linux/drivers/clk/stm32/clk-stm32-core.c

642 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2022 - All Rights Reserved
* Author: Gabriel Fernandez <gabriel.fernandez@foss.st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "clk-stm32-core.h"
#include "reset-stm32.h"
static DEFINE_SPINLOCK(rlock);
static int stm32_rcc_clock_init(struct device *dev,
const struct of_device_id *match,
void __iomem *base)
{
const struct stm32_rcc_match_data *data = match->data;
struct clk_hw_onecell_data *clk_data = data->hw_clks;
struct device_node *np = dev_of_node(dev);
struct clk_hw **hws;
int n, max_binding;
max_binding = data->maxbinding;
clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, max_binding), GFP_KERNEL);
if (!clk_data)
return -ENOMEM;
clk_data->num = max_binding;
hws = clk_data->hws;
for (n = 0; n < max_binding; n++)
hws[n] = ERR_PTR(-ENOENT);
for (n = 0; n < data->num_clocks; n++) {
const struct clock_config *cfg_clock = &data->tab_clocks[n];
struct clk_hw *hw = ERR_PTR(-ENOENT);
if (data->check_security &&
data->check_security(base, cfg_clock))
continue;
if (cfg_clock->func)
hw = (*cfg_clock->func)(dev, data, base, &rlock,
cfg_clock);
if (IS_ERR(hw)) {
dev_err(dev, "Can't register clk %d: %ld\n", n,
PTR_ERR(hw));
return PTR_ERR(hw);
}
if (cfg_clock->id != NO_ID)
hws[cfg_clock->id] = hw;
}
return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, clk_data);
}
int stm32_rcc_init(struct device *dev, const struct of_device_id *match_data,
void __iomem *base)
{
const struct of_device_id *match;
int err;
match = of_match_node(match_data, dev_of_node(dev));
if (!match) {
dev_err(dev, "match data not found\n");
return -ENODEV;
}
/* RCC Reset Configuration */
err = stm32_rcc_reset_init(dev, match, base);
if (err) {
pr_err("stm32 reset failed to initialize\n");
return err;
}
/* RCC Clock Configuration */
err = stm32_rcc_clock_init(dev, match, base);
if (err) {
pr_err("stm32 clock failed to initialize\n");
return err;
}
return 0;
}
static u8 stm32_mux_get_parent(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 mux_id)
{
const struct stm32_mux_cfg *mux = &data->muxes[mux_id];
u32 mask = BIT(mux->width) - 1;
u32 val;
val = readl(base + mux->offset) >> mux->shift;
val &= mask;
return val;
}
static int stm32_mux_set_parent(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 mux_id, u8 index)
{
const struct stm32_mux_cfg *mux = &data->muxes[mux_id];
u32 mask = BIT(mux->width) - 1;
u32 reg = readl(base + mux->offset);
u32 val = index << mux->shift;
reg &= ~(mask << mux->shift);
reg |= val;
writel(reg, base + mux->offset);
return 0;
}
static void stm32_gate_endisable(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 gate_id, int enable)
{
const struct stm32_gate_cfg *gate = &data->gates[gate_id];
void __iomem *addr = base + gate->offset;
if (enable) {
if (data->gate_cpt[gate_id]++ > 0)
return;
if (gate->set_clr != 0)
writel(BIT(gate->bit_idx), addr);
else
writel(readl(addr) | BIT(gate->bit_idx), addr);
} else {
if (--data->gate_cpt[gate_id] > 0)
return;
if (gate->set_clr != 0)
writel(BIT(gate->bit_idx), addr + gate->set_clr);
else
writel(readl(addr) & ~BIT(gate->bit_idx), addr);
}
}
static void stm32_gate_disable_unused(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 gate_id)
{
const struct stm32_gate_cfg *gate = &data->gates[gate_id];
void __iomem *addr = base + gate->offset;
if (data->gate_cpt[gate_id] > 0)
return;
if (gate->set_clr != 0)
writel(BIT(gate->bit_idx), addr + gate->set_clr);
else
writel(readl(addr) & ~BIT(gate->bit_idx), addr);
}
static int stm32_gate_is_enabled(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 gate_id)
{
