm_vcpu_sys_get_rt(vcpu);
u64 val = vcpu_get_reg(vcpu, rt);
/*
* The normal sysreg handling code expects to see the traps,
* let's not do anything here.
*/
if (vcpu->arch.hcr_el2 & HCR_TVM)
return false;
switch (sysreg) {
case SYS_SCTLR_EL1:
write_sysreg_el1(val, SYS_SCTLR);
break;
case SYS_TTBR0_EL1:
write_sysreg_el1(val, SYS_TTBR0);
break;
case SYS_TTBR1_EL1:
write_sysreg_el1(val, SYS_TTBR1);
break;
case SYS_TCR_EL1:
write_sysreg_el1(val, SYS_TCR);
break;
case SYS_ESR_EL1:
write_sysreg_el1(val, SYS_ESR);
break;
case SYS_FAR_EL1:
write_sysreg_el1(val, SYS_FAR);
break;
case SYS_AFSR0_EL1:
write_sysreg_el1(val, SYS_AFSR0);
break;
case SYS_AFSR1_EL1:
write_sysreg_el1(val, SYS_AFSR1);
break;
case SYS_MAIR_EL1:
write_sysreg_el1(val, SYS_MAIR);
break;
case SYS_AMAIR_EL1:
write_sysreg_el1(val, SYS_AMAIR);
break;
case SYS_CONTEXTIDR_EL1:
write_sysreg_el1(val, SYS_CONTEXTIDR);
break;
default:
return false;
}
__kvm_skip_instr(vcpu);
return true;
}
static inline bool esr_is_ptrauth_trap(u32 esr)
{
u32 ec = ESR_ELx_EC(esr);
if (ec == ESR_ELx_EC_PAC)
return true;
if (ec != ESR_ELx_EC_SYS64)
return false;
switch (esr_sys64_to_sysreg(esr)) {
case SYS_APIAKEYLO_EL1:
case SYS_APIAKEYHI_EL1:
case SYS_APIBKEYLO_EL1:
case SYS_APIBKEYHI_EL1:
case SYS_APDAKEYLO_EL1:
case SYS_APDAKEYHI_EL1:
case SYS_APDBKEYLO_EL1:
case SYS_APDBKEYHI_EL1:
case SYS_APGAKEYLO_EL1:
case SYS_APGAKEYHI_EL1:
return true;
}
return false;
}
#define __ptrauth_save_key(ctxt, key) \
do { \
u64 __val; \
__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
} while(0)
static inline bool __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *ctxt;
u64 val;
if (!vcpu_has_ptrauth(vcpu) ||
!esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
return false;
ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__ptrauth_save_key(ctxt, APIA);
__ptrauth_save_key(ctxt, APIB);
__ptrauth_save_key(ctxt, APDA);
__ptrauth_save_key(ctxt, APDB);
__ptrauth_save_key(ctxt, APGA);
vcpu_ptrauth_enable(vcpu);
val = read_sysreg(hcr_el2);
val |= (HCR_API | HCR_APK);
write_sysreg(val, hcr_el2);
return true;
}
/*
* Return true when we were able to fixup the guest exit and should return to
* the guest, false when we should restore the host state and return to the
* main run loop.
*/
static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
/*
* We're using the raw exception code in order to only process
* the trap if no SError is pending. We will come back to the
* same PC once the SError has been injected, and replay the
* trapping instruction.
*/
if (*exit_code != ARM_EXCEPTION_TRAP)
goto exit;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
handle_tx2_tvm(vcpu))
return true;
/*
* We trap the first access to the FP/SIMD to save the host context
* and restore the guest context lazily.
* If FP/SIMD is not implemented, handle the trap and inject an
* undefined instruction exception to the guest.
* Similarly for trapped SVE accesses.
*/
if (__hyp_handle_fpsimd(vcpu))
return true;
if (__hyp_handle_ptrauth(vcpu))
return true;
if (!__populate_fault_info(vcpu))
return true;
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
bool valid;
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
kvm_vcpu_dabt_isvalid(vcpu) &&
!kvm_vcpu_abt_issea(vcpu) &&
!kvm_vcpu_dabt_iss1tw(vcpu);
if (valid) {
int ret = __vgic_v2_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
/* Promote an illegal access to an SError.*/
if (ret == -1)
*exit_code = ARM_EXCEPTION_EL1_SERROR;
goto exit;
}
}
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
int ret = __vgic_v3_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
}
exit:
/* Return to the host kernel and handle the exit */
return false;
}
static inline bool __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
if (!cpus_have_final_cap(ARM64_SSBD))
return false;
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}
static inline void __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* The host runs with the workaround always present. If the
* guest wants it disabled, so be it...
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}
static inline void __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* If the guest has disabled the workaround, bring it back on.
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}
#endif /* __ARM64_KVM_HYP_SWITCH_H__ */

View File

@ -0,0 +1,193 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#ifndef __ARM64_KVM_HYP_SYSREG_SR_H__
#define __ARM64_KVM_HYP_SYSREG_SR_H__
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
{
ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1);
}
static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
{
ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0);
ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0);
}
static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
{
ctxt_sys_reg(ctxt, CSSELR_EL1) = read_sysreg(csselr_el1);
ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR);
ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR);
ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0);
ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1);
ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR);
ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR);
ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0);
ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1);
ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR);
ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR);
ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR);
ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR);
ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR);
ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL);
ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg(par_el1);
ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1);
ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1);
ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR);
ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR);
}
static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
{
ctxt->regs.pc = read_sysreg_el2(SYS_ELR);
ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2);
}
static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1);
}
static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0);
write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0);
}
static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2);
write_sysreg(ctxt_sys_reg(ctxt, CSSELR_EL1), csselr_el1);
if (has_vhe() ||
!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
} else if (!ctxt->__hyp_running_vcpu) {
/*
* Must only be done for guest registers, hence the context
* test. We're coming from the host, so SCTLR.M is already
* set. Pairs with nVHE's __activate_traps().
*/
write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) |
TCR_EPD1_MASK | TCR_EPD0_MASK),
SYS_TCR);
isb();
}
write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR);
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0);
write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1);
write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR);
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0);
write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1);
write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR);
write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR);
write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR);
write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR);
write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR);
write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL);
write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1);
write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1);
if (!has_vhe() &&
cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) &&
ctxt->__hyp_running_vcpu) {
/*
* Must only be done for host registers, hence the context
* test. Pairs with nVHE's __deactivate_traps().
*/
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* deconfigured and disabled. We can now restore the host's
* S1 configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
isb();
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
}
write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1);
write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR);
write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR);
}
static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
{
u64 pstate = ctxt->regs.pstate;
u64 mode = pstate & PSR_AA32_MODE_MASK;
/*
* Safety check to ensure we're setting the CPU up to enter the guest
* in a less privileged mode.
*
* If we are attempting a return to EL2 or higher in AArch64 state,
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
* we'll take an illegal exception state exception immediately after
* the ERET to the guest. Attempts to return to AArch32 Hyp will
* result in an illegal exception return because EL2's execution state
* is determined by SCR_EL3.RW.
*/
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
write_sysreg_el2(ctxt->regs.pc, SYS_ELR);
write_sysreg_el2(pstate, SYS_SPSR);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2);
}
static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu)
{
if (!vcpu_el1_is_32bit(vcpu))
return;
vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt);
vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und);
vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq);
vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq);
__vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2);
__vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
__vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2);
}
static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu)
{
if (!vcpu_el1_is_32bit(vcpu))
return;
write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt);
write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und);
write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq);
write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq);
write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2);
write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2);
}
#endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */

View File

@ -0,0 +1,62 @@
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for Kernel-based Virtual Machine module, HYP/nVHE part
#
asflags-y := -D__KVM_NVHE_HYPERVISOR__
ccflags-y := -D__KVM_NVHE_HYPERVISOR__
obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o hyp-init.o
obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \
../fpsimd.o ../hyp-entry.o
obj-y := $(patsubst %.o,%.hyp.o,$(obj-y))
extra-y := $(patsubst %.hyp.o,%.hyp.tmp.o,$(obj-y))
$(obj)/%.hyp.tmp.o: $(src)/%.c FORCE
$(call if_changed_rule,cc_o_c)
$(obj)/%.hyp.tmp.o: $(src)/%.S FORCE
$(call if_changed_rule,as_o_S)
$(obj)/%.hyp.o: $(obj)/%.hyp.tmp.o FORCE
$(call if_changed,hypcopy)
# Disable reordering functions by GCC (enabled at -O2).
# This pass puts functions into '.text.*' sections to aid the linker
# in optimizing ELF layout. See HYPCOPY comment below for more info.
ccflags-y += $(call cc-option,-fno-reorder-functions)
# The HYPCOPY command uses `objcopy` to prefix all ELF symbol names
# and relevant ELF section names to avoid clashes with VHE code/data.
#
# Hyp code is assumed to be in the '.text' section of the input object
# files (with the exception of specialized sections such as
# '.hyp.idmap.text'). This assumption may be broken by a compiler that
# divides code into sections like '.text.unlikely' so as to optimize
# ELF layout. HYPCOPY checks that no such sections exist in the input
# using `objdump`, otherwise they would be linked together with other
# kernel code and not memory-mapped correctly at runtime.
quiet_cmd_hypcopy = HYPCOPY $@
cmd_hypcopy = \
if $(OBJDUMP) -h $< | grep -F '.text.'; then \
echo "$@: function reordering not supported in nVHE hyp code" >&2; \
/bin/false; \
fi; \
$(OBJCOPY) --prefix-symbols=__kvm_nvhe_ \
--rename-section=.text=.hyp.text \
$< $@
# Remove ftrace and Shadow Call Stack CFLAGS.
# This is equivalent to the 'notrace' and '__noscs' annotations.
KBUILD_CFLAGS := $(filter-out $(CC_FLAGS_FTRACE) $(CC_FLAGS_SCS), $(KBUILD_CFLAGS))
# KVM nVHE code is run at a different exception code with a different map, so
# compiler instrumentation that inserts callbacks or checks into the code may
# cause crashes. Just disable it.
GCOV_PROFILE := n
KASAN_SANITIZE := n
UBSAN_SANITIZE := n
KCOV_INSTRUMENT := n
# Skip objtool checking for this directory because nVHE code is compiled with
# non-standard build rules.
OBJECT_FILES_NON_STANDARD := y

View File

@ -0,0 +1,77 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/debug-sr.h>
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/debug-monitors.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
static void __debug_save_spe(u64 *pmscr_el1)
{
u64 reg;
/* Clear pmscr in case of early return */
*pmscr_el1 = 0;
/* SPE present on this CPU? */
if (!cpuid_feature_extract_unsigned_field(read_sysreg(id_aa64dfr0_el1),
ID_AA64DFR0_PMSVER_SHIFT))
return;
/* Yes; is it owned by EL3? */
reg = read_sysreg_s(SYS_PMBIDR_EL1);
if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT))
return;
/* No; is the host actually using the thing? */
reg = read_sysreg_s(SYS_PMBLIMITR_EL1);
if (!(reg & BIT(SYS_PMBLIMITR_EL1_E_SHIFT)))
return;
/* Yes; save the control register and disable data generation */
*pmscr_el1 = read_sysreg_s(SYS_PMSCR_EL1);
write_sysreg_s(0, SYS_PMSCR_EL1);
isb();
/* Now drain all buffered data to memory */
psb_csync();
dsb(nsh);
}
static void __debug_restore_spe(u64 pmscr_el1)
{
if (!pmscr_el1)
return;
/* The host page table is installed, but not yet synchronised */
isb();
/* Re-enable data generation */
write_sysreg_s(pmscr_el1, SYS_PMSCR_EL1);
}
void __debug_switch_to_guest(struct kvm_vcpu *vcpu)
{
/* Disable and flush SPE data generation */
__debug_save_spe(&vcpu->arch.host_debug_state.pmscr_el1);
__debug_switch_to_guest_common(vcpu);
}
void __debug_switch_to_host(struct kvm_vcpu *vcpu)
{
__debug_restore_spe(vcpu->arch.host_debug_state.pmscr_el1);
__debug_switch_to_host_common(vcpu);
}
u32 __kvm_get_mdcr_el2(void)
{
return read_sysreg(mdcr_el2);
}

View File

@ -105,6 +105,11 @@ alternative_else_nop_endif
*/
mov_q x4, (SCTLR_EL2_RES1 | (SCTLR_ELx_FLAGS & ~SCTLR_ELx_A))
CPU_BE( orr x4, x4, #SCTLR_ELx_EE)
alternative_if ARM64_HAS_ADDRESS_AUTH
mov_q x5, (SCTLR_ELx_ENIA | SCTLR_ELx_ENIB | \
SCTLR_ELx_ENDA | SCTLR_ELx_ENDB)
orr x4, x4, x5
alternative_else_nop_endif
msr sctlr_el2, x4
isb

View File

@ -0,0 +1,272 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/switch.h>
#include <hyp/sysreg-sr.h>
#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
static void __activate_traps(struct kvm_vcpu *vcpu)
{
u64 val;
___activate_traps(vcpu);
__activate_traps_common(vcpu);
val = CPTR_EL2_DEFAULT;
val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM;
if (!update_fp_enabled(vcpu)) {
val |= CPTR_EL2_TFP;
__activate_traps_fpsimd32(vcpu);
}
write_sysreg(val, cptr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* configured and enabled. We can now restore the guest's S1
* configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
isb();
write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR);
}
}
static void __deactivate_traps(struct kvm_vcpu *vcpu)
{
u64 mdcr_el2;
___deactivate_traps(vcpu);
mdcr_el2 = read_sysreg(mdcr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
u64 val;
/*
* Set the TCR and SCTLR registers in the exact opposite
* sequence as __activate_traps (first prevent walks,
* then force the MMU on). A generous sprinkling of isb()
* ensure that things happen in this exact order.
*/
val = read_sysreg_el1(SYS_TCR);
write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
isb();
val = read_sysreg_el1(SYS_SCTLR);
write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
isb();
}
__deactivate_traps_common();
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
write_sysreg(mdcr_el2, mdcr_el2);
write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}
static void __deactivate_vm(struct kvm_vcpu *vcpu)
{
write_sysreg(0, vttbr_el2);
}
/* Save VGICv3 state on non-VHE systems */
static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
/**
* Disable host events, enable guest events
*/
static bool __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenclr_el0);
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenset_el0);
return (pmu->events_host || pmu->events_guest);
}
/**
* Disable guest events, enable host events
*/
static void __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenclr_el0);
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenset_el0);
}
/* Switch to the guest for legacy non-VHE systems */
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
bool pmu_switch_needed;
u64 exit_code;
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*/
if (system_uses_irq_prio_masking()) {
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
pmr_sync();
}
vcpu = kern_hyp_va(vcpu);
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
__sysreg_save_state_nvhe(host_ctxt);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*
* Also, and in order to be able to deal with erratum #1319537 (A57)
* and #1319367 (A72), we must ensure that all VM-related sysreg are
* restored before we enable S2 translation.
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_state_nvhe(guest_ctxt);
__activate_vm(kern_hyp_va(vcpu->arch.hw_mmu));
__activate_traps(vcpu);
__hyp_vgic_restore_state(vcpu);
__timer_enable_traps(vcpu);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
__sysreg_save_state_nvhe(guest_ctxt);
__sysreg32_save_state(vcpu);
__timer_disable_traps(vcpu);
__hyp_vgic_save_state(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(host_ctxt);
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
/*
* This must come after restoring the host sysregs, since a non-VHE
* system may enable SPE here and make use of the TTBRs.
*/
__debug_switch_to_host(vcpu);
if (pmu_switch_needed)
__pmu_switch_to_host(host_ctxt);
/* Returning to host will clear PSR.I, remask PMR if needed */
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQOFF);
return exit_code;
}
void __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 elr = read_sysreg_el2(SYS_ELR);
u64 par = read_sysreg(par_el1);
struct kvm_vcpu *vcpu = host_ctxt->__hyp_running_vcpu;
unsigned long str_va;
if (read_sysreg(vttbr_el2)) {
__timer_disable_traps(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(host_ctxt);
}
/*
* Force the panic string to be loaded from the literal pool,
* making sure it is a kernel address and not a PC-relative
* reference.
*/
asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
__hyp_do_panic(str_va,
spsr, elr,
read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
unreachable();
}

