linux/fs/notify/group.c

164 lines
4.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
/*
* Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com>
*/
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/srcu.h>
#include <linux/rculist.h>
#include <linux/wait.h>
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
#include <linux/memcontrol.h>
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
#include <linux/fsnotify_backend.h>
#include "fsnotify.h"
#include <linux/atomic.h>
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
/*
* Final freeing of a group
*/
static void fsnotify_final_destroy_group(struct fsnotify_group *group)
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
{
if (group->ops->free_group_priv)
group->ops->free_group_priv(group);
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
mem_cgroup_put(group->memcg);
mutex_destroy(&group->mark_mutex);
fs: fsnotify: account fsnotify metadata to kmemcg Patch series "Directed kmem charging", v8. The Linux kernel's memory cgroup allows limiting the memory usage of the jobs running on the system to provide isolation between the jobs. All the kernel memory allocated in the context of the job and marked with __GFP_ACCOUNT will also be included in the memory usage and be limited by the job's limit. The kernel memory can only be charged to the memcg of the process in whose context kernel memory was allocated. However there are cases where the allocated kernel memory should be charged to the memcg different from the current processes's memcg. This patch series contains two such concrete use-cases i.e. fsnotify and buffer_head. The fsnotify event objects can consume a lot of system memory for large or unlimited queues if there is either no or slow listener. The events are allocated in the context of the event producer. However they should be charged to the event consumer. Similarly the buffer_head objects can be allocated in a memcg different from the memcg of the page for which buffer_head objects are being allocated. To solve this issue, this patch series introduces mechanism to charge kernel memory to a given memcg. In case of fsnotify events, the memcg of the consumer can be used for charging and for buffer_head, the memcg of the page can be charged. For directed charging, the caller can use the scope API memalloc_[un]use_memcg() to specify the memcg to charge for all the __GFP_ACCOUNT allocations within the scope. This patch (of 2): A lot of memory can be consumed by the events generated for the huge or unlimited queues if there is either no or slow listener. This can cause system level memory pressure or OOMs. So, it's better to account the fsnotify kmem caches to the memcg of the listener. However the listener can be in a different memcg than the memcg of the producer and these allocations happen in the context of the event producer. This patch introduces remote memcg charging API which the producer can use to charge the allocations to the memcg of the listener. There are seven fsnotify kmem caches and among them allocations from dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and inotify_inode_mark_cachep happens in the context of syscall from the listener. So, SLAB_ACCOUNT is enough for these caches. The objects from fsnotify_mark_connector_cachep are not accounted as they are small compared to the notification mark or events and it is unclear whom to account connector to since it is shared by all events attached to the inode. The allocations from the event caches happen in the context of the event producer. For such caches we will need to remote charge the allocations to the listener's memcg. Thus we save the memcg reference in the fsnotify_group structure of the listener. This patch has also moved the members of fsnotify_group to keep the size same, at least for 64 bit build, even with additional member by filling the holes. [shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it] Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Amir Goldstein <amir73il@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-18 06:46:39 +08:00
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
kfree(group);
}
/*
* Stop queueing new events for this group. Once this function returns
* fsnotify_add_event() will not add any new events to the group's queue.
*/
void fsnotify_group_stop_queueing(struct fsnotify_group *group)
{
spin_lock(&group->notification_lock);
group->shutdown = true;
spin_unlock(&group->notification_lock);
}
/*
* Trying to get rid of a group. Remove all marks, flush all events and release
* the group reference.
* Note that another thread calling fsnotify_clear_marks_by_group() may still
* hold a ref to the group.
*/
void fsnotify_destroy_group(struct fsnotify_group *group)
{
/*
* Stop queueing new events. The code below is careful enough to not
* require this but fanotify needs to stop queuing events even before
* fsnotify_destroy_group() is called and this makes the other callers
* of fsnotify_destroy_group() to see the same behavior.
*/
fsnotify_group_stop_queueing(group);
/* Clear all marks for this group and queue them for destruction */
fsnotify_clear_marks_by_group(group, FSNOTIFY_OBJ_ALL_TYPES_MASK);
/*
* Some marks can still be pinned when waiting for response from
* userspace. Wait for those now. fsnotify_prepare_user_wait() will
* not succeed now so this wait is race-free.
*/
wait_event(group->notification_waitq, !atomic_read(&group->user_waits));
2016-05-20 08:08:59 +08:00
/*
* Wait until all marks get really destroyed. We could actually destroy
* them ourselves instead of waiting for worker to do it, however that
* would be racy as worker can already be processing some marks before
* we even entered fsnotify_destroy_group().
2016-05-20 08:08:59 +08:00
*/
fsnotify_wait_marks_destroyed();
2016-05-20 08:08:59 +08:00
/*
* Since we have waited for fsnotify_mark_srcu in
* fsnotify_mark_destroy_list() there can be no outstanding event
* notification against this group. So clearing the notification queue
* of all events is reliable now.