const struct stm32_gate_cfg *gate = &data->gates[gate_id];
return (readl(base + gate->offset) & BIT(gate->bit_idx)) != 0;
}
static unsigned int _get_table_div(const struct clk_div_table *table,
unsigned int val)
{
const struct clk_div_table *clkt;
for (clkt = table; clkt->div; clkt++)
if (clkt->val == val)
return clkt->div;
return 0;
}
static unsigned int _get_div(const struct clk_div_table *table,
unsigned int val, unsigned long flags, u8 width)
{
if (flags & CLK_DIVIDER_ONE_BASED)
return val;
if (flags & CLK_DIVIDER_POWER_OF_TWO)
return 1 << val;
if (table)
return _get_table_div(table, val);
return val + 1;
}
static unsigned long stm32_divider_get_rate(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 div_id,
unsigned long parent_rate)
{
const struct stm32_div_cfg *divider = &data->dividers[div_id];
unsigned int val;
unsigned int div;
val = readl(base + divider->offset) >> divider->shift;
val &= clk_div_mask(divider->width);
div = _get_div(divider->table, val, divider->flags, divider->width);
if (!div) {
WARN(!(divider->flags & CLK_DIVIDER_ALLOW_ZERO),
"%d: Zero divisor and CLK_DIVIDER_ALLOW_ZERO not set\n",
div_id);
return parent_rate;
}
return DIV_ROUND_UP_ULL((u64)parent_rate, div);
}
static int stm32_divider_set_rate(void __iomem *base,
struct clk_stm32_clock_data *data,
u16 div_id, unsigned long rate,
unsigned long parent_rate)
{
const struct stm32_div_cfg *divider = &data->dividers[div_id];
int value;
u32 val;
value = divider_get_val(rate, parent_rate, divider->table,
divider->width, divider->flags);
if (value < 0)
return value;
if (divider->flags & CLK_DIVIDER_HIWORD_MASK) {
val = clk_div_mask(divider->width) << (divider->shift + 16);
} else {
val = readl(base + divider->offset);
val &= ~(clk_div_mask(divider->width) << divider->shift);
}
val |= (u32)value << divider->shift;
writel(val, base + divider->offset);
return 0;
}
static u8 clk_stm32_mux_get_parent(struct clk_hw *hw)
{
struct clk_stm32_mux *mux = to_clk_stm32_mux(hw);
return stm32_mux_get_parent(mux->base, mux->clock_data, mux->mux_id);
}
static int clk_stm32_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_stm32_mux *mux = to_clk_stm32_mux(hw);
unsigned long flags = 0;
spin_lock_irqsave(mux->lock, flags);
stm32_mux_set_parent(mux->base, mux->clock_data, mux->mux_id, index);
spin_unlock_irqrestore(mux->lock, flags);
return 0;
}
const struct clk_ops clk_stm32_mux_ops = {
.get_parent = clk_stm32_mux_get_parent,
.set_parent = clk_stm32_mux_set_parent,
};
static void clk_stm32_gate_endisable(struct clk_hw *hw, int enable)
{
struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
unsigned long flags = 0;
spin_lock_irqsave(gate->lock, flags);
stm32_gate_endisable(gate->base, gate->clock_data, gate->gate_id, enable);
spin_unlock_irqrestore(gate->lock, flags);
}
static int clk_stm32_gate_enable(struct clk_hw *hw)
{
clk_stm32_gate_endisable(hw, 1);
return 0;
}
static void clk_stm32_gate_disable(struct clk_hw *hw)
{
clk_stm32_gate_endisable(hw, 0);
}
static int clk_stm32_gate_is_enabled(struct clk_hw *hw)
{
struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
return stm32_gate_is_enabled(gate->base, gate->clock_data, gate->gate_id);
}
static void clk_stm32_gate_disable_unused(struct clk_hw *hw)
{
struct clk_stm32_gate *gate = to_clk_stm32_gate(hw);
unsigned long flags = 0;
spin_lock_irqsave(gate->lock, flags);
stm32_gate_disable_unused(gate->base, gate->clock_data, gate->gate_id);
spin_unlock_irqrestore(gate->lock, flags);
}
const struct clk_ops clk_stm32_gate_ops = {
.enable = clk_stm32_gate_enable,
.disable = clk_stm32_gate_disable,
.is_enabled = clk_stm32_gate_is_enabled,
.disable_unused = clk_stm32_gate_disable_unused,