View File

@ -0,0 +1,46 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/sysreg-sr.h>
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
/*
* Non-VHE: Both host and guest must save everything.
*/
void __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_el1_state(ctxt);
__sysreg_save_common_state(ctxt);
__sysreg_save_user_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
void __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_el1_state(ctxt);
__sysreg_restore_common_state(ctxt);
__sysreg_restore_user_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
void __kvm_enable_ssbs(void)
{
u64 tmp;
asm volatile(
"mrs %0, sctlr_el2\n"
"orr %0, %0, %1\n"
"msr sctlr_el2, %0"
: "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
}

View File

@ -10,7 +10,7 @@
#include <asm/kvm_hyp.h>
void __hyp_text __kvm_timer_set_cntvoff(u64 cntvoff)
void __kvm_timer_set_cntvoff(u64 cntvoff)
{
write_sysreg(cntvoff, cntvoff_el2);
}
@ -19,7 +19,7 @@ void __hyp_text __kvm_timer_set_cntvoff(u64 cntvoff)
* Should only be called on non-VHE systems.
* VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
*/
void __hyp_text __timer_disable_traps(struct kvm_vcpu *vcpu)
void __timer_disable_traps(struct kvm_vcpu *vcpu)
{
u64 val;
@ -33,7 +33,7 @@ void __hyp_text __timer_disable_traps(struct kvm_vcpu *vcpu)
* Should only be called on non-VHE systems.
* VHE systems use EL2 timers and configure EL1 timers in kvm_timer_init_vhe().
*/
void __hyp_text __timer_enable_traps(struct kvm_vcpu *vcpu)
void __timer_enable_traps(struct kvm_vcpu *vcpu)
{
u64 val;

View File

@ -0,0 +1,154 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>
struct tlb_inv_context {
u64 tcr;
};
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt)
{
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
u64 val;
/*
* For CPUs that are affected by ARM 1319367, we need to
* avoid a host Stage-1 walk while we have the guest's
* VMID set in the VTTBR in order to invalidate TLBs.
* We're guaranteed that the S1 MMU is enabled, so we can
* simply set the EPD bits to avoid any further TLB fill.
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
isb();
}
__load_guest_stage2(mmu);
}
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
{
write_sysreg(0, vttbr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/* Ensure write of the host VMID */
isb();
/* Restore the host's TCR_EL1 */
write_sysreg_el1(cxt->tcr, SYS_TCR);
}
}
void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
phys_addr_t ipa, int level)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
mmu = kern_hyp_va(mmu);
__tlb_switch_to_guest(mmu, &cxt);
/*
* We could do so much better if we had the VA as well.
* Instead, we invalidate Stage-2 for this IPA, and the
* whole of Stage-1. Weep...
*/
ipa >>= 12;
__tlbi_level(ipas2e1is, ipa, level);
/*
* We have to ensure completion of the invalidation at Stage-2,
* since a table walk on another CPU could refill a TLB with a
* complete (S1 + S2) walk based on the old Stage-2 mapping if
* the Stage-1 invalidation happened first.
*/
dsb(ish);
__tlbi(vmalle1is);
dsb(ish);
isb();
/*
* If the host is running at EL1 and we have a VPIPT I-cache,
* then we must perform I-cache maintenance at EL2 in order for
* it to have an effect on the guest. Since the guest cannot hit
* I-cache lines allocated with a different VMID, we don't need
* to worry about junk out of guest reset (we nuke the I-cache on
* VMID rollover), but we do need to be careful when remapping
* executable pages for the same guest. This can happen when KSM
* takes a CoW fault on an executable page, copies the page into
* a page that was previously mapped in the guest and then needs
* to invalidate the guest view of the I-cache for that page
* from EL1. To solve this, we invalidate the entire I-cache when
* unmapping a page from a guest if we have a VPIPT I-cache but
* the host is running at EL1. As above, we could do better if
* we had the VA.
*
* The moral of this story is: if you have a VPIPT I-cache, then
* you should be running with VHE enabled.
*/
if (icache_is_vpipt())
__flush_icache_all();
__tlb_switch_to_host(&cxt);
}
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
mmu = kern_hyp_va(mmu);
__tlb_switch_to_guest(mmu, &cxt);
__tlbi(vmalls12e1is);
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
}
void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu)
{
struct tlb_inv_context cxt;
/* Switch to requested VMID */
mmu = kern_hyp_va(mmu);
__tlb_switch_to_guest(mmu, &cxt);
__tlbi(vmalle1);
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
}
void __kvm_flush_vm_context(void)
{
dsb(ishst);
__tlbi(alle1is);
/*
* VIPT and PIPT caches are not affected by VMID, so no maintenance
* is necessary across a VMID rollover.
*
* VPIPT caches constrain lookup and maintenance to the active VMID,
* so we need to invalidate lines with a stale VMID to avoid an ABA
* race after multiple rollovers.
*
*/
if (icache_is_vpipt())
asm volatile("ic ialluis");
dsb(ish);
}

View File

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2015-2018 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/arm-smccc.h>
#include <linux/linkage.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
/*
* This is not executed directly and is instead copied into the vectors
* by install_bp_hardening_cb().
*/
.data
.pushsection .rodata
.global __smccc_workaround_1_smc
SYM_DATA_START(__smccc_workaround_1_smc)
esb
sub sp, sp, #(8 * 4)
stp x2, x3, [sp, #(8 * 0)]
stp x0, x1, [sp, #(8 * 2)]
mov w0, #ARM_SMCCC_ARCH_WORKAROUND_1
smc #0
ldp x2, x3, [sp, #(8 * 0)]
ldp x0, x1, [sp, #(8 * 2)]
add sp, sp, #(8 * 4)
1: .org __smccc_workaround_1_smc + __SMCCC_WORKAROUND_1_SMC_SZ
.org 1b
SYM_DATA_END(__smccc_workaround_1_smc)

