linux/drivers/infiniband/hw/mlx5/odp.c

1927 lines
50 KiB
C
Raw Normal View History

/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
#include <linux/kernel.h>
#include <linux/dma-buf.h>
#include <linux/dma-resv.h>
#include "mlx5_ib.h"
#include "cmd.h"
#include "qp.h"
#include <linux/mlx5/eq.h>
/* Contains the details of a pagefault. */
struct mlx5_pagefault {
u32 bytes_committed;
u32 token;
u8 event_subtype;
u8 type;
union {
/* Initiator or send message responder pagefault details. */
struct {
/* Received packet size, only valid for responders. */
u32 packet_size;
/*
* Number of resource holding WQE, depends on type.
*/
u32 wq_num;
/*
* WQE index. Refers to either the send queue or
* receive queue, according to event_subtype.
*/
u16 wqe_index;
} wqe;
/* RDMA responder pagefault details */
struct {
u32 r_key;
/*
* Received packet size, minimal size page fault
* resolution required for forward progress.
*/
u32 packet_size;
u32 rdma_op_len;
u64 rdma_va;
} rdma;
};
struct mlx5_ib_pf_eq *eq;
struct work_struct work;
};
#define MAX_PREFETCH_LEN (4*1024*1024U)
/* Timeout in ms to wait for an active mmu notifier to complete when handling
* a pagefault. */
#define MMU_NOTIFIER_TIMEOUT 1000
#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
static u64 mlx5_imr_ksm_entries;
static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
struct mlx5_ib_mr *imr, int flags)
{
struct mlx5_klm *end = pklm + nentries;
if (flags & MLX5_IB_UPD_XLT_ZAP) {
for (; pklm != end; pklm++, idx++) {
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
pklm->va = 0;
}
return;
}
/*
* The locking here is pretty subtle. Ideally the implicit_children
* xarray would be protected by the umem_mutex, however that is not
* possible. Instead this uses a weaker update-then-lock pattern:
*
* xa_store()
* mutex_lock(umem_mutex)
* mlx5_ib_update_xlt()
* mutex_unlock(umem_mutex)
* destroy lkey
*
* ie any change the xarray must be followed by the locked update_xlt
* before destroying.
*
* The umem_mutex provides the acquire/release semantic needed to make
* the xa_store() visible to a racing thread.
*/
lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
for (; pklm != end; pklm++, idx++) {
struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
if (mtt) {
pklm->key = cpu_to_be32(mtt->ibmr.lkey);
pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
} else {
pklm->key = cpu_to_be32(mr_to_mdev(imr)->null_mkey);
pklm->va = 0;
}
}
}
static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
{
u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
if (umem_dma & ODP_READ_ALLOWED_BIT)
mtt_entry |= MLX5_IB_MTT_READ;
if (umem_dma & ODP_WRITE_ALLOWED_BIT)
mtt_entry |= MLX5_IB_MTT_WRITE;
return mtt_entry;
}
static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
struct mlx5_ib_mr *mr, int flags)
{
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
dma_addr_t pa;
size_t i;
if (flags & MLX5_IB_UPD_XLT_ZAP)
return;
for (i = 0; i < nentries; i++) {
pa = odp->dma_list[idx + i];
pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
}
}
void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
struct mlx5_ib_mr *mr, int flags)
{
if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
populate_klm(xlt, idx, nentries, mr, flags);
} else {
populate_mtt(xlt, idx, nentries, mr, flags);
}
}
static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
{
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
/* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
mutex_lock(&odp->umem_mutex);
if (odp->npages) {
mlx5_mr_cache_invalidate(mr);
ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
ib_umem_end(odp));
WARN_ON(odp->npages);
}
odp->private = NULL;
mutex_unlock(&odp->umem_mutex);
if (!mr->cache_ent) {
mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
WARN_ON(mr->descs);
}
}
/*
* This must be called after the mr has been removed from implicit_children.