};
static int clk_stm32_divider_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_stm32_div *div = to_clk_stm32_divider(hw);
unsigned long flags = 0;
int ret;
if (div->div_id == NO_STM32_DIV)
return rate;
spin_lock_irqsave(div->lock, flags);
ret = stm32_divider_set_rate(div->base, div->clock_data, div->div_id, rate, parent_rate);
spin_unlock_irqrestore(div->lock, flags);
return ret;
}
static long clk_stm32_divider_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_stm32_div *div = to_clk_stm32_divider(hw);
const struct stm32_div_cfg *divider;
if (div->div_id == NO_STM32_DIV)
return rate;
divider = &div->clock_data->dividers[div->div_id];
/* if read only, just return current value */
if (divider->flags & CLK_DIVIDER_READ_ONLY) {
u32 val;
val = readl(div->base + divider->offset) >> divider->shift;
val &= clk_div_mask(divider->width);
return divider_ro_round_rate(hw, rate, prate, divider->table,
divider->width, divider->flags,
val);
}
return divider_round_rate_parent(hw, clk_hw_get_parent(hw),
rate, prate, divider->table,
divider->width, divider->flags);
}
static unsigned long clk_stm32_divider_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_stm32_div *div = to_clk_stm32_divider(hw);
if (div->div_id == NO_STM32_DIV)
return parent_rate;
return stm32_divider_get_rate(div->base, div->clock_data, div->div_id, parent_rate);
}
const struct clk_ops clk_stm32_divider_ops = {
.recalc_rate = clk_stm32_divider_recalc_rate,
.round_rate = clk_stm32_divider_round_rate,
.set_rate = clk_stm32_divider_set_rate,
};
static int clk_stm32_composite_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
unsigned long flags = 0;
int ret;
if (composite->div_id == NO_STM32_DIV)
return rate;
spin_lock_irqsave(composite->lock, flags);
ret = stm32_divider_set_rate(composite->base, composite->clock_data,
composite->div_id, rate, parent_rate);
spin_unlock_irqrestore(composite->lock, flags);
return ret;
}
static unsigned long clk_stm32_composite_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
if (composite->div_id == NO_STM32_DIV)
return parent_rate;
return stm32_divider_get_rate(composite->base, composite->clock_data,
composite->div_id, parent_rate);
}
static long clk_stm32_composite_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *prate)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
const struct stm32_div_cfg *divider;
if (composite->div_id == NO_STM32_DIV)
return rate;
divider = &composite->clock_data->dividers[composite->div_id];
/* if read only, just return current value */
if (divider->flags & CLK_DIVIDER_READ_ONLY) {
u32 val;
val = readl(composite->base + divider->offset) >> divider->shift;
val &= clk_div_mask(divider->width);
return divider_ro_round_rate(hw, rate, prate, divider->table,
divider->width, divider->flags,
val);
}
return divider_round_rate_parent(hw, clk_hw_get_parent(hw),
rate, prate, divider->table,
divider->width, divider->flags);
}
static u8 clk_stm32_composite_get_parent(struct clk_hw *hw)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
return stm32_mux_get_parent(composite->base, composite->clock_data, composite->mux_id);
}
static int clk_stm32_composite_set_parent(struct clk_hw *hw, u8 index)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
unsigned long flags = 0;
spin_lock_irqsave(composite->lock, flags);
stm32_mux_set_parent(composite->base, composite->clock_data, composite->mux_id, index);
spin_unlock_irqrestore(composite->lock, flags);
if (composite->clock_data->is_multi_mux) {
struct clk_hw *other_mux_hw = composite->clock_data->is_multi_mux(hw);
if (other_mux_hw) {
struct clk_hw *hwp = clk_hw_get_parent_by_index(hw, index);