View File

@ -1,936 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
/* Check whether the FP regs were dirtied while in the host-side run loop: */
static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
{
/*
* When the system doesn't support FP/SIMD, we cannot rely on
* the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
* abort on the very first access to FP and thus we should never
* see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
* trap the accesses.
*/
if (!system_supports_fpsimd() ||
vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
KVM_ARM64_FP_HOST);
return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
}
/* Save the 32-bit only FPSIMD system register state */
static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
{
if (!vcpu_el1_is_32bit(vcpu))
return;
vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
}
static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
{
/*
* We are about to set CPTR_EL2.TFP to trap all floating point
* register accesses to EL2, however, the ARM ARM clearly states that
* traps are only taken to EL2 if the operation would not otherwise
* trap to EL1. Therefore, always make sure that for 32-bit guests,
* we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
* If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
* it will cause an exception.
*/
if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
write_sysreg(1 << 30, fpexc32_el2);
isb();
}
}
static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
{
/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
write_sysreg(1 << 15, hstr_el2);
/*
* Make sure we trap PMU access from EL0 to EL2. Also sanitize
* PMSELR_EL0 to make sure it never contains the cycle
* counter, which could make a PMXEVCNTR_EL0 access UNDEF at
* EL1 instead of being trapped to EL2.
*/
write_sysreg(0, pmselr_el0);
write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
}
static void __hyp_text __deactivate_traps_common(void)
{
write_sysreg(0, hstr_el2);
write_sysreg(0, pmuserenr_el0);
}
static void activate_traps_vhe(struct kvm_vcpu *vcpu)
{
u64 val;
val = read_sysreg(cpacr_el1);
val |= CPACR_EL1_TTA;
val &= ~CPACR_EL1_ZEN;
/*
* With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
* CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
* except for some missing controls, such as TAM.
* In this case, CPTR_EL2.TAM has the same position with or without
* VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
* shift value for trapping the AMU accesses.
*/
val |= CPTR_EL2_TAM;
if (update_fp_enabled(vcpu)) {
if (vcpu_has_sve(vcpu))
val |= CPACR_EL1_ZEN;
} else {
val &= ~CPACR_EL1_FPEN;
__activate_traps_fpsimd32(vcpu);
}
write_sysreg(val, cpacr_el1);
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
}
NOKPROBE_SYMBOL(activate_traps_vhe);
static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
{
u64 val;
__activate_traps_common(vcpu);
val = CPTR_EL2_DEFAULT;
val |= CPTR_EL2_TTA | CPTR_EL2_TZ | CPTR_EL2_TAM;
if (!update_fp_enabled(vcpu)) {
val |= CPTR_EL2_TFP;
__activate_traps_fpsimd32(vcpu);
}
write_sysreg(val, cptr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* configured and enabled. We can now restore the guest's S1
* configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
isb();
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
}
}
static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
{
u64 hcr = vcpu->arch.hcr_el2;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
hcr |= HCR_TVM;
write_sysreg(hcr, hcr_el2);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
if (has_vhe())
activate_traps_vhe(vcpu);
else
__activate_traps_nvhe(vcpu);
}
static void deactivate_traps_vhe(void)
{
extern char vectors[]; /* kernel exception vectors */
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
/*
* ARM errata 1165522 and 1530923 require the actual execution of the
* above before we can switch to the EL2/EL0 translation regime used by
* the host.
*/
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
write_sysreg(vectors, vbar_el1);
}
NOKPROBE_SYMBOL(deactivate_traps_vhe);
static void __hyp_text __deactivate_traps_nvhe(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
u64 val;
/*
* Set the TCR and SCTLR registers in the exact opposite
* sequence as __activate_traps_nvhe (first prevent walks,
* then force the MMU on). A generous sprinkling of isb()
* ensure that things happen in this exact order.
*/
val = read_sysreg_el1(SYS_TCR);
write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
isb();
val = read_sysreg_el1(SYS_SCTLR);
write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
isb();
}
__deactivate_traps_common();
mdcr_el2 &= MDCR_EL2_HPMN_MASK;
mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
write_sysreg(mdcr_el2, mdcr_el2);
write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
}
static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
{
/*
* If we pended a virtual abort, preserve it until it gets
* cleared. See D1.14.3 (Virtual Interrupts) for details, but
* the crucial bit is "On taking a vSError interrupt,
* HCR_EL2.VSE is cleared to 0."
*/
if (vcpu->arch.hcr_el2 & HCR_VSE) {
vcpu->arch.hcr_el2 &= ~HCR_VSE;
vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
}
if (has_vhe())
deactivate_traps_vhe();
else
__deactivate_traps_nvhe();
}
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
__activate_traps_common(vcpu);
}
void deactivate_traps_vhe_put(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
MDCR_EL2_TPMS;
write_sysreg(mdcr_el2, mdcr_el2);
__deactivate_traps_common();
}
static void __hyp_text __activate_vm(struct kvm *kvm)
{
__load_guest_stage2(kvm);
}
static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
{
write_sysreg(0, vttbr_el2);
}
/* Save VGICv3 state on non-VHE systems */
static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
/* Restore VGICv3 state on non_VEH systems */
static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
{
if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
}
}
static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
{
u64 par, tmp;
/*
* Resolve the IPA the hard way using the guest VA.
*
* Stage-1 translation already validated the memory access
* rights. As such, we can use the EL1 translation regime, and
* don't have to distinguish between EL0 and EL1 access.
*
* We do need to save/restore PAR_EL1 though, as we haven't
* saved the guest context yet, and we may return early...
*/
par = read_sysreg(par_el1);
asm volatile("at s1e1r, %0" : : "r" (far));
isb();
tmp = read_sysreg(par_el1);
write_sysreg(par, par_el1);
if (unlikely(tmp & SYS_PAR_EL1_F))
return false; /* Translation failed, back to guest */
/* Convert PAR to HPFAR format */
*hpfar = PAR_TO_HPFAR(tmp);
return true;
}
static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
{
u8 ec;
u64 esr;
u64 hpfar, far;
esr = vcpu->arch.fault.esr_el2;
ec = ESR_ELx_EC(esr);
if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
return true;
far = read_sysreg_el2(SYS_FAR);
/*
* The HPFAR can be invalid if the stage 2 fault did not
* happen during a stage 1 page table walk (the ESR_EL2.S1PTW
* bit is clear) and one of the two following cases are true:
* 1. The fault was due to a permission fault
* 2. The processor carries errata 834220
*
* Therefore, for all non S1PTW faults where we either have a
* permission fault or the errata workaround is enabled, we
* resolve the IPA using the AT instruction.
*/
if (!(esr & ESR_ELx_S1PTW) &&
(cpus_have_final_cap(ARM64_WORKAROUND_834220) ||
(esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
if (!__translate_far_to_hpfar(far, &hpfar))
return false;
} else {
hpfar = read_sysreg(hpfar_el2);
}
vcpu->arch.fault.far_el2 = far;
vcpu->arch.fault.hpfar_el2 = hpfar;
return true;
}
/* Check for an FPSIMD/SVE trap and handle as appropriate */
static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
{
bool vhe, sve_guest, sve_host;
u8 hsr_ec;
if (!system_supports_fpsimd())
return false;
if (system_supports_sve()) {
sve_guest = vcpu_has_sve(vcpu);
sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
vhe = true;
} else {
sve_guest = false;
sve_host = false;
vhe = has_vhe();
}
hsr_ec = kvm_vcpu_trap_get_class(vcpu);
if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
hsr_ec != ESR_ELx_EC_SVE)
return false;
/* Don't handle SVE traps for non-SVE vcpus here: */
if (!sve_guest)
if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
return false;
/* Valid trap. Switch the context: */
if (vhe) {
u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
if (sve_guest)
reg |= CPACR_EL1_ZEN;
write_sysreg(reg, cpacr_el1);
} else {
write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
cptr_el2);
}
isb();
if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
/*
* In the SVE case, VHE is assumed: it is enforced by
* Kconfig and kvm_arch_init().
*/
if (sve_host) {
struct thread_struct *thread = container_of(
vcpu->arch.host_fpsimd_state,
struct thread_struct, uw.fpsimd_state);
sve_save_state(sve_pffr(thread),
&vcpu->arch.host_fpsimd_state->fpsr);
} else {
__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
}
vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
}
if (sve_guest) {
sve_load_state(vcpu_sve_pffr(vcpu),
&vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
} else {
__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
}
/* Skip restoring fpexc32 for AArch64 guests */
if (!(read_sysreg(hcr_el2) & HCR_RW))
write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
fpexc32_el2);
vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
return true;
}
static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
{
u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
int rt = kvm_vcpu_sys_get_rt(vcpu);
u64 val = vcpu_get_reg(vcpu, rt);
/*
* The normal sysreg handling code expects to see the traps,
* let's not do anything here.
*/
if (vcpu->arch.hcr_el2 & HCR_TVM)
return false;
switch (sysreg) {
case SYS_SCTLR_EL1:
write_sysreg_el1(val, SYS_SCTLR);
break;
case SYS_TTBR0_EL1:
write_sysreg_el1(val, SYS_TTBR0);
break;
case SYS_TTBR1_EL1:
write_sysreg_el1(val, SYS_TTBR1);
break;
case SYS_TCR_EL1:
write_sysreg_el1(val, SYS_TCR);
break;
case SYS_ESR_EL1:
write_sysreg_el1(val, SYS_ESR);
break;
case SYS_FAR_EL1:
write_sysreg_el1(val, SYS_FAR);
break;
case SYS_AFSR0_EL1:
write_sysreg_el1(val, SYS_AFSR0);
break;
case SYS_AFSR1_EL1:
write_sysreg_el1(val, SYS_AFSR1);
break;
case SYS_MAIR_EL1:
write_sysreg_el1(val, SYS_MAIR);
break;
case SYS_AMAIR_EL1:
write_sysreg_el1(val, SYS_AMAIR);
break;
case SYS_CONTEXTIDR_EL1:
write_sysreg_el1(val, SYS_CONTEXTIDR);
break;
default:
return false;
}
__kvm_skip_instr(vcpu);
return true;
}
static bool __hyp_text esr_is_ptrauth_trap(u32 esr)
{
u32 ec = ESR_ELx_EC(esr);
if (ec == ESR_ELx_EC_PAC)
return true;
if (ec != ESR_ELx_EC_SYS64)
return false;
switch (esr_sys64_to_sysreg(esr)) {
case SYS_APIAKEYLO_EL1:
case SYS_APIAKEYHI_EL1:
case SYS_APIBKEYLO_EL1:
case SYS_APIBKEYHI_EL1:
case SYS_APDAKEYLO_EL1:
case SYS_APDAKEYHI_EL1:
case SYS_APDBKEYLO_EL1:
case SYS_APDBKEYHI_EL1:
case SYS_APGAKEYLO_EL1:
case SYS_APGAKEYHI_EL1:
return true;
}
return false;
}
#define __ptrauth_save_key(regs, key) \
({ \
regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
})
static bool __hyp_text __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *ctxt;
u64 val;
if (!vcpu_has_ptrauth(vcpu) ||
!esr_is_ptrauth_trap(kvm_vcpu_get_hsr(vcpu)))
return false;
ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__ptrauth_save_key(ctxt->sys_regs, APIA);
__ptrauth_save_key(ctxt->sys_regs, APIB);
__ptrauth_save_key(ctxt->sys_regs, APDA);
__ptrauth_save_key(ctxt->sys_regs, APDB);
__ptrauth_save_key(ctxt->sys_regs, APGA);
vcpu_ptrauth_enable(vcpu);
val = read_sysreg(hcr_el2);
val |= (HCR_API | HCR_APK);
write_sysreg(val, hcr_el2);
return true;
}
/*
* Return true when we were able to fixup the guest exit and should return to
* the guest, false when we should restore the host state and return to the
* main run loop.
*/
static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
{
if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
/*
* We're using the raw exception code in order to only process
* the trap if no SError is pending. We will come back to the
* same PC once the SError has been injected, and replay the
* trapping instruction.
*/
if (*exit_code != ARM_EXCEPTION_TRAP)
goto exit;
if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
handle_tx2_tvm(vcpu))
return true;
/*
* We trap the first access to the FP/SIMD to save the host context
* and restore the guest context lazily.
* If FP/SIMD is not implemented, handle the trap and inject an
* undefined instruction exception to the guest.
* Similarly for trapped SVE accesses.
*/
if (__hyp_handle_fpsimd(vcpu))
return true;
if (__hyp_handle_ptrauth(vcpu))
return true;
if (!__populate_fault_info(vcpu))
return true;
if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
bool valid;
valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
kvm_vcpu_dabt_isvalid(vcpu) &&
!kvm_vcpu_dabt_isextabt(vcpu) &&
!kvm_vcpu_dabt_iss1tw(vcpu);
if (valid) {
int ret = __vgic_v2_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
/* Promote an illegal access to an SError.*/
if (ret == -1)
*exit_code = ARM_EXCEPTION_EL1_SERROR;
goto exit;
}
}
if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
(kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
int ret = __vgic_v3_perform_cpuif_access(vcpu);
if (ret == 1)
return true;
}
exit:
/* Return to the host kernel and handle the exit */
return false;
}
static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
{
if (!cpus_have_final_cap(ARM64_SSBD))
return false;
return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
}
static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* The host runs with the workaround always present. If the
* guest wants it disabled, so be it...
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
#endif
}
static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ARM64_SSBD
/*
* If the guest has disabled the workaround, bring it back on.
*/
if (__needs_ssbd_off(vcpu) &&
__hyp_this_cpu_read(arm64_ssbd_callback_required))
arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
#endif
}
/**
* Disable host events, enable guest events
*/
static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenclr_el0);
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenset_el0);
return (pmu->events_host || pmu->events_guest);
}
/**
* Disable guest events, enable host events
*/
static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
{
struct kvm_host_data *host;
struct kvm_pmu_events *pmu;
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
pmu = &host->pmu_events;
if (pmu->events_guest)
write_sysreg(pmu->events_guest, pmcntenclr_el0);
if (pmu->events_host)
write_sysreg(pmu->events_host, pmcntenset_el0);
}
/* Switch to the guest for VHE systems running in EL2 */
static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
u64 exit_code;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
sysreg_save_host_state_vhe(host_ctxt);
/*
* ARM erratum 1165522 requires us to configure both stage 1 and
* stage 2 translation for the guest context before we clear
* HCR_EL2.TGE.
*
* We have already configured the guest's stage 1 translation in
* kvm_vcpu_load_sysregs above. We must now call __activate_vm
* before __activate_traps, because __activate_vm configures
* stage 2 translation, and __activate_traps clear HCR_EL2.TGE
* (among other things).
*/
__activate_vm(vcpu->kvm);
__activate_traps(vcpu);
sysreg_restore_guest_state_vhe(guest_ctxt);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
sysreg_save_guest_state_vhe(guest_ctxt);
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
__debug_switch_to_host(vcpu);
return exit_code;
}
NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
int ret;
local_daif_mask();
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
*/
pmr_sync();
ret = __kvm_vcpu_run_vhe(vcpu);
/*
* local_daif_restore() takes care to properly restore PSTATE.DAIF
* and the GIC PMR if the host is using IRQ priorities.
*/
local_daif_restore(DAIF_PROCCTX_NOIRQ);
/*
* When we exit from the guest we change a number of CPU configuration
* parameters, such as traps. Make sure these changes take effect
* before running the host or additional guests.
*/
isb();
return ret;
}
/* Switch to the guest for legacy non-VHE systems */
int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
bool pmu_switch_needed;
u64 exit_code;
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*/
if (system_uses_irq_prio_masking()) {
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
pmr_sync();
}
vcpu = kern_hyp_va(vcpu);
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
__sysreg_save_state_nvhe(host_ctxt);
/*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*
* Also, and in order to be able to deal with erratum #1319537 (A57)
* and #1319367 (A72), we must ensure that all VM-related sysreg are
* restored before we enable S2 translation.
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_state_nvhe(guest_ctxt);
__activate_vm(kern_hyp_va(vcpu->kvm));
__activate_traps(vcpu);
__hyp_vgic_restore_state(vcpu);
__timer_enable_traps(vcpu);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
__sysreg_save_state_nvhe(guest_ctxt);
__sysreg32_save_state(vcpu);
__timer_disable_traps(vcpu);
__hyp_vgic_save_state(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(host_ctxt);
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
/*
* This must come after restoring the host sysregs, since a non-VHE
* system may enable SPE here and make use of the TTBRs.
*/
__debug_switch_to_host(vcpu);
if (pmu_switch_needed)
__pmu_switch_to_host(host_ctxt);
/* Returning to host will clear PSR.I, remask PMR if needed */
if (system_uses_irq_prio_masking())
gic_write_pmr(GIC_PRIO_IRQOFF);
return exit_code;
}
static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
struct kvm_cpu_context *__host_ctxt)
{
struct kvm_vcpu *vcpu;
unsigned long str_va;
vcpu = __host_ctxt->__hyp_running_vcpu;
if (read_sysreg(vttbr_el2)) {
__timer_disable_traps(vcpu);
__deactivate_traps(vcpu);
__deactivate_vm(vcpu);
__sysreg_restore_state_nvhe(__host_ctxt);
}
/*
* Force the panic string to be loaded from the literal pool,
* making sure it is a kernel address and not a PC-relative
* reference.
*/
asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
__hyp_do_panic(str_va,
spsr, elr,
read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
struct kvm_cpu_context *host_ctxt)
{
struct kvm_vcpu *vcpu;
vcpu = host_ctxt->__hyp_running_vcpu;
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
panic(__hyp_panic_string,
spsr, elr,
read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 elr = read_sysreg_el2(SYS_ELR);
u64 par = read_sysreg(par_el1);
if (!has_vhe())
__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
else
__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
unreachable();
}

View File

@ -1,333 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
/*
* Non-VHE: Both host and guest must save everything.
*
* VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
* pstate, which are handled as part of the el2 return state) on every
* switch (sp_el0 is being dealt with in the assembly code).
* tpidr_el0 and tpidrro_el0 only need to be switched when going
* to host userspace or a different VCPU. EL1 registers only need to be
* switched when potentially going to run a different VCPU. The latter two
* classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
*/
static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
}
static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
}
static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
{
ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
}
static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
{
ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
}
void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_el1_state(ctxt);
__sysreg_save_common_state(ctxt);
__sysreg_save_user_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
}
static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
}
static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
{
write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
if (has_vhe() ||
!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
} else if (!ctxt->__hyp_running_vcpu) {
/*
* Must only be done for guest registers, hence the context
* test. We're coming from the host, so SCTLR.M is already
* set. Pairs with __activate_traps_nvhe().
*/
write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
TCR_EPD1_MASK | TCR_EPD0_MASK),
SYS_TCR);
isb();
}
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
if (!has_vhe() &&
cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) &&
ctxt->__hyp_running_vcpu) {
/*
* Must only be done for host registers, hence the context
* test. Pairs with __deactivate_traps_nvhe().
*/
isb();
/*
* At this stage, and thanks to the above isb(), S2 is
* deconfigured and disabled. We can now restore the host's
* S1 configuration: SCTLR, and only then TCR.
*/
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
isb();
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
}
write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
}
static void __hyp_text
__sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
{
u64 pstate = ctxt->gp_regs.regs.pstate;
u64 mode = pstate & PSR_AA32_MODE_MASK;
/*
* Safety check to ensure we're setting the CPU up to enter the guest
* in a less privileged mode.
*
* If we are attempting a return to EL2 or higher in AArch64 state,
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
* we'll take an illegal exception state exception immediately after
* the ERET to the guest. Attempts to return to AArch32 Hyp will
* result in an illegal exception return because EL2's execution state
* is determined by SCR_EL3.RW.
*/
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
write_sysreg_el2(pstate, SYS_SPSR);
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
}
void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_el1_state(ctxt);
__sysreg_restore_common_state(ctxt);
__sysreg_restore_user_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
{
u64 *spsr, *sysreg;
if (!vcpu_el1_is_32bit(vcpu))
return;
spsr = vcpu->arch.ctxt.gp_regs.spsr;
sysreg = vcpu->arch.ctxt.sys_regs;
spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
}
void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
{
u64 *spsr, *sysreg;
if (!vcpu_el1_is_32bit(vcpu))
return;
spsr = vcpu->arch.ctxt.gp_regs.spsr;
sysreg = vcpu->arch.ctxt.sys_regs;
write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
}
/**
* kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Load system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_load() function
* and loading system register state early avoids having to load them on
* every entry to the VM.
*/
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
if (!has_vhe())
return;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__sysreg_save_user_state(host_ctxt);
/*
* Load guest EL1 and user state
*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_user_state(guest_ctxt);
__sysreg_restore_el1_state(guest_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = true;
activate_traps_vhe_load(vcpu);
}
/**
* kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Save guest system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_put() function
* and deferring saving system register state until we're no longer running the
* VCPU avoids having to save them on every exit from the VM.
*/
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
if (!has_vhe())
return;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
deactivate_traps_vhe_put();
__sysreg_save_el1_state(guest_ctxt);
__sysreg_save_user_state(guest_ctxt);
__sysreg32_save_state(vcpu);
/* Restore host user state */
__sysreg_restore_user_state(host_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = false;
}
void __hyp_text __kvm_enable_ssbs(void)
{
u64 tmp;
asm volatile(
"mrs %0, sctlr_el2\n"
"orr %0, %0, %1\n"
"msr sctlr_el2, %0"
: "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
}

