linux/arch/arm/boot/dts/armada-xp-matrix.dts

80 lines
1.4 KiB
Plaintext
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Device Tree file for Marvell Armada XP Matrix board
*
* Copyright (C) 2013 Marvell
*
* Lior Amsalem <alior@marvell.com>
*/
/dts-v1/;
#include "armada-xp-mv78460.dtsi"
/ {
model = "Marvell Armada XP Matrix Board";
compatible = "marvell,axp-matrix", "marvell,armadaxp-mv78460", "marvell,armadaxp", "marvell,armada-370-xp";
chosen {
stdout-path = "serial0:115200n8";
};
memory@0 {
device_type = "memory";
/*
* This board has 4 GB of RAM, but the last 256 MB of
* RAM are not usable due to the overlap with the MBus
* Window address range
*/
reg = <0 0x00000000 0 0xf0000000>;
};
soc {
ranges = <MBUS_ID(0xf0, 0x01) 0 0 0xf1000000 0x100000
MBUS_ID(0x01, 0x1d) 0 0 0xfff00000 0x100000
ARM: mvebu: fix overlap of Crypto SRAM with PCIe memory window When the Crypto SRAM mappings were added to the Device Tree files describing the Armada XP boards in commit c466d997bb16 ("ARM: mvebu: define crypto SRAM ranges for all armada-xp boards"), the fact that those mappings were overlaping with the PCIe memory aperture was overlooked. Due to this, we currently have for all Armada XP platforms a situation that looks like this: Memory mapping on Armada XP boards with internal registers at 0xf1000000: - 0x00000000 -> 0xf0000000 3.75G RAM - 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB) - 0xf1000000 -> 0xf1100000 1M internal registers - 0xf8000000 -> 0xffe0000 126M PCIe memory aperture - 0xf8100000 -> 0xf8110000 64KB Crypto SRAM #0 => OVERLAPS WITH PCIE ! - 0xf8110000 -> 0xf8120000 64KB Crypto SRAM #1 => OVERLAPS WITH PCIE ! - 0xffe00000 -> 0xfff00000 1M PCIe I/O aperture - 0xfff0000 -> 0xffffffff 1M BootROM The overlap means that when PCIe devices are added, depending on their memory window needs, they might or might not be mapped into the physical address space. Indeed, they will not be mapped if the area allocated in the PCIe memory aperture by the PCI core overlaps with one of the Crypto SRAM. Typically, a Intel IGB PCIe NIC that needs 8MB of PCIe memory will see its PCIe memory window allocated from 0xf80000000 for 8MB, which overlaps with the Crypto SRAM windows. Due to this, the PCIe window is not created, and any attempt to access the PCIe window makes the kernel explode: [ 3.302213] igb: Copyright (c) 2007-2014 Intel Corporation. [ 3.307841] pci 0000:00:09.0: enabling device (0140 -> 0143) [ 3.313539] mvebu_mbus: cannot add window '4:f8', conflicts with another window [ 3.320870] mvebu-pcie soc:pcie-controller: Could not create MBus window at [mem 0xf8000000-0xf87fffff]: -22 [ 3.330811] Unhandled fault: external abort on non-linefetch (0x1008) at 0xf08c0018 This problem does not occur on Armada 370 boards, because we use the following memory mapping (for boards that have internal registers at 0xf1000000): - 0x00000000 -> 0xf0000000 3.75G RAM - 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB) - 0xf1000000 -> 0xf1100000 1M internal registers - 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0 => OK ! - 0xf8000000 -> 0xffe0000 126M PCIe memory - 0xffe00000 -> 0xfff00000 1M PCIe I/O - 0xfff0000 -> 0xffffffff 1M BootROM Obviously, the solution is to align the location of the Crypto SRAM mappings of Armada XP to be similar with the ones on Armada 370, i.e have them between the "internal registers" area and the beginning of the PCIe aperture. However, we have a special case with the OpenBlocks AX3-4 platform, which has a 128 MB NOR flash. Currently, this NOR flash is mapped from 0xf0000000 to 0xf8000000. This is possible because on OpenBlocks AX3-4, the internal registers are not at 0xf1000000. And this explains why the Crypto SRAM mappings were not configured at the same place on Armada XP. Hence, the solution is two-fold: (1) Move the NOR flash mapping on Armada XP OpenBlocks AX3-4 from 0xe8000000 to 0xf0000000. This frees the 0xf0000000 -> 0xf80000000 space. (2) Move the Crypto SRAM mappings on Armada XP to be similar to Armada 370 (except of course that Armada XP has two Crypto SRAM and not one). After this patch, the memory mapping on Armada XP boards with registers at 0xf1 is: - 0x00000000 -> 0xf0000000 3.75G RAM - 0xf0000000 -> 0xf1000000 16M NOR flashes (AXP GP / AXP DB) - 0xf1000000 -> 0xf1100000 1M internal registers - 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0 - 0xf1110000 -> 0xf1120000 64KB Crypto SRAM #1 - 0xf8000000 -> 0xffe0000 126M PCIe memory - 0xffe00000 -> 0xfff00000 1M PCIe I/O - 0xfff0000 -> 0xffffffff 1M BootROM And the memory mapping for the special case of the OpenBlocks AX3-4 (internal registers at 0xd0000000, NOR of 128 MB): - 0x00000000 -> 0xc0000000 3G RAM - 0xd0000000 -> 0xd1000000 1M internal registers - 0xe800000 -> 0xf0000000 128M NOR flash - 0xf1100000 -> 0xf1110000 64KB Crypto SRAM #0 - 0xf1110000 -> 0xf1120000 64KB Crypto SRAM #1 - 0xf8000000 -> 0xffe0000 126M PCIe memory - 0xffe00000 -> 0xfff00000 1M PCIe I/O - 0xfff0000 -> 0xffffffff 1M BootROM Fixes: c466d997bb16 ("ARM: mvebu: define crypto SRAM ranges for all armada-xp boards") Reported-by: Phil Sutter <phil@nwl.cc> Cc: Phil Sutter <phil@nwl.cc> Cc: <stable@vger.kernel.org> Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> Acked-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Signed-off-by: Olof Johansson <olof@lixom.net>
2016-03-08 23:59:57 +08:00
MBUS_ID(0x09, 0x09) 0 0 0xf1100000 0x10000
MBUS_ID(0x09, 0x05) 0 0 0xf1110000 0x10000>;
internal-regs {
serial@12000 {
status = "okay";
};
serial@12100 {
status = "okay";
};
serial@12200 {
status = "okay";
};
serial@12300 {
status = "okay";
};
sata@a0000 {
nr-ports = <2>;
status = "okay";
};
ethernet@30000 {
status = "okay";
phy-mode = "sgmii";
fixed-link {
speed = <1000>;
full-duplex;
};
};
usb@50000 {
status = "okay";
};
};
};
};
&pciec {
status = "okay";
pcie@1,0 {
/* Port 0, Lane 0 */
status = "okay";
};
};