clk_hw_reparent(other_mux_hw, hwp);
}
}
return 0;
}
static int clk_stm32_composite_is_enabled(struct clk_hw *hw)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
if (composite->gate_id == NO_STM32_GATE)
return (__clk_get_enable_count(hw->clk) > 0);
return stm32_gate_is_enabled(composite->base, composite->clock_data, composite->gate_id);
}
static void clk_stm32_composite_gate_endisable(struct clk_hw *hw, int enable)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
unsigned long flags = 0;
spin_lock_irqsave(composite->lock, flags);
stm32_gate_endisable(composite->base, composite->clock_data, composite->gate_id, enable);
spin_unlock_irqrestore(composite->lock, flags);
}
static int clk_stm32_composite_gate_enable(struct clk_hw *hw)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
if (composite->gate_id == NO_STM32_GATE)
return 0;
clk_stm32_composite_gate_endisable(hw, 1);
return 0;
}
static void clk_stm32_composite_gate_disable(struct clk_hw *hw)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
if (composite->gate_id == NO_STM32_GATE)
return;
clk_stm32_composite_gate_endisable(hw, 0);
}
static void clk_stm32_composite_disable_unused(struct clk_hw *hw)
{
struct clk_stm32_composite *composite = to_clk_stm32_composite(hw);
unsigned long flags = 0;
if (composite->gate_id == NO_STM32_GATE)
return;
spin_lock_irqsave(composite->lock, flags);
stm32_gate_disable_unused(composite->base, composite->clock_data, composite->gate_id);
spin_unlock_irqrestore(composite->lock, flags);
}
const struct clk_ops clk_stm32_composite_ops = {
.set_rate = clk_stm32_composite_set_rate,
.recalc_rate = clk_stm32_composite_recalc_rate,
.round_rate = clk_stm32_composite_round_rate,
.get_parent = clk_stm32_composite_get_parent,
.set_parent = clk_stm32_composite_set_parent,
.enable = clk_stm32_composite_gate_enable,
.disable = clk_stm32_composite_gate_disable,
.is_enabled = clk_stm32_composite_is_enabled,
.disable_unused = clk_stm32_composite_disable_unused,
};
struct clk_hw *clk_stm32_mux_register(struct device *dev,
const struct stm32_rcc_match_data *data,
void __iomem *base,
spinlock_t *lock,
const struct clock_config *cfg)
{
struct clk_stm32_mux *mux = cfg->clock_cfg;
struct clk_hw *hw = &mux->hw;
int err;
mux->base = base;
mux->lock = lock;
mux->clock_data = data->clock_data;
err = clk_hw_register(dev, hw);
if (err)
return ERR_PTR(err);
return hw;
}
struct clk_hw *clk_stm32_gate_register(struct device *dev,
const struct stm32_rcc_match_data *data,
void __iomem *base,
spinlock_t *lock,
const struct clock_config *cfg)
{
struct clk_stm32_gate *gate = cfg->clock_cfg;
struct clk_hw *hw = &gate->hw;
int err;
gate->base = base;
gate->lock = lock;
gate->clock_data = data->clock_data;
err = clk_hw_register(dev, hw);
if (err)
return ERR_PTR(err);
return hw;
}
struct clk_hw *clk_stm32_div_register(struct device *dev,
const struct stm32_rcc_match_data *data,
void __iomem *base,
spinlock_t *lock,
const struct clock_config *cfg)
{
struct clk_stm32_div *div = cfg->clock_cfg;
struct clk_hw *hw = &div->hw;
int err;
div->base = base;
div->lock = lock;
div->clock_data = data->clock_data;
err = clk_hw_register(dev, hw);
if (err)
return ERR_PTR(err);
return hw;
}
struct clk_hw *clk_stm32_composite_register(struct device *dev,
const struct stm32_rcc_match_data *data,
void __iomem *base,
spinlock_t *lock,
const struct clock_config *cfg)
{
struct clk_stm32_composite *composite = cfg->clock_cfg;
struct clk_hw *hw = &composite->hw;
int err;
composite->base = base;
composite->lock = lock;
composite->clock_data = data->clock_data;
err = clk_hw_register(dev, hw);
if (err)
return ERR_PTR(err);
return hw;
}