View File

@ -1,242 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/irqflags.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>
struct tlb_inv_context {
unsigned long flags;
u64 tcr;
u64 sctlr;
};
static void __hyp_text __tlb_switch_to_guest_vhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
u64 val;
local_irq_save(cxt->flags);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/*
* For CPUs that are affected by ARM errata 1165522 or 1530923,
* we cannot trust stage-1 to be in a correct state at that
* point. Since we do not want to force a full load of the
* vcpu state, we prevent the EL1 page-table walker to
* allocate new TLBs. This is done by setting the EPD bits
* in the TCR_EL1 register. We also need to prevent it to
* allocate IPA->PA walks, so we enable the S1 MMU...
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
val |= SCTLR_ELx_M;
write_sysreg_el1(val, SYS_SCTLR);
}
/*
* With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
* most TLB operations target EL2/EL0. In order to affect the
* guest TLBs (EL1/EL0), we need to change one of these two
* bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
* let's flip TGE before executing the TLB operation.
*
* ARM erratum 1165522 requires some special handling (again),
* as we need to make sure both stages of translation are in
* place before clearing TGE. __load_guest_stage2() already
* has an ISB in order to deal with this.
*/
__load_guest_stage2(kvm);
val = read_sysreg(hcr_el2);
val &= ~HCR_TGE;
write_sysreg(val, hcr_el2);
isb();
}
static void __hyp_text __tlb_switch_to_guest_nvhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
u64 val;
/*
* For CPUs that are affected by ARM 1319367, we need to
* avoid a host Stage-1 walk while we have the guest's
* VMID set in the VTTBR in order to invalidate TLBs.
* We're guaranteed that the S1 MMU is enabled, so we can
* simply set the EPD bits to avoid any further TLB fill.
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
isb();
}
/* __load_guest_stage2() includes an ISB for the workaround. */
__load_guest_stage2(kvm);
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
}
static void __hyp_text __tlb_switch_to_guest(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
if (has_vhe())
__tlb_switch_to_guest_vhe(kvm, cxt);
else
__tlb_switch_to_guest_nvhe(kvm, cxt);
}
static void __hyp_text __tlb_switch_to_host_vhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
/*
* We're done with the TLB operation, let's restore the host's
* view of HCR_EL2.
*/
write_sysreg(0, vttbr_el2);
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
isb();
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/* Restore the registers to what they were */
write_sysreg_el1(cxt->tcr, SYS_TCR);
write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
}
local_irq_restore(cxt->flags);
}
static void __hyp_text __tlb_switch_to_host_nvhe(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
write_sysreg(0, vttbr_el2);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/* Ensure write of the host VMID */
isb();
/* Restore the host's TCR_EL1 */
write_sysreg_el1(cxt->tcr, SYS_TCR);
}
}
static void __hyp_text __tlb_switch_to_host(struct kvm *kvm,
struct tlb_inv_context *cxt)
{
if (has_vhe())
__tlb_switch_to_host_vhe(kvm, cxt);
else
__tlb_switch_to_host_nvhe(kvm, cxt);
}
void __hyp_text __kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
kvm = kern_hyp_va(kvm);
__tlb_switch_to_guest(kvm, &cxt);
/*
* We could do so much better if we had the VA as well.
* Instead, we invalidate Stage-2 for this IPA, and the
* whole of Stage-1. Weep...
*/
ipa >>= 12;
__tlbi(ipas2e1is, ipa);
/*
* We have to ensure completion of the invalidation at Stage-2,
* since a table walk on another CPU could refill a TLB with a
* complete (S1 + S2) walk based on the old Stage-2 mapping if
* the Stage-1 invalidation happened first.
*/
dsb(ish);
__tlbi(vmalle1is);
dsb(ish);
isb();
/*
* If the host is running at EL1 and we have a VPIPT I-cache,
* then we must perform I-cache maintenance at EL2 in order for
* it to have an effect on the guest. Since the guest cannot hit
* I-cache lines allocated with a different VMID, we don't need
* to worry about junk out of guest reset (we nuke the I-cache on
* VMID rollover), but we do need to be careful when remapping
* executable pages for the same guest. This can happen when KSM
* takes a CoW fault on an executable page, copies the page into
* a page that was previously mapped in the guest and then needs
* to invalidate the guest view of the I-cache for that page
* from EL1. To solve this, we invalidate the entire I-cache when
* unmapping a page from a guest if we have a VPIPT I-cache but
* the host is running at EL1. As above, we could do better if
* we had the VA.
*
* The moral of this story is: if you have a VPIPT I-cache, then
* you should be running with VHE enabled.
*/
if (!has_vhe() && icache_is_vpipt())
__flush_icache_all();
__tlb_switch_to_host(kvm, &cxt);
}
void __hyp_text __kvm_tlb_flush_vmid(struct kvm *kvm)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
kvm = kern_hyp_va(kvm);
__tlb_switch_to_guest(kvm, &cxt);
__tlbi(vmalls12e1is);
dsb(ish);
isb();
__tlb_switch_to_host(kvm, &cxt);
}
void __hyp_text __kvm_tlb_flush_local_vmid(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = kern_hyp_va(kern_hyp_va(vcpu)->kvm);
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(kvm, &cxt);
__tlbi(vmalle1);
dsb(nsh);
isb();
__tlb_switch_to_host(kvm, &cxt);
}
void __hyp_text __kvm_flush_vm_context(void)
{
dsb(ishst);
__tlbi(alle1is);
/*
* VIPT and PIPT caches are not affected by VMID, so no maintenance
* is necessary across a VMID rollover.
*
* VPIPT caches constrain lookup and maintenance to the active VMID,
* so we need to invalidate lines with a stale VMID to avoid an ABA
* race after multiple rollovers.
*
*/
if (icache_is_vpipt())
asm volatile("ic ialluis");
dsb(ish);
}

View File

@ -13,7 +13,7 @@
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
static bool __hyp_text __is_be(struct kvm_vcpu *vcpu)
static bool __is_be(struct kvm_vcpu *vcpu)
{
if (vcpu_mode_is_32bit(vcpu))
return !!(read_sysreg_el2(SYS_SPSR) & PSR_AA32_E_BIT);
@ -32,7 +32,7 @@ static bool __hyp_text __is_be(struct kvm_vcpu *vcpu)
* 0: Not a GICV access
* -1: Illegal GICV access successfully performed
*/
int __hyp_text __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu)
int __vgic_v2_perform_cpuif_access(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = kern_hyp_va(vcpu->kvm);
struct vgic_dist *vgic = &kvm->arch.vgic;

View File

@ -16,7 +16,7 @@
#define vtr_to_nr_pre_bits(v) ((((u32)(v) >> 26) & 7) + 1)
#define vtr_to_nr_apr_regs(v) (1 << (vtr_to_nr_pre_bits(v) - 5))
static u64 __hyp_text __gic_v3_get_lr(unsigned int lr)
static u64 __gic_v3_get_lr(unsigned int lr)
{
switch (lr & 0xf) {
case 0:
@ -56,7 +56,7 @@ static u64 __hyp_text __gic_v3_get_lr(unsigned int lr)
unreachable();
}
static void __hyp_text __gic_v3_set_lr(u64 val, int lr)
static void __gic_v3_set_lr(u64 val, int lr)
{
switch (lr & 0xf) {
case 0:
@ -110,7 +110,7 @@ static void __hyp_text __gic_v3_set_lr(u64 val, int lr)
}
}
static void __hyp_text __vgic_v3_write_ap0rn(u32 val, int n)
static void __vgic_v3_write_ap0rn(u32 val, int n)
{
switch (n) {
case 0:
@ -128,7 +128,7 @@ static void __hyp_text __vgic_v3_write_ap0rn(u32 val, int n)
}
}
static void __hyp_text __vgic_v3_write_ap1rn(u32 val, int n)
static void __vgic_v3_write_ap1rn(u32 val, int n)
{
switch (n) {
case 0:
@ -146,7 +146,7 @@ static void __hyp_text __vgic_v3_write_ap1rn(u32 val, int n)
}
}
static u32 __hyp_text __vgic_v3_read_ap0rn(int n)
static u32 __vgic_v3_read_ap0rn(int n)
{
u32 val;
@ -170,7 +170,7 @@ static u32 __hyp_text __vgic_v3_read_ap0rn(int n)
return val;
}
static u32 __hyp_text __vgic_v3_read_ap1rn(int n)
static u32 __vgic_v3_read_ap1rn(int n)
{
u32 val;
@ -194,7 +194,7 @@ static u32 __hyp_text __vgic_v3_read_ap1rn(int n)
return val;
}
void __hyp_text __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
{
u64 used_lrs = cpu_if->used_lrs;
@ -229,7 +229,7 @@ void __hyp_text __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
}
}
void __hyp_text __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
{
u64 used_lrs = cpu_if->used_lrs;
int i;
@ -255,7 +255,7 @@ void __hyp_text __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
}
}
void __hyp_text __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
{
/*
* VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
@ -302,7 +302,7 @@ void __hyp_text __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
}
void __hyp_text __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
@ -328,7 +328,7 @@ void __hyp_text __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
write_gicreg(0, ICH_HCR_EL2);
}
void __hyp_text __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
@ -361,7 +361,7 @@ void __hyp_text __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
}
}
void __hyp_text __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
{
u64 val;
u32 nr_pre_bits;
@ -394,7 +394,7 @@ void __hyp_text __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
}
}
void __hyp_text __vgic_v3_init_lrs(void)
void __vgic_v3_init_lrs(void)
{
int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
int i;
@ -403,30 +403,30 @@ void __hyp_text __vgic_v3_init_lrs(void)
__gic_v3_set_lr(0, i);
}
u64 __hyp_text __vgic_v3_get_ich_vtr_el2(void)
u64 __vgic_v3_get_ich_vtr_el2(void)
{
return read_gicreg(ICH_VTR_EL2);
}
u64 __hyp_text __vgic_v3_read_vmcr(void)
u64 __vgic_v3_read_vmcr(void)
{
return read_gicreg(ICH_VMCR_EL2);
}
void __hyp_text __vgic_v3_write_vmcr(u32 vmcr)
void __vgic_v3_write_vmcr(u32 vmcr)
{
write_gicreg(vmcr, ICH_VMCR_EL2);
}
static int __hyp_text __vgic_v3_bpr_min(void)
static int __vgic_v3_bpr_min(void)
{
/* See Pseudocode for VPriorityGroup */
return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
}
static int __hyp_text __vgic_v3_get_group(struct kvm_vcpu *vcpu)
static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
{
u32 esr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
return crm != 8;
@ -434,9 +434,8 @@ static int __hyp_text __vgic_v3_get_group(struct kvm_vcpu *vcpu)
#define GICv3_IDLE_PRIORITY 0xff
static int __hyp_text __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu,
u32 vmcr,
u64 *lr_val)
static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
u8 priority = GICv3_IDLE_PRIORITY;
@ -474,8 +473,8 @@ static int __hyp_text __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu,
return lr;
}
static int __hyp_text __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu,
int intid, u64 *lr_val)
static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
u64 *lr_val)
{
unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
int i;
@ -494,7 +493,7 @@ static int __hyp_text __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu,
return -1;
}
static int __hyp_text __vgic_v3_get_highest_active_priority(void)
static int __vgic_v3_get_highest_active_priority(void)
{
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
u32 hap = 0;
@ -526,12 +525,12 @@ static int __hyp_text __vgic_v3_get_highest_active_priority(void)
return GICv3_IDLE_PRIORITY;
}
static unsigned int __hyp_text __vgic_v3_get_bpr0(u32 vmcr)
static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
{
return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
}
static unsigned int __hyp_text __vgic_v3_get_bpr1(u32 vmcr)
static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
{
unsigned int bpr;
@ -550,7 +549,7 @@ static unsigned int __hyp_text __vgic_v3_get_bpr1(u32 vmcr)
* Convert a priority to a preemption level, taking the relevant BPR
* into account by zeroing the sub-priority bits.
*/
static u8 __hyp_text __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
{
unsigned int bpr;
@ -568,7 +567,7 @@ static u8 __hyp_text __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
* matter what the guest does with its BPR, we can always set/get the
* same value of a priority.
*/
static void __hyp_text __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
{
u8 pre, ap;
u32 val;
@ -587,7 +586,7 @@ static void __hyp_text __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
}
}
static int __hyp_text __vgic_v3_clear_highest_active_priority(void)
static int __vgic_v3_clear_highest_active_priority(void)
{
u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
u32 hap = 0;
@ -625,7 +624,7 @@ static int __hyp_text __vgic_v3_clear_highest_active_priority(void)
return GICv3_IDLE_PRIORITY;
}
static void __hyp_text __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 lr_val;
u8 lr_prio, pmr;
@ -661,7 +660,7 @@ spurious:
vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
}
static void __hyp_text __vgic_v3_clear_active_lr(int lr, u64 lr_val)
static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
{
lr_val &= ~ICH_LR_ACTIVE_BIT;
if (lr_val & ICH_LR_HW) {
@ -674,7 +673,7 @@ static void __hyp_text __vgic_v3_clear_active_lr(int lr, u64 lr_val)
__gic_v3_set_lr(lr_val, lr);
}
static void __hyp_text __vgic_v3_bump_eoicount(void)
static void __vgic_v3_bump_eoicount(void)
{
u32 hcr;
@ -683,8 +682,7 @@ static void __hyp_text __vgic_v3_bump_eoicount(void)
write_gicreg(hcr, ICH_HCR_EL2);
}
static void __hyp_text __vgic_v3_write_dir(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vid = vcpu_get_reg(vcpu, rt);
u64 lr_val;
@ -707,7 +705,7 @@ static void __hyp_text __vgic_v3_write_dir(struct kvm_vcpu *vcpu,
__vgic_v3_clear_active_lr(lr, lr_val);
}
static void __hyp_text __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vid = vcpu_get_reg(vcpu, rt);
u64 lr_val;
@ -744,17 +742,17 @@ static void __hyp_text __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int
__vgic_v3_clear_active_lr(lr, lr_val);
}
static void __hyp_text __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
}
static void __hyp_text __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
}
static void __hyp_text __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
@ -766,7 +764,7 @@ static void __hyp_text __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr,
__vgic_v3_write_vmcr(vmcr);
}
static void __hyp_text __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
@ -778,17 +776,17 @@ static void __hyp_text __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr,
__vgic_v3_write_vmcr(vmcr);
}
static void __hyp_text __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
}
static void __hyp_text __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
}
static void __hyp_text __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
u8 bpr_min = __vgic_v3_bpr_min() - 1;
@ -805,7 +803,7 @@ static void __hyp_text __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int
__vgic_v3_write_vmcr(vmcr);
}
static void __hyp_text __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 val = vcpu_get_reg(vcpu, rt);
u8 bpr_min = __vgic_v3_bpr_min();
@ -825,7 +823,7 @@ static void __hyp_text __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int
__vgic_v3_write_vmcr(vmcr);
}
static void __hyp_text __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
{
u32 val;
@ -837,7 +835,7 @@ static void __hyp_text __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n
vcpu_set_reg(vcpu, rt, val);
}
static void __hyp_text __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
{
u32 val = vcpu_get_reg(vcpu, rt);
@ -847,56 +845,49 @@ static void __hyp_text __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int
__vgic_v3_write_ap1rn(val, n);
}
static void __hyp_text __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 0);
}
static void __hyp_text __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 1);
}
static void __hyp_text __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 2);
}
static void __hyp_text __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_read_apxrn(vcpu, rt, 3);
}
static void __hyp_text __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 0);
}
static void __hyp_text __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 1);
}
static void __hyp_text __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 2);
}
static void __hyp_text __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
__vgic_v3_write_apxrn(vcpu, rt, 3);
}
static void __hyp_text __vgic_v3_read_hppir(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u64 lr_val;
int lr, lr_grp, grp;
@ -915,16 +906,14 @@ spurious:
vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
}
static void __hyp_text __vgic_v3_read_pmr(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
vmcr &= ICH_VMCR_PMR_MASK;
vmcr >>= ICH_VMCR_PMR_SHIFT;
vcpu_set_reg(vcpu, rt, vmcr);
}
static void __hyp_text __vgic_v3_write_pmr(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = vcpu_get_reg(vcpu, rt);
@ -936,15 +925,13 @@ static void __hyp_text __vgic_v3_write_pmr(struct kvm_vcpu *vcpu,
write_gicreg(vmcr, ICH_VMCR_EL2);
}
static void __hyp_text __vgic_v3_read_rpr(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = __vgic_v3_get_highest_active_priority();
vcpu_set_reg(vcpu, rt, val);
}
static void __hyp_text __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 vtr, val;
@ -965,8 +952,7 @@ static void __hyp_text __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu,
vcpu_set_reg(vcpu, rt, val);
}
static void __hyp_text __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu,
u32 vmcr, int rt)
static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
{
u32 val = vcpu_get_reg(vcpu, rt);
@ -983,7 +969,7 @@ static void __hyp_text __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu,
write_gicreg(vmcr, ICH_VMCR_EL2);
}
int __hyp_text __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
{
int rt;
u32 esr;
@ -992,7 +978,7 @@ int __hyp_text __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
bool is_read;
u32 sysreg;
esr = kvm_vcpu_get_hsr(vcpu);
esr = kvm_vcpu_get_esr(vcpu);
if (vcpu_mode_is_32bit(vcpu)) {
if (!kvm_condition_valid(vcpu)) {
__kvm_skip_instr(vcpu);