*/
fsnotify_flush_notify(group);
/*
* Destroy overflow event (we cannot use fsnotify_destroy_event() as
* that deliberately ignores overflow events.
*/
if (group->overflow_event)
group->ops->free_event(group, group->overflow_event);
fsnotify_put_group(group);
}
/*
* Get reference to a group.
*/
void fsnotify_get_group(struct fsnotify_group *group)
{
refcount_inc(&group->refcnt);
}
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
/*
* Drop a reference to a group. Free it if it's through.
*/
void fsnotify_put_group(struct fsnotify_group *group)
{
if (refcount_dec_and_test(&group->refcnt))
fsnotify_final_destroy_group(group);
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
}
EXPORT_SYMBOL_GPL(fsnotify_put_group);
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
static struct fsnotify_group *__fsnotify_alloc_group(
const struct fsnotify_ops *ops, gfp_t gfp)
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
{
struct fsnotify_group *group;
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
group = kzalloc(sizeof(struct fsnotify_group), gfp);
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
if (!group)
return ERR_PTR(-ENOMEM);
/* set to 0 when there a no external references to this group */
refcount_set(&group->refcnt, 1);
atomic_set(&group->user_waits, 0);
spin_lock_init(&group->notification_lock);
INIT_LIST_HEAD(&group->notification_list);
init_waitqueue_head(&group->notification_waitq);
group->max_events = UINT_MAX;
mutex_init(&group->mark_mutex);
INIT_LIST_HEAD(&group->marks_list);
fsnotify: unified filesystem notification backend fsnotify is a backend for filesystem notification. fsnotify does not provide any userspace interface but does provide the basis needed for other notification schemes such as dnotify. fsnotify can be extended to be the backend for inotify or the upcoming fanotify. fsnotify provides a mechanism for "groups" to register for some set of filesystem events and to then deliver those events to those groups for processing. fsnotify has a number of benefits, the first being actually shrinking the size of an inode. Before fsnotify to support both dnotify and inotify an inode had unsigned long i_dnotify_mask; /* Directory notify events */ struct dnotify_struct *i_dnotify; /* for directory notifications */ struct list_head inotify_watches; /* watches on this inode */ struct mutex inotify_mutex; /* protects the watches list But with fsnotify this same functionallity (and more) is done with just __u32 i_fsnotify_mask; /* all events for this inode */ struct hlist_head i_fsnotify_mark_entries; /* marks on this inode */ That's right, inotify, dnotify, and fanotify all in 64 bits. We used that much space just in inotify_watches alone, before this patch set. fsnotify object lifetime and locking is MUCH better than what we have today. inotify locking is incredibly complex. See 8f7b0ba1c8539 as an example of what's been busted since inception. inotify needs to know internal semantics of superblock destruction and unmounting to function. The inode pinning and vfs contortions are horrible. no fsnotify implementers do allocation under locks. This means things like f04b30de3 which (due to an overabundance of caution) changes GFP_KERNEL to GFP_NOFS can be reverted. There are no longer any allocation rules when using or implementing your own fsnotify listener. fsnotify paves the way for fanotify. In brief fanotify is a notification mechanism that delivers the lisener both an 'event' and an open file descriptor to the object in question. This means that fanotify is pathname agnostic. Some on lkml may not care for the original companies or users that pushed for TALPA, but fanotify was designed with flexibility and input for other users in mind. The readahead group expressed interest in fanotify as it could be used to profile disk access on boot without breaking the audit system. The desktop search groups have also expressed interest in fanotify as it solves a number of the race conditions and problems present with managing inotify when more than a limited number of specific files are of interest. fanotify can provide for a userspace access control system which makes it a clean interface for AV vendors to hook without trying to do binary patching on the syscall table, LSM, and everywhere else they do their things today. With this patch series fanotify can be implemented in less than 1200 lines of easy to review code. Almost all of which is the socket based user interface. This patch series builds fsnotify to the point that it can implement dnotify and inotify_user. Patches exist and will be sent soon after acceptance to finish the in kernel inotify conversion (audit) and implement fanotify. Signed-off-by: Eric Paris <eparis@redhat.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de>
2009-05-22 05:01:20 +08:00
group->ops = ops;
return group;
}
/*
* Create a new fsnotify_group and hold a reference for the group returned.
*/
struct fsnotify_group *fsnotify_alloc_group(const struct fsnotify_ops *ops)
{
return __fsnotify_alloc_group(ops, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(fsnotify_alloc_group);
/*
* Create a new fsnotify_group and hold a reference for the group returned.
*/
struct fsnotify_group *fsnotify_alloc_user_group(const struct fsnotify_ops *ops)
{
return __fsnotify_alloc_group(ops, GFP_KERNEL_ACCOUNT);
}
EXPORT_SYMBOL_GPL(fsnotify_alloc_user_group);
int fsnotify_fasync(int fd, struct file *file, int on)
{
struct fsnotify_group *group = file->private_data;
return fasync_helper(fd, file, on, &group->fsn_fa) >= 0 ? 0 : -EIO;
}