View File

@ -0,0 +1,11 @@
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for Kernel-based Virtual Machine module, HYP/nVHE part
#
asflags-y := -D__KVM_VHE_HYPERVISOR__
ccflags-y := -D__KVM_VHE_HYPERVISOR__
obj-y := timer-sr.o sysreg-sr.o debug-sr.o switch.o tlb.o
obj-y += ../vgic-v3-sr.o ../aarch32.o ../vgic-v2-cpuif-proxy.o ../entry.o \
../fpsimd.o ../hyp-entry.o

View File

@ -0,0 +1,26 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/debug-sr.h>
#include <linux/kvm_host.h>
#include <asm/kvm_hyp.h>
void __debug_switch_to_guest(struct kvm_vcpu *vcpu)
{
__debug_switch_to_guest_common(vcpu);
}
void __debug_switch_to_host(struct kvm_vcpu *vcpu)
{
__debug_switch_to_host_common(vcpu);
}
u32 __kvm_get_mdcr_el2(void)
{
return read_sysreg(mdcr_el2);
}

View File

@ -0,0 +1,219 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/switch.h>
#include <linux/arm-smccc.h>
#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/jump_label.h>
#include <uapi/linux/psci.h>
#include <kvm/arm_psci.h>
#include <asm/barrier.h>
#include <asm/cpufeature.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/fpsimd.h>
#include <asm/debug-monitors.h>
#include <asm/processor.h>
#include <asm/thread_info.h>
const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
static void __activate_traps(struct kvm_vcpu *vcpu)
{
u64 val;
___activate_traps(vcpu);
val = read_sysreg(cpacr_el1);
val |= CPACR_EL1_TTA;
val &= ~CPACR_EL1_ZEN;
/*
* With VHE (HCR.E2H == 1), accesses to CPACR_EL1 are routed to
* CPTR_EL2. In general, CPACR_EL1 has the same layout as CPTR_EL2,
* except for some missing controls, such as TAM.
* In this case, CPTR_EL2.TAM has the same position with or without
* VHE (HCR.E2H == 1) which allows us to use here the CPTR_EL2.TAM
* shift value for trapping the AMU accesses.
*/
val |= CPTR_EL2_TAM;
if (update_fp_enabled(vcpu)) {
if (vcpu_has_sve(vcpu))
val |= CPACR_EL1_ZEN;
} else {
val &= ~CPACR_EL1_FPEN;
__activate_traps_fpsimd32(vcpu);
}
write_sysreg(val, cpacr_el1);
write_sysreg(kvm_get_hyp_vector(), vbar_el1);
}
NOKPROBE_SYMBOL(__activate_traps);
static void __deactivate_traps(struct kvm_vcpu *vcpu)
{
extern char vectors[]; /* kernel exception vectors */
___deactivate_traps(vcpu);
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
/*
* ARM errata 1165522 and 1530923 require the actual execution of the
* above before we can switch to the EL2/EL0 translation regime used by
* the host.
*/
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
write_sysreg(vectors, vbar_el1);
}
NOKPROBE_SYMBOL(__deactivate_traps);
void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
{
__activate_traps_common(vcpu);
}
void deactivate_traps_vhe_put(void)
{
u64 mdcr_el2 = read_sysreg(mdcr_el2);
mdcr_el2 &= MDCR_EL2_HPMN_MASK |
MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
MDCR_EL2_TPMS;
write_sysreg(mdcr_el2, mdcr_el2);
__deactivate_traps_common();
}
/* Switch to the guest for VHE systems running in EL2 */
static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *host_ctxt;
struct kvm_cpu_context *guest_ctxt;
u64 exit_code;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt;
sysreg_save_host_state_vhe(host_ctxt);
/*
* ARM erratum 1165522 requires us to configure both stage 1 and
* stage 2 translation for the guest context before we clear
* HCR_EL2.TGE.
*
* We have already configured the guest's stage 1 translation in
* kvm_vcpu_load_sysregs_vhe above. We must now call __activate_vm
* before __activate_traps, because __activate_vm configures
* stage 2 translation, and __activate_traps clear HCR_EL2.TGE
* (among other things).
*/
__activate_vm(vcpu->arch.hw_mmu);
__activate_traps(vcpu);
sysreg_restore_guest_state_vhe(guest_ctxt);
__debug_switch_to_guest(vcpu);
__set_guest_arch_workaround_state(vcpu);
do {
/* Jump in the fire! */
exit_code = __guest_enter(vcpu, host_ctxt);
/* And we're baaack! */
} while (fixup_guest_exit(vcpu, &exit_code));
__set_host_arch_workaround_state(vcpu);
sysreg_save_guest_state_vhe(guest_ctxt);
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
__fpsimd_save_fpexc32(vcpu);
__debug_switch_to_host(vcpu);
return exit_code;
}
NOKPROBE_SYMBOL(__kvm_vcpu_run_vhe);
int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
{
int ret;
local_daif_mask();
/*
* Having IRQs masked via PMR when entering the guest means the GIC
* will not signal the CPU of interrupts of lower priority, and the
* only way to get out will be via guest exceptions.
* Naturally, we want to avoid this.
*
* local_daif_mask() already sets GIC_PRIO_PSR_I_SET, we just need a
* dsb to ensure the redistributor is forwards EL2 IRQs to the CPU.
*/
pmr_sync();
ret = __kvm_vcpu_run_vhe(vcpu);
/*
* local_daif_restore() takes care to properly restore PSTATE.DAIF
* and the GIC PMR if the host is using IRQ priorities.
*/
local_daif_restore(DAIF_PROCCTX_NOIRQ);
/*
* When we exit from the guest we change a number of CPU configuration
* parameters, such as traps. Make sure these changes take effect
* before running the host or additional guests.
*/
isb();
return ret;
}
static void __hyp_call_panic(u64 spsr, u64 elr, u64 par,
struct kvm_cpu_context *host_ctxt)
{
struct kvm_vcpu *vcpu;
vcpu = host_ctxt->__hyp_running_vcpu;
__deactivate_traps(vcpu);
sysreg_restore_host_state_vhe(host_ctxt);
panic(__hyp_panic_string,
spsr, elr,
read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
read_sysreg(hpfar_el2), par, vcpu);
}
NOKPROBE_SYMBOL(__hyp_call_panic);
void __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 elr = read_sysreg_el2(SYS_ELR);
u64 par = read_sysreg(par_el1);
__hyp_call_panic(spsr, elr, par, host_ctxt);
unreachable();
}

View File

@ -0,0 +1,114 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <hyp/sysreg-sr.h>
#include <linux/compiler.h>
#include <linux/kvm_host.h>
#include <asm/kprobes.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
/*
* VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
* pstate, which are handled as part of the el2 return state) on every
* switch (sp_el0 is being dealt with in the assembly code).
* tpidr_el0 and tpidrro_el0 only need to be switched when going
* to host userspace or a different VCPU. EL1 registers only need to be
* switched when potentially going to run a different VCPU. The latter two
* classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
*/
void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_save_common_state(ctxt);
__sysreg_save_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
{
__sysreg_restore_common_state(ctxt);
__sysreg_restore_el2_return_state(ctxt);
}
NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
/**
* kvm_vcpu_load_sysregs_vhe - Load guest system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Load system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_load() function
* and loading system register state early avoids having to load them on
* every entry to the VM.
*/
void kvm_vcpu_load_sysregs_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__sysreg_save_user_state(host_ctxt);
/*
* Load guest EL1 and user state
*
* We must restore the 32-bit state before the sysregs, thanks
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
*/
__sysreg32_restore_state(vcpu);
__sysreg_restore_user_state(guest_ctxt);
__sysreg_restore_el1_state(guest_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = true;
activate_traps_vhe_load(vcpu);
}
/**
* kvm_vcpu_put_sysregs_vhe - Restore host system registers to the physical CPU
*
* @vcpu: The VCPU pointer
*
* Save guest system registers that do not affect the host's execution, for
* example EL1 system registers on a VHE system where the host kernel
* runs at EL2. This function is called from KVM's vcpu_put() function
* and deferring saving system register state until we're no longer running the
* VCPU avoids having to save them on every exit from the VM.
*/
void kvm_vcpu_put_sysregs_vhe(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
deactivate_traps_vhe_put();
__sysreg_save_el1_state(guest_ctxt);
__sysreg_save_user_state(guest_ctxt);
__sysreg32_save_state(vcpu);
/* Restore host user state */
__sysreg_restore_user_state(host_ctxt);
vcpu->arch.sysregs_loaded_on_cpu = false;
}

View File

@ -0,0 +1,12 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012-2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <asm/kvm_hyp.h>
void __kvm_timer_set_cntvoff(u64 cntvoff)
{
write_sysreg(cntvoff, cntvoff_el2);
}

View File

@ -0,0 +1,162 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#include <linux/irqflags.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>
struct tlb_inv_context {
unsigned long flags;
u64 tcr;
u64 sctlr;
};
static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu,
struct tlb_inv_context *cxt)
{
u64 val;
local_irq_save(cxt->flags);
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/*
* For CPUs that are affected by ARM errata 1165522 or 1530923,
* we cannot trust stage-1 to be in a correct state at that
* point. Since we do not want to force a full load of the
* vcpu state, we prevent the EL1 page-table walker to
* allocate new TLBs. This is done by setting the EPD bits
* in the TCR_EL1 register. We also need to prevent it to
* allocate IPA->PA walks, so we enable the S1 MMU...
*/
val = cxt->tcr = read_sysreg_el1(SYS_TCR);
val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
write_sysreg_el1(val, SYS_TCR);
val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
val |= SCTLR_ELx_M;
write_sysreg_el1(val, SYS_SCTLR);
}
/*
* With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and
* most TLB operations target EL2/EL0. In order to affect the
* guest TLBs (EL1/EL0), we need to change one of these two
* bits. Changing E2H is impossible (goodbye TTBR1_EL2), so
* let's flip TGE before executing the TLB operation.
*
* ARM erratum 1165522 requires some special handling (again),
* as we need to make sure both stages of translation are in
* place before clearing TGE. __load_guest_stage2() already
* has an ISB in order to deal with this.
*/
__load_guest_stage2(mmu);
val = read_sysreg(hcr_el2);
val &= ~HCR_TGE;
write_sysreg(val, hcr_el2);
isb();
}
static void __tlb_switch_to_host(struct tlb_inv_context *cxt)
{
/*
* We're done with the TLB operation, let's restore the host's
* view of HCR_EL2.
*/
write_sysreg(0, vttbr_el2);
write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
isb();
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
/* Restore the registers to what they were */
write_sysreg_el1(cxt->tcr, SYS_TCR);
write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
}
local_irq_restore(cxt->flags);
}
void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
phys_addr_t ipa, int level)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
/*
* We could do so much better if we had the VA as well.
* Instead, we invalidate Stage-2 for this IPA, and the
* whole of Stage-1. Weep...
*/
ipa >>= 12;
__tlbi_level(ipas2e1is, ipa, level);
/*
* We have to ensure completion of the invalidation at Stage-2,
* since a table walk on another CPU could refill a TLB with a
* complete (S1 + S2) walk based on the old Stage-2 mapping if
* the Stage-1 invalidation happened first.
*/
dsb(ish);
__tlbi(vmalle1is);
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
}
void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
{
struct tlb_inv_context cxt;
dsb(ishst);
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
__tlbi(vmalls12e1is);
dsb(ish);
isb();
__tlb_switch_to_host(&cxt);
}
void __kvm_tlb_flush_local_vmid(struct kvm_s2_mmu *mmu)
{
struct tlb_inv_context cxt;
/* Switch to requested VMID */
__tlb_switch_to_guest(mmu, &cxt);
__tlbi(vmalle1);
dsb(nsh);
isb();
__tlb_switch_to_host(&cxt);
}
void __kvm_flush_vm_context(void)
{
dsb(ishst);
__tlbi(alle1is);
/*
* VIPT and PIPT caches are not affected by VMID, so no maintenance
* is necessary across a VMID rollover.
*
* VPIPT caches constrain lookup and maintenance to the active VMID,
* so we need to invalidate lines with a stale VMID to avoid an ABA
* race after multiple rollovers.
*
*/
if (icache_is_vpipt())
asm volatile("ic ialluis");
dsb(ish);
}

View File

@ -64,7 +64,7 @@ static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
case PSR_MODE_EL1h:
vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
vcpu_write_elr_el1(vcpu, *vcpu_pc(vcpu));
vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1);
break;
default:
/* Don't do that */

View File

@ -146,12 +146,6 @@ int io_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
return -ENOSYS;
}
/* Page table accesses IO mem: tell guest to fix its TTBR */
if (kvm_vcpu_dabt_iss1tw(vcpu)) {
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
return 1;
}
/*
* Prepare MMIO operation. First decode the syndrome data we get
* from the CPU. Then try if some in-kernel emulation feels

View File

@ -55,12 +55,13 @@ static bool memslot_is_logging(struct kvm_memory_slot *memslot)
*/
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
}
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
static void kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa,
int level)
{
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ipa, level);
}
/*
@ -90,74 +91,80 @@ static bool kvm_is_device_pfn(unsigned long pfn)
/**
* stage2_dissolve_pmd() - clear and flush huge PMD entry
* @kvm: pointer to kvm structure.
* @mmu: pointer to mmu structure to operate on
* @addr: IPA
* @pmd: pmd pointer for IPA
*
* Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs.
*/
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
static void stage2_dissolve_pmd(struct kvm_s2_mmu *mmu, phys_addr_t addr, pmd_t *pmd)
{
if (!pmd_thp_or_huge(*pmd))
return;
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
put_page(virt_to_page(pmd));
}
/**
* stage2_dissolve_pud() - clear and flush huge PUD entry
* @kvm: pointer to kvm structure.
* @mmu: pointer to mmu structure to operate on
* @addr: IPA
* @pud: pud pointer for IPA
*
* Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs.
*/
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
static void stage2_dissolve_pud(struct kvm_s2_mmu *mmu, phys_addr_t addr, pud_t *pudp)
{
struct kvm *kvm = mmu->kvm;
if (!stage2_pud_huge(kvm, *pudp))
return;
stage2_pud_clear(kvm, pudp);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
put_page(virt_to_page(pudp));
}
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
static void clear_stage2_pgd_entry(struct kvm_s2_mmu *mmu, pgd_t *pgd, phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
p4d_t *p4d_table __maybe_unused = stage2_p4d_offset(kvm, pgd, 0UL);
stage2_pgd_clear(kvm, pgd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
stage2_p4d_free(kvm, p4d_table);
put_page(virt_to_page(pgd));
}
static void clear_stage2_p4d_entry(struct kvm *kvm, p4d_t *p4d, phys_addr_t addr)
static void clear_stage2_p4d_entry(struct kvm_s2_mmu *mmu, p4d_t *p4d, phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, p4d, 0);
stage2_p4d_clear(kvm, p4d);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
stage2_pud_free(kvm, pud_table);
put_page(virt_to_page(p4d));
}
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
static void clear_stage2_pud_entry(struct kvm_s2_mmu *mmu, pud_t *pud, phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0);
VM_BUG_ON(stage2_pud_huge(kvm, *pud));
stage2_pud_clear(kvm, pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
stage2_pmd_free(kvm, pmd_table);
put_page(virt_to_page(pud));
}
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
static void clear_stage2_pmd_entry(struct kvm_s2_mmu *mmu, pmd_t *pmd, phys_addr_t addr)
{
pte_t *pte_table = pte_offset_kernel(pmd, 0);
VM_BUG_ON(pmd_thp_or_huge(*pmd));
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_NO_LEVEL_HINT);
free_page((unsigned long)pte_table);
put_page(virt_to_page(pmd));
}
@ -223,7 +230,7 @@ static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
* we then fully enforce cacheability of RAM, no matter what the guest
* does.
*/
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
static void unmap_stage2_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
phys_addr_t addr, phys_addr_t end)
{
phys_addr_t start_addr = addr;
@ -235,7 +242,7 @@ static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
pte_t old_pte = *pte;
kvm_set_pte(pte, __pte(0));
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
/* No need to invalidate the cache for device mappings */
if (!kvm_is_device_pfn(pte_pfn(old_pte)))
@ -245,13 +252,14 @@ static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
}
} while (pte++, addr += PAGE_SIZE, addr != end);
if (stage2_pte_table_empty(kvm, start_pte))
clear_stage2_pmd_entry(kvm, pmd, start_addr);
if (stage2_pte_table_empty(mmu->kvm, start_pte))
clear_stage2_pmd_entry(mmu, pmd, start_addr);
}
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
static void unmap_stage2_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
phys_addr_t next, start_addr = addr;
pmd_t *pmd, *start_pmd;
@ -263,24 +271,25 @@ static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
pmd_t old_pmd = *pmd;
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
kvm_flush_dcache_pmd(old_pmd);
put_page(virt_to_page(pmd));
} else {
unmap_stage2_ptes(kvm, pmd, addr, next);
unmap_stage2_ptes(mmu, pmd, addr, next);
}
}
} while (pmd++, addr = next, addr != end);
if (stage2_pmd_table_empty(kvm, start_pmd))
clear_stage2_pud_entry(kvm, pud, start_addr);
clear_stage2_pud_entry(mmu, pud, start_addr);
}
static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
static void unmap_stage2_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
phys_addr_t next, start_addr = addr;
pud_t *pud, *start_pud;
@ -292,22 +301,23 @@ static void unmap_stage2_puds(struct kvm *kvm, p4d_t *p4d,
pud_t old_pud = *pud;
stage2_pud_clear(kvm, pud);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
kvm_flush_dcache_pud(old_pud);
put_page(virt_to_page(pud));
} else {
unmap_stage2_pmds(kvm, pud, addr, next);
unmap_stage2_pmds(mmu, pud, addr, next);
}
}
} while (pud++, addr = next, addr != end);
if (stage2_pud_table_empty(kvm, start_pud))
clear_stage2_p4d_entry(kvm, p4d, start_addr);
clear_stage2_p4d_entry(mmu, p4d, start_addr);
}
static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
static void unmap_stage2_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
phys_addr_t next, start_addr = addr;
p4d_t *p4d, *start_p4d;
@ -315,11 +325,11 @@ static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
unmap_stage2_puds(kvm, p4d, addr, next);
unmap_stage2_puds(mmu, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
if (stage2_p4d_table_empty(kvm, start_p4d))
clear_stage2_pgd_entry(kvm, pgd, start_addr);
clear_stage2_pgd_entry(mmu, pgd, start_addr);
}
/**
@ -333,8 +343,9 @@ static void unmap_stage2_p4ds(struct kvm *kvm, pgd_t *pgd,
* destroying the VM), otherwise another faulting VCPU may come in and mess
* with things behind our backs.
*/
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
{
struct kvm *kvm = mmu->kvm;
pgd_t *pgd;
phys_addr_t addr = start, end = start + size;
phys_addr_t next;
@ -342,18 +353,18 @@ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
assert_spin_locked(&kvm->mmu_lock);
WARN_ON(size & ~PAGE_MASK);
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
do {
/*
* Make sure the page table is still active, as another thread
* could have possibly freed the page table, while we released
* the lock.
*/
if (!READ_ONCE(kvm->arch.pgd))
if (!READ_ONCE(mmu->pgd))
break;
next = stage2_pgd_addr_end(kvm, addr, end);
if (!stage2_pgd_none(kvm, *pgd))
unmap_stage2_p4ds(kvm, pgd, addr, next);
unmap_stage2_p4ds(mmu, pgd, addr, next);
/*
* If the range is too large, release the kvm->mmu_lock
* to prevent starvation and lockup detector warnings.
@ -363,7 +374,7 @@ static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
} while (pgd++, addr = next, addr != end);
}
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
static void stage2_flush_ptes(struct kvm_s2_mmu *mmu, pmd_t *pmd,
phys_addr_t addr, phys_addr_t end)
{
pte_t *pte;
@ -375,9 +386,10 @@ static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
} while (pte++, addr += PAGE_SIZE, addr != end);
}
static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
static void stage2_flush_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
pmd_t *pmd;
phys_addr_t next;
@ -388,14 +400,15 @@ static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
if (pmd_thp_or_huge(*pmd))
kvm_flush_dcache_pmd(*pmd);
else
stage2_flush_ptes(kvm, pmd, addr, next);
stage2_flush_ptes(mmu, pmd, addr, next);
}
} while (pmd++, addr = next, addr != end);
}
static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
static void stage2_flush_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
pud_t *pud;
phys_addr_t next;
@ -406,14 +419,15 @@ static void stage2_flush_puds(struct kvm *kvm, p4d_t *p4d,
if (stage2_pud_huge(kvm, *pud))
kvm_flush_dcache_pud(*pud);
else
stage2_flush_pmds(kvm, pud, addr, next);
stage2_flush_pmds(mmu, pud, addr, next);
}
} while (pud++, addr = next, addr != end);
}
static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
static void stage2_flush_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
p4d_t *p4d;
phys_addr_t next;
@ -421,23 +435,24 @@ static void stage2_flush_p4ds(struct kvm *kvm, pgd_t *pgd,
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
stage2_flush_puds(kvm, p4d, addr, next);
stage2_flush_puds(mmu, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
}
static void stage2_flush_memslot(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
struct kvm_s2_mmu *mmu = &kvm->arch.mmu;
phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
phys_addr_t next;
pgd_t *pgd;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
do {
next = stage2_pgd_addr_end(kvm, addr, end);
if (!stage2_pgd_none(kvm, *pgd))
stage2_flush_p4ds(kvm, pgd, addr, next);
stage2_flush_p4ds(mmu, pgd, addr, next);
if (next != end)
cond_resched_lock(&kvm->mmu_lock);
@ -964,21 +979,23 @@ int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
}
/**
* kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
* @kvm: The KVM struct pointer for the VM.
* kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
* @kvm: The pointer to the KVM structure
* @mmu: The pointer to the s2 MMU structure
*
* Allocates only the stage-2 HW PGD level table(s) of size defined by
* stage2_pgd_size(kvm).
* stage2_pgd_size(mmu->kvm).
*
* Note we don't need locking here as this is only called when the VM is
* created, which can only be done once.
*/
int kvm_alloc_stage2_pgd(struct kvm *kvm)
int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
{
phys_addr_t pgd_phys;
pgd_t *pgd;
int cpu;
if (kvm->arch.pgd != NULL) {
if (mmu->pgd != NULL) {
kvm_err("kvm_arch already initialized?\n");
return -EINVAL;
}
@ -992,8 +1009,20 @@ int kvm_alloc_stage2_pgd(struct kvm *kvm)
if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm)))
return -EINVAL;
kvm->arch.pgd = pgd;
kvm->arch.pgd_phys = pgd_phys;
mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
if (!mmu->last_vcpu_ran) {
free_pages_exact(pgd, stage2_pgd_size(kvm));
return -ENOMEM;
}
for_each_possible_cpu(cpu)
*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
mmu->kvm = kvm;
mmu->pgd = pgd;
mmu->pgd_phys = pgd_phys;
mmu->vmid.vmid_gen = 0;
return 0;
}
@ -1032,7 +1061,7 @@ static void stage2_unmap_memslot(struct kvm *kvm,
if (!(vma->vm_flags & VM_PFNMAP)) {
gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
unmap_stage2_range(kvm, gpa, vm_end - vm_start);
unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
}
hva = vm_end;
} while (hva < reg_end);
@ -1064,39 +1093,34 @@ void stage2_unmap_vm(struct kvm *kvm)
srcu_read_unlock(&kvm->srcu, idx);
}
/**
* kvm_free_stage2_pgd - free all stage-2 tables
* @kvm: The KVM struct pointer for the VM.
*
* Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
* underlying level-2 and level-3 tables before freeing the actual level-1 table
* and setting the struct pointer to NULL.
*/
void kvm_free_stage2_pgd(struct kvm *kvm)
void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
{
struct kvm *kvm = mmu->kvm;
void *pgd = NULL;
spin_lock(&kvm->mmu_lock);
if (kvm->arch.pgd) {
unmap_stage2_range(kvm, 0, kvm_phys_size(kvm));
pgd = READ_ONCE(kvm->arch.pgd);
kvm->arch.pgd = NULL;
kvm->arch.pgd_phys = 0;
if (mmu->pgd) {
unmap_stage2_range(mmu, 0, kvm_phys_size(kvm));
pgd = READ_ONCE(mmu->pgd);
mmu->pgd = NULL;
}
spin_unlock(&kvm->mmu_lock);
/* Free the HW pgd, one page at a time */
if (pgd)
if (pgd) {
free_pages_exact(pgd, stage2_pgd_size(kvm));
free_percpu(mmu->last_vcpu_ran);
}
}
static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
static p4d_t *stage2_get_p4d(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
pgd_t *pgd;
p4d_t *p4d;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
if (stage2_pgd_none(kvm, *pgd)) {
if (!cache)
return NULL;
@ -1108,13 +1132,14 @@ static p4d_t *stage2_get_p4d(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
return stage2_p4d_offset(kvm, pgd, addr);
}
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
static pud_t *stage2_get_pud(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
p4d_t *p4d;
pud_t *pud;
p4d = stage2_get_p4d(kvm, cache, addr);
p4d = stage2_get_p4d(mmu, cache, addr);
if (stage2_p4d_none(kvm, *p4d)) {
if (!cache)
return NULL;
@ -1126,13 +1151,14 @@ static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
return stage2_pud_offset(kvm, p4d, addr);
}
static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
static pmd_t *stage2_get_pmd(struct kvm_s2_mmu *mmu, struct kvm_mmu_memory_cache *cache,
phys_addr_t addr)
{
struct kvm *kvm = mmu->kvm;
pud_t *pud;
pmd_t *pmd;
pud = stage2_get_pud(kvm, cache, addr);
pud = stage2_get_pud(mmu, cache, addr);
if (!pud || stage2_pud_huge(kvm, *pud))
return NULL;
@ -1147,13 +1173,14 @@ static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache
return stage2_pmd_offset(kvm, pud, addr);
}
static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
*cache, phys_addr_t addr, const pmd_t *new_pmd)
static int stage2_set_pmd_huge(struct kvm_s2_mmu *mmu,
struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pmd_t *new_pmd)
{
pmd_t *pmd, old_pmd;
retry:
pmd = stage2_get_pmd(kvm, cache, addr);
pmd = stage2_get_pmd(mmu, cache, addr);
VM_BUG_ON(!pmd);
old_pmd = *pmd;
@ -1186,7 +1213,7 @@ retry:
* get handled accordingly.
*/
if (!pmd_thp_or_huge(old_pmd)) {
unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE);
unmap_stage2_range(mmu, addr & S2_PMD_MASK, S2_PMD_SIZE);
goto retry;
}
/*
@ -1202,7 +1229,7 @@ retry:
*/
WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));
pmd_clear(pmd);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PMD_LEVEL);
} else {
get_page(virt_to_page(pmd));
}
@ -1211,13 +1238,15 @@ retry:
return 0;
}
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
static int stage2_set_pud_huge(struct kvm_s2_mmu *mmu,
struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pud_t *new_pudp)
{
struct kvm *kvm = mmu->kvm;
pud_t *pudp, old_pud;
retry:
pudp = stage2_get_pud(kvm, cache, addr);
pudp = stage2_get_pud(mmu, cache, addr);
VM_BUG_ON(!pudp);
old_pud = *pudp;
@ -1236,13 +1265,13 @@ retry:
* the range for this block and retry.
*/
if (!stage2_pud_huge(kvm, old_pud)) {
unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE);
unmap_stage2_range(mmu, addr & S2_PUD_MASK, S2_PUD_SIZE);
goto retry;
}
WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp));
stage2_pud_clear(kvm, pudp);
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PUD_LEVEL);
} else {
get_page(virt_to_page(pudp));
}
@ -1257,9 +1286,10 @@ retry:
* leaf-entry is returned in the appropriate level variable - pudpp,
* pmdpp, ptepp.
*/
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
static bool stage2_get_leaf_entry(struct kvm_s2_mmu *mmu, phys_addr_t addr,
pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
{
struct kvm *kvm = mmu->kvm;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
@ -1268,7 +1298,7 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
*pmdpp = NULL;
*ptepp = NULL;
pudp = stage2_get_pud(kvm, NULL, addr);
pudp = stage2_get_pud(mmu, NULL, addr);
if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp))
return false;
@ -1294,14 +1324,14 @@ static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
return true;
}
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz)
static bool stage2_is_exec(struct kvm_s2_mmu *mmu, phys_addr_t addr, unsigned long sz)
{
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
bool found;
found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
found = stage2_get_leaf_entry(mmu, addr, &pudp, &pmdp, &ptep);
if (!found)
return false;
@ -1313,10 +1343,12 @@ static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz)
return sz == PAGE_SIZE && kvm_s2pte_exec(ptep);
}
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
static int stage2_set_pte(struct kvm_s2_mmu *mmu,
struct kvm_mmu_memory_cache *cache,
phys_addr_t addr, const pte_t *new_pte,
unsigned long flags)
{
struct kvm *kvm = mmu->kvm;
pud_t *pud;
pmd_t *pmd;
pte_t *pte, old_pte;
@ -1326,7 +1358,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
VM_BUG_ON(logging_active && !cache);
/* Create stage-2 page table mapping - Levels 0 and 1 */
pud = stage2_get_pud(kvm, cache, addr);
pud = stage2_get_pud(mmu, cache, addr);
if (!pud) {
/*
* Ignore calls from kvm_set_spte_hva for unallocated
@ -1340,7 +1372,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
* on to allocate page.
*/
if (logging_active)
stage2_dissolve_pud(kvm, addr, pud);
stage2_dissolve_pud(mmu, addr, pud);
if (stage2_pud_none(kvm, *pud)) {
if (!cache)
@ -1364,7 +1396,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
* allocate page.
*/
if (logging_active)
stage2_dissolve_pmd(kvm, addr, pmd);
stage2_dissolve_pmd(mmu, addr, pmd);
/* Create stage-2 page mappings - Level 2 */
if (pmd_none(*pmd)) {
@ -1388,7 +1420,7 @@ static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
return 0;
kvm_set_pte(pte, __pte(0));
kvm_tlb_flush_vmid_ipa(kvm, addr);
kvm_tlb_flush_vmid_ipa(mmu, addr, S2_PTE_LEVEL);
} else {
get_page(virt_to_page(pte));
}
@ -1453,8 +1485,8 @@ int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
if (ret)
goto out;
spin_lock(&kvm->mmu_lock);
ret = stage2_set_pte(kvm, &cache, addr, &pte,
KVM_S2PTE_FLAG_IS_IOMAP);
ret = stage2_set_pte(&kvm->arch.mmu, &cache, addr, &pte,
KVM_S2PTE_FLAG_IS_IOMAP);
spin_unlock(&kvm->mmu_lock);
if (ret)
goto out;
@ -1493,9 +1525,10 @@ static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
static void stage2_wp_pmds(struct kvm_s2_mmu *mmu, pud_t *pud,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
pmd_t *pmd;
phys_addr_t next;
@ -1516,13 +1549,14 @@ static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud,
/**
* stage2_wp_puds - write protect P4D range
* @pgd: pointer to pgd entry
* @p4d: pointer to p4d entry
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
static void stage2_wp_puds(struct kvm_s2_mmu *mmu, p4d_t *p4d,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
pud_t *pud;
phys_addr_t next;
@ -1534,7 +1568,7 @@ static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
if (!kvm_s2pud_readonly(pud))
kvm_set_s2pud_readonly(pud);
} else {
stage2_wp_pmds(kvm, pud, addr, next);
stage2_wp_pmds(mmu, pud, addr, next);
}
}
} while (pud++, addr = next, addr != end);
@ -1546,9 +1580,10 @@ static void stage2_wp_puds(struct kvm *kvm, p4d_t *p4d,
* @addr: range start address
* @end: range end address
*/
static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
static void stage2_wp_p4ds(struct kvm_s2_mmu *mmu, pgd_t *pgd,
phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
p4d_t *p4d;
phys_addr_t next;
@ -1556,7 +1591,7 @@ static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
do {
next = stage2_p4d_addr_end(kvm, addr, end);
if (!stage2_p4d_none(kvm, *p4d))
stage2_wp_puds(kvm, p4d, addr, next);
stage2_wp_puds(mmu, p4d, addr, next);
} while (p4d++, addr = next, addr != end);
}
@ -1566,12 +1601,13 @@ static void stage2_wp_p4ds(struct kvm *kvm, pgd_t *pgd,
* @addr: Start address of range
* @end: End address of range
*/
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
{
struct kvm *kvm = mmu->kvm;
pgd_t *pgd;
phys_addr_t next;
pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr);
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
do {
/*
* Release kvm_mmu_lock periodically if the memory region is
@ -1583,11 +1619,11 @@ static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
* the lock.
*/
cond_resched_lock(&kvm->mmu_lock);
if (!READ_ONCE(kvm->arch.pgd))
if (!READ_ONCE(mmu->pgd))
break;
next = stage2_pgd_addr_end(kvm, addr, end);
if (stage2_pgd_present(kvm, *pgd))
stage2_wp_p4ds(kvm, pgd, addr, next);
stage2_wp_p4ds(mmu, pgd, addr, next);
} while (pgd++, addr = next, addr != end);
}
@ -1617,7 +1653,7 @@ void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
stage2_wp_range(kvm, start, end);
stage2_wp_range(&kvm->arch.mmu, start, end);
spin_unlock(&kvm->mmu_lock);
kvm_flush_remote_tlbs(kvm);
}
@ -1641,7 +1677,7 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
stage2_wp_range(kvm, start, end);
stage2_wp_range(&kvm->arch.mmu, start, end);
}
/*
@ -1804,6 +1840,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
pgprot_t mem_type = PAGE_S2;
bool logging_active = memslot_is_logging(memslot);
unsigned long vma_pagesize, flags = 0;
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
write_fault = kvm_is_write_fault(vcpu);
exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
@ -1925,7 +1962,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
*/
needs_exec = exec_fault ||
(fault_status == FSC_PERM &&
stage2_is_exec(kvm, fault_ipa, vma_pagesize));
stage2_is_exec(mmu, fault_ipa, vma_pagesize));
if (vma_pagesize == PUD_SIZE) {
pud_t new_pud = kvm_pfn_pud(pfn, mem_type);
@ -1937,7 +1974,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (needs_exec)
new_pud = kvm_s2pud_mkexec(new_pud);
ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
ret = stage2_set_pud_huge(mmu, memcache, fault_ipa, &new_pud);
} else if (vma_pagesize == PMD_SIZE) {
pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);
@ -1949,7 +1986,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (needs_exec)
new_pmd = kvm_s2pmd_mkexec(new_pmd);
ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
ret = stage2_set_pmd_huge(mmu, memcache, fault_ipa, &new_pmd);
} else {
pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
@ -1961,7 +1998,7 @@ static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
if (needs_exec)
new_pte = kvm_s2pte_mkexec(new_pte);
ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
ret = stage2_set_pte(mmu, memcache, fault_ipa, &new_pte, flags);
}
out_unlock:
@ -1990,7 +2027,7 @@ static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
spin_lock(&vcpu->kvm->mmu_lock);
if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
if (!stage2_get_leaf_entry(vcpu->arch.hw_mmu, fault_ipa, &pud, &pmd, &pte))
goto out;
if (pud) { /* HugeTLB */
@ -2040,21 +2077,18 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
/* Synchronous External Abort? */
if (kvm_vcpu_dabt_isextabt(vcpu)) {
if (kvm_vcpu_abt_issea(vcpu)) {
/*
* For RAS the host kernel may handle this abort.
* There is no need to pass the error into the guest.
*/
if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
return 1;
if (unlikely(!is_iabt)) {
if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
kvm_inject_vabt(vcpu);
return 1;
}
return 1;
}
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
kvm_vcpu_get_hfar(vcpu), fault_ipa);
/* Check the stage-2 fault is trans. fault or write fault */
@ -2063,7 +2097,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
kvm_vcpu_trap_get_class(vcpu),
(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
(unsigned long)kvm_vcpu_get_hsr(vcpu));
(unsigned long)kvm_vcpu_get_esr(vcpu));
return -EFAULT;
}
@ -2074,12 +2108,23 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
write_fault = kvm_is_write_fault(vcpu);
if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
/*
* The guest has put either its instructions or its page-tables
* somewhere it shouldn't have. Userspace won't be able to do
* anything about this (there's no syndrome for a start), so
* re-inject the abort back into the guest.
*/
if (is_iabt) {
/* Prefetch Abort on I/O address */
ret = -ENOEXEC;
goto out;
}
if (kvm_vcpu_dabt_iss1tw(vcpu)) {
kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
ret = 1;
goto out_unlock;
}
/*
* Check for a cache maintenance operation. Since we
* ended-up here, we know it is outside of any memory
@ -2090,7 +2135,7 @@ int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
* So let's assume that the guest is just being
* cautious, and skip the instruction.
*/
if (kvm_vcpu_dabt_is_cm(vcpu)) {
if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
ret = 1;
goto out_unlock;
@ -2163,14 +2208,14 @@ static int handle_hva_to_gpa(struct kvm *kvm,
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
{
unmap_stage2_range(kvm, gpa, size);
unmap_stage2_range(&kvm->arch.mmu, gpa, size);
return 0;
}
int kvm_unmap_hva_range(struct kvm *kvm,
unsigned long start, unsigned long end)
{
if (!kvm->arch.pgd)
if (!kvm->arch.mmu.pgd)
return 0;
trace_kvm_unmap_hva_range(start, end);
@ -2190,7 +2235,7 @@ static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data
* therefore stage2_set_pte() never needs to clear out a huge PMD
* through this calling path.
*/
stage2_set_pte(kvm, NULL, gpa, pte, 0);
stage2_set_pte(&kvm->arch.mmu, NULL, gpa, pte, 0);
return 0;
}
@ -2201,7 +2246,7 @@ int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
kvm_pfn_t pfn = pte_pfn(pte);
pte_t stage2_pte;
if (!kvm->arch.pgd)
if (!kvm->arch.mmu.pgd)
return 0;
trace_kvm_set_spte_hva(hva);
@ -2224,7 +2269,7 @@ static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
return 0;
if (pud)
@ -2242,7 +2287,7 @@ static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *
pte_t *pte;
WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
if (!stage2_get_leaf_entry(&kvm->arch.mmu, gpa, &pud, &pmd, &pte))
return 0;
if (pud)
@ -2255,7 +2300,7 @@ static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
if (!kvm->arch.pgd)
if (!kvm->arch.mmu.pgd)
return 0;
trace_kvm_age_hva(start, end);
return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
@ -2263,7 +2308,7 @@ int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
if (!kvm->arch.pgd)
if (!kvm->arch.mmu.pgd)
return 0;
trace_kvm_test_age_hva(hva);
return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
@ -2476,7 +2521,7 @@ int kvm_arch_prepare_memory_region(struct kvm *kvm,
spin_lock(&kvm->mmu_lock);
if (ret)
unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
else
stage2_flush_memslot(kvm, memslot);
spin_unlock(&kvm->mmu_lock);
@ -2495,7 +2540,7 @@ void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
kvm_free_stage2_pgd(kvm);
kvm_free_stage2_pgd(&kvm->arch.mmu);
}
void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
@ -2505,7 +2550,7 @@ void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
phys_addr_t size = slot->npages << PAGE_SHIFT;
spin_lock(&kvm->mmu_lock);
unmap_stage2_range(kvm, gpa, size);
unmap_stage2_range(&kvm->arch.mmu, gpa, size);
spin_unlock(&kvm->mmu_lock);
}

View File

@ -100,7 +100,7 @@ static const unsigned long vcpu_reg_offsets[VCPU_NR_MODES][16] = {
*/
unsigned long *vcpu_reg32(const struct kvm_vcpu *vcpu, u8 reg_num)
{
unsigned long *reg_array = (unsigned long *)&vcpu->arch.ctxt.gp_regs.regs;
unsigned long *reg_array = (unsigned long *)&vcpu->arch.ctxt.regs;
unsigned long mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK;
switch (mode) {
@ -147,8 +147,20 @@ unsigned long vcpu_read_spsr32(const struct kvm_vcpu *vcpu)
{
int spsr_idx = vcpu_spsr32_mode(vcpu);
if (!vcpu->arch.sysregs_loaded_on_cpu)
return vcpu_gp_regs(vcpu)->spsr[spsr_idx];
if (!vcpu->arch.sysregs_loaded_on_cpu) {
switch (spsr_idx) {
case KVM_SPSR_SVC:
return __vcpu_sys_reg(vcpu, SPSR_EL1);
case KVM_SPSR_ABT:
return vcpu->arch.ctxt.spsr_abt;
case KVM_SPSR_UND:
return vcpu->arch.ctxt.spsr_und;
case KVM_SPSR_IRQ:
return vcpu->arch.ctxt.spsr_irq;
case KVM_SPSR_FIQ:
return vcpu->arch.ctxt.spsr_fiq;
}
}
switch (spsr_idx) {
case KVM_SPSR_SVC:
@ -171,7 +183,24 @@ void vcpu_write_spsr32(struct kvm_vcpu *vcpu, unsigned long v)
int spsr_idx = vcpu_spsr32_mode(vcpu);
if (!vcpu->arch.sysregs_loaded_on_cpu) {
vcpu_gp_regs(vcpu)->spsr[spsr_idx] = v;
switch (spsr_idx) {
case KVM_SPSR_SVC:
__vcpu_sys_reg(vcpu, SPSR_EL1) = v;
break;
case KVM_SPSR_ABT:
vcpu->arch.ctxt.spsr_abt = v;
break;
case KVM_SPSR_UND:
vcpu->arch.ctxt.spsr_und = v;
break;
case KVM_SPSR_IRQ:
vcpu->arch.ctxt.spsr_irq = v;
break;
case KVM_SPSR_FIQ:
vcpu->arch.ctxt.spsr_fiq = v;
break;
}
return;
}

View File

@ -42,6 +42,11 @@ static u32 kvm_ipa_limit;
#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
PSR_AA32_I_BIT | PSR_AA32_F_BIT)
static bool system_has_full_ptr_auth(void)
{
return system_supports_address_auth() && system_supports_generic_auth();
}
/**
* kvm_arch_vm_ioctl_check_extension
*
@ -80,8 +85,7 @@ int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
break;
case KVM_CAP_ARM_PTRAUTH_ADDRESS:
case KVM_CAP_ARM_PTRAUTH_GENERIC:
r = has_vhe() && system_supports_address_auth() &&
system_supports_generic_auth();
r = system_has_full_ptr_auth();
break;
default:
r = 0;
@ -205,19 +209,14 @@ static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
{
/* Support ptrauth only if the system supports these capabilities. */
if (!has_vhe())
return -EINVAL;
if (!system_supports_address_auth() ||
!system_supports_generic_auth())
return -EINVAL;
/*
* For now make sure that both address/generic pointer authentication
* features are requested by the userspace together.
* features are requested by the userspace together and the system
* supports these capabilities.
*/
if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
!system_has_full_ptr_auth())
return -EINVAL;
vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
@ -292,7 +291,7 @@ int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
/* Reset core registers */
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
vcpu_gp_regs(vcpu)->regs.pstate = pstate;
vcpu_gp_regs(vcpu)->pstate = pstate;
/* Reset system registers */
kvm_reset_sys_regs(vcpu);

View File

@ -94,6 +94,7 @@ static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
case PAR_EL1: *val = read_sysreg_s(SYS_PAR_EL1); break;
case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
@ -133,6 +134,7 @@ static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
@ -242,6 +244,25 @@ static bool access_vm_reg(struct kvm_vcpu *vcpu,
return true;
}
static bool access_actlr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
if (p->is_aarch32) {
if (r->Op2 & 2)
p->regval = upper_32_bits(p->regval);
else
p->regval = lower_32_bits(p->regval);
}
return true;
}
/*
* Trap handler for the GICv3 SGI generation system register.
* Forward the request to the VGIC emulation.
@ -615,6 +636,12 @@ static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
}
static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 actlr = read_sysreg(actlr_el1);
vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
}
static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
u64 mpidr;
@ -1518,6 +1545,7 @@ static const struct sys_reg_desc sys_reg_descs[] = {
ID_UNALLOCATED(7,7),
{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
@ -1957,6 +1985,8 @@ static const struct sys_reg_desc cp14_64_regs[] = {
static const struct sys_reg_desc cp15_regs[] = {
{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
{ Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
@ -2109,36 +2139,6 @@ static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
return 0;
}
/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
void kvm_register_target_sys_reg_table(unsigned int target,
struct kvm_sys_reg_target_table *table)
{
if (check_sysreg_table(table->table64.table, table->table64.num, false) ||
check_sysreg_table(table->table32.table, table->table32.num, true))
return;
target_tables[target] = table;
}
/* Get specific register table for this target. */
static const struct sys_reg_desc *get_target_table(unsigned target,
bool mode_is_64,
size_t *num)
{
struct kvm_sys_reg_target_table *table;
table = target_tables[target];
if (mode_is_64) {
*num = table->table64.num;
return table->table64.table;
} else {
*num = table->table32.num;
return table->table32.table;
}
}
static int match_sys_reg(const void *key, const void *elt)
{
const unsigned long pval = (unsigned long)key;
@ -2220,10 +2220,10 @@ static int emulate_cp(struct kvm_vcpu *vcpu,
static void unhandled_cp_access(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
int cp = -1;
switch(hsr_ec) {
switch (esr_ec) {
case ESR_ELx_EC_CP15_32:
case ESR_ELx_EC_CP15_64:
cp = 15;
@ -2249,22 +2249,20 @@ static void unhandled_cp_access(struct kvm_vcpu *vcpu,
*/
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
size_t nr_global)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int Rt2 = (hsr >> 10) & 0x1f;
int Rt2 = (esr >> 10) & 0x1f;
params.is_aarch32 = true;
params.is_32bit = false;
params.CRm = (hsr >> 1) & 0xf;
params.is_write = ((hsr & 1) == 0);
params.CRm = (esr >> 1) & 0xf;
params.is_write = ((esr & 1) == 0);
params.Op0 = 0;
params.Op1 = (hsr >> 16) & 0xf;
params.Op1 = (esr >> 16) & 0xf;
params.Op2 = 0;
params.CRn = 0;
@ -2278,14 +2276,11 @@ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
}
/*
* Try to emulate the coprocessor access using the target
* specific table first, and using the global table afterwards.
* If either of the tables contains a handler, handle the
* If the table contains a handler, handle the
* potential register operation in the case of a read and return
* with success.
*/
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
if (!emulate_cp(vcpu, &params, global, nr_global)) {
/* Split up the value between registers for the read side */
if (!params.is_write) {
vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
@ -2306,26 +2301,23 @@ static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
*/
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *global,
size_t nr_global,
const struct sys_reg_desc *target_specific,
size_t nr_specific)
size_t nr_global)
{
struct sys_reg_params params;
u32 hsr = kvm_vcpu_get_hsr(vcpu);
u32 esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
params.is_aarch32 = true;
params.is_32bit = true;
params.CRm = (hsr >> 1) & 0xf;
params.CRm = (esr >> 1) & 0xf;
params.regval = vcpu_get_reg(vcpu, Rt);
params.is_write = ((hsr & 1) == 0);
params.CRn = (hsr >> 10) & 0xf;
params.is_write = ((esr & 1) == 0);
params.CRn = (esr >> 10) & 0xf;
params.Op0 = 0;
params.Op1 = (hsr >> 14) & 0x7;
params.Op2 = (hsr >> 17) & 0x7;
params.Op1 = (esr >> 14) & 0x7;
params.Op2 = (esr >> 17) & 0x7;
if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
!emulate_cp(vcpu, &params, global, nr_global)) {
if (!emulate_cp(vcpu, &params, global, nr_global)) {
if (!params.is_write)
vcpu_set_reg(vcpu, Rt, params.regval);
return 1;
@ -2337,38 +2329,22 @@ static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_64(vcpu,
cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
target_specific, num);
return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
}
int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
{
const struct sys_reg_desc *target_specific;
size_t num;
target_specific = get_target_table(vcpu->arch.target, false, &num);
return kvm_handle_cp_32(vcpu,
cp15_regs, ARRAY_SIZE(cp15_regs),
target_specific, num);
return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
}
int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_64(vcpu,
cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
NULL, 0);
return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
}
int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
{
return kvm_handle_cp_32(vcpu,
cp14_regs, ARRAY_SIZE(cp14_regs),
NULL, 0);
return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
}
static bool is_imp_def_sys_reg(struct sys_reg_params *params)
@ -2380,15 +2356,9 @@ static bool is_imp_def_sys_reg(struct sys_reg_params *params)
static int emulate_sys_reg(struct kvm_vcpu *vcpu,
struct sys_reg_params *params)
{
size_t num;
const struct sys_reg_desc *table, *r;
const struct sys_reg_desc *r;
table = get_target_table(vcpu->arch.target, true, &num);
/* Search target-specific then generic table. */
r = find_reg(params, table, num);
if (!r)
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
if (likely(r)) {
perform_access(vcpu, params, r);
@ -2403,14 +2373,20 @@ static int emulate_sys_reg(struct kvm_vcpu *vcpu,
return 1;
}
static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
const struct sys_reg_desc *table, size_t num)
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
unsigned long i;
for (i = 0; i < num; i++)
if (table[i].reset)
table[i].reset(vcpu, &table[i]);
for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
if (sys_reg_descs[i].reset)
sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
}
/**
@ -2420,7 +2396,7 @@ static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
{
struct sys_reg_params params;
unsigned long esr = kvm_vcpu_get_hsr(vcpu);
unsigned long esr = kvm_vcpu_get_esr(vcpu);
int Rt = kvm_vcpu_sys_get_rt(vcpu);
int ret;
@ -2491,8 +2467,7 @@ const struct sys_reg_desc *find_reg_by_id(u64 id,
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
u64 id)
{
size_t num;
const struct sys_reg_desc *table, *r;
const struct sys_reg_desc *r;
struct sys_reg_params params;
/* We only do sys_reg for now. */
@ -2502,10 +2477,7 @@ static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
if (!index_to_params(id, &params))
return NULL;
table = get_target_table(vcpu->arch.target, true, &num);
r = find_reg(&params, table, num);
if (!r)
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
/* Not saved in the sys_reg array and not otherwise accessible? */
if (r && !(r->reg || r->get_user))
@ -2805,35 +2777,17 @@ static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
const struct sys_reg_desc *i1, *i2, *end1, *end2;
const struct sys_reg_desc *i2, *end2;
unsigned int total = 0;
size_t num;
int err;
/* We check for duplicates here, to allow arch-specific overrides. */
i1 = get_target_table(vcpu->arch.target, true, &num);
end1 = i1 + num;
i2 = sys_reg_descs;
end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
BUG_ON(i1 == end1 || i2 == end2);
/* Walk carefully, as both tables may refer to the same register. */
while (i1 || i2) {
int cmp = cmp_sys_reg(i1, i2);
/* target-specific overrides generic entry. */
if (cmp <= 0)
err = walk_one_sys_reg(vcpu, i1, &uind, &total);
else
err = walk_one_sys_reg(vcpu, i2, &uind, &total);
while (i2 != end2) {
err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
if (err)
return err;
if (cmp <= 0 && ++i1 == end1)
i1 = NULL;
if (cmp >= 0 && ++i2 == end2)
i2 = NULL;
}
return total;
}
@ -2900,22 +2854,3 @@ void kvm_sys_reg_table_init(void)
/* Clear all higher bits. */
cache_levels &= (1 << (i*3))-1;
}
/**
* kvm_reset_sys_regs - sets system registers to reset value
* @vcpu: The VCPU pointer
*
* This function finds the right table above and sets the registers on the
* virtual CPU struct to their architecturally defined reset values.
*/
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
size_t num;
const struct sys_reg_desc *table;
/* Generic chip reset first (so target could override). */
reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
table = get_target_table(vcpu->arch.target, true, &num);
reset_sys_reg_descs(vcpu, table, num);
}

View File

@ -1,96 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* Based on arch/arm/kvm/coproc_a15.c:
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
* Authors: Rusty Russell <rusty@rustcorp.au>
* Christoffer Dall <c.dall@virtualopensystems.com>
*/
#include <linux/kvm_host.h>
#include <asm/cputype.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_coproc.h>
#include <asm/sysreg.h>
#include <linux/init.h>
#include "sys_regs.h"
static bool access_actlr(struct kvm_vcpu *vcpu,
struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
if (p->is_write)
return ignore_write(vcpu, p);
p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
if (p->is_aarch32) {
if (r->Op2 & 2)
p->regval = upper_32_bits(p->regval);
else
p->regval = lower_32_bits(p->regval);
}
return true;
}
static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
__vcpu_sys_reg(vcpu, ACTLR_EL1) = read_sysreg(actlr_el1);
}
/*
* Implementation specific sys-reg registers.
* Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
*/
static const struct sys_reg_desc genericv8_sys_regs[] = {
{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
};
static const struct sys_reg_desc genericv8_cp15_regs[] = {
/* ACTLR */
{ Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b001),
access_actlr },
{ Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b011),
access_actlr },
};
static struct kvm_sys_reg_target_table genericv8_target_table = {
.table64 = {
.table = genericv8_sys_regs,
.num = ARRAY_SIZE(genericv8_sys_regs),
},
.table32 = {
.table = genericv8_cp15_regs,
.num = ARRAY_SIZE(genericv8_cp15_regs),
},
};
static int __init sys_reg_genericv8_init(void)
{
unsigned int i;
for (i = 1; i < ARRAY_SIZE(genericv8_sys_regs); i++)
BUG_ON(cmp_sys_reg(&genericv8_sys_regs[i-1],
&genericv8_sys_regs[i]) >= 0);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_AEM_V8,
&genericv8_target_table);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_FOUNDATION_V8,
&genericv8_target_table);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_CORTEX_A53,
&genericv8_target_table);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_CORTEX_A57,
&genericv8_target_table);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_XGENE_POTENZA,
&genericv8_target_table);
kvm_register_target_sys_reg_table(KVM_ARM_TARGET_GENERIC_V8,
&genericv8_target_table);
return 0;
}
late_initcall(sys_reg_genericv8_init);

View File

@ -301,8 +301,8 @@ TRACE_EVENT(kvm_timer_save_state,
),
TP_fast_assign(
__entry->ctl = ctx->cnt_ctl;
__entry->cval = ctx->cnt_cval;
__entry->ctl = timer_get_ctl(ctx);
__entry->cval = timer_get_cval(ctx);
__entry->timer_idx = arch_timer_ctx_index(ctx);
),
@ -323,8 +323,8 @@ TRACE_EVENT(kvm_timer_restore_state,
),
TP_fast_assign(
__entry->ctl = ctx->cnt_ctl;
__entry->cval = ctx->cnt_cval;
__entry->ctl = timer_get_ctl(ctx);
__entry->cval = timer_get_cval(ctx);
__entry->timer_idx = arch_timer_ctx_index(ctx);
),

View File

@ -48,7 +48,7 @@ __init void kvm_compute_layout(void)
va_mask = GENMASK_ULL(tag_lsb - 1, 0);
tag_val = hyp_va_msb;
if (tag_lsb != (vabits_actual - 1)) {
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
/* We have some free bits to insert a random tag. */
tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
}

View File

@ -100,19 +100,33 @@ int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
/**
* kvm_arch_set_irq_inatomic: fast-path for irqfd injection
*
* Currently only direct MSI injection is supported.
*/
int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
struct kvm *kvm, int irq_source_id, int level,
bool line_status)
{
if (e->type == KVM_IRQ_ROUTING_MSI && vgic_has_its(kvm) && level) {
if (!level)
return -EWOULDBLOCK;
switch (e->type) {
case KVM_IRQ_ROUTING_MSI: {
struct kvm_msi msi;
if (!vgic_has_its(kvm))
break;
kvm_populate_msi(e, &msi);
if (!vgic_its_inject_cached_translation(kvm, &msi))
return 0;
return vgic_its_inject_cached_translation(kvm, &msi);
}
case KVM_IRQ_ROUTING_IRQCHIP:
/*
* Injecting SPIs is always possible in atomic context
* as long as the damn vgic is initialized.
*/
if (unlikely(!vgic_initialized(kvm)))
break;
return vgic_irqfd_set_irq(e, kvm, irq_source_id, 1, line_status);
}
return -EWOULDBLOCK;

View File

@ -757,9 +757,8 @@ int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
db = (u64)msi->address_hi << 32 | msi->address_lo;
irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
if (!irq)
return -1;
return -EWOULDBLOCK;
raw_spin_lock_irqsave(&irq->irq_lock, flags);
irq->pending_latch = true;

View File

@ -389,7 +389,7 @@ u64 vgic_sanitise_outer_cacheability(u64 field)
case GIC_BASER_CACHE_nC:
return field;
default:
return GIC_BASER_CACHE_nC;
return GIC_BASER_CACHE_SameAsInner;
}
}

View File

@ -26,16 +26,9 @@ enum kvm_arch_timer_regs {
struct arch_timer_context {
struct kvm_vcpu *vcpu;
/* Registers: control register, timer value */
u32 cnt_ctl;
u64 cnt_cval;
/* Timer IRQ */
struct kvm_irq_level irq;
/* Virtual offset */
u64 cntvoff;
/* Emulated Timer (may be unused) */
struct hrtimer hrtimer;
@ -71,7 +64,7 @@ int kvm_timer_hyp_init(bool);
int kvm_timer_enable(struct kvm_vcpu *vcpu);
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu);
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu);
void kvm_timer_sync_user(struct kvm_vcpu *vcpu);
bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu);
void kvm_timer_update_run(struct kvm_vcpu *vcpu);
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu);
@ -109,4 +102,8 @@ void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
enum kvm_arch_timer_regs treg,
u64 val);
/* Needed for tracing */
u32 timer_get_ctl(struct arch_timer_context *ctxt);
u64 timer_get_cval(struct arch_timer_context *ctxt);
#endif

View File

@ -17,7 +17,7 @@
ERSN(NMI), ERSN(INTERNAL_ERROR), ERSN(OSI), ERSN(PAPR_HCALL), \
ERSN(S390_UCONTROL), ERSN(WATCHDOG), ERSN(S390_TSCH), ERSN(EPR),\
ERSN(SYSTEM_EVENT), ERSN(S390_STSI), ERSN(IOAPIC_EOI), \
ERSN(HYPERV)
ERSN(HYPERV), ERSN(ARM_NISV)
TRACE_EVENT(kvm_userspace_exit,
TP_PROTO(__u32 reason, int errno),

View File

@ -109,6 +109,7 @@ static bool is_ignored_symbol(const char *name, char type)
".LASANPC", /* s390 kasan local symbols */
"__crc_", /* modversions */
"__efistub_", /* arm64 EFI stub namespace */
"__kvm_nvhe_", /* arm64 non-VHE KVM namespace */
NULL
};