* NOTE: The MR does not necessarily have to be
* empty here, parallel page faults could have raced with the free process and
* added pages to it.
*/
static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
{
struct mlx5_ib_mr *imr = mr->parent;
struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
mlx5r_deref_wait_odp_mkey(&mr->mmkey);
if (need_imr_xlt) {
mutex_lock(&odp_imr->umem_mutex);
mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
mutex_unlock(&odp_imr->umem_mutex);
}
dma_fence_odp_mr(mr);
mlx5_mr_cache_free(mr_to_mdev(mr), mr);
ib_umem_odp_release(odp);
}
static void free_implicit_child_mr_work(struct work_struct *work)
{
struct mlx5_ib_mr *mr =
container_of(work, struct mlx5_ib_mr, odp_destroy.work);
struct mlx5_ib_mr *imr = mr->parent;
free_implicit_child_mr(mr, true);
mlx5r_deref_odp_mkey(&imr->mmkey);
}
static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
{
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
struct mlx5_ib_mr *imr = mr->parent;
if (!refcount_inc_not_zero(&imr->mmkey.usecount))
return;
xa_erase(&imr->implicit_children, idx);
/* Freeing a MR is a sleeping operation, so bounce to a work queue */
INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
queue_work(system_unbound_wq, &mr->odp_destroy.work);
}
static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
const struct mmu_notifier_range *range,
unsigned long cur_seq)
{
struct ib_umem_odp *umem_odp =
container_of(mni, struct ib_umem_odp, notifier);
struct mlx5_ib_mr *mr;
const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
sizeof(struct mlx5_mtt)) - 1;
u64 idx = 0, blk_start_idx = 0;
u64 invalidations = 0;
unsigned long start;
unsigned long end;
int in_block = 0;
u64 addr;
if (!mmu_notifier_range_blockable(range))
return false;
mutex_lock(&umem_odp->umem_mutex);
mmu_interval_set_seq(mni, cur_seq);
/*
* If npages is zero then umem_odp->private may not be setup yet. This
* does not complete until after the first page is mapped for DMA.
*/
if (!umem_odp->npages)
goto out;
mr = umem_odp->private;
start = max_t(u64, ib_umem_start(umem_odp), range->start);
end = min_t(u64, ib_umem_end(umem_odp), range->end);
/*
* Iteration one - zap the HW's MTTs. The notifiers_count ensures that
* while we are doing the invalidation, no page fault will attempt to
* overwrite the same MTTs. Concurent invalidations might race us,
* but they will write 0s as well, so no difference in the end result.
*/
for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
/*
* Strive to write the MTTs in chunks, but avoid overwriting
* non-existing MTTs. The huristic here can be improved to
* estimate the cost of another UMR vs. the cost of bigger
* UMR.
*/
if (umem_odp->dma_list[idx] &
(ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
if (!in_block) {
blk_start_idx = idx;
in_block = 1;
}
/* Count page invalidations */
invalidations += idx - blk_start_idx + 1;
} else {
u64 umr_offset = idx & umr_block_mask;
if (in_block && umr_offset == 0) {
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx, 0,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
in_block = 0;
}
}
}
if (in_block)
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx + 1, 0,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
mlx5_update_odp_stats(mr, invalidations, invalidations);
/*
* We are now sure that the device will not access the
* memory. We can safely unmap it, and mark it as dirty if
* needed.
*/
ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
if (unlikely(!umem_odp->npages && mr->parent))
destroy_unused_implicit_child_mr(mr);
out:
mutex_unlock(&umem_odp->umem_mutex);
return true;
}
const struct mmu_interval_notifier_ops mlx5_mn_ops = {
.invalidate = mlx5_ib_invalidate_range,
};
void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
{
struct ib_odp_caps *caps = &dev->odp_caps;
memset(caps, 0, sizeof(*caps));
if (!MLX5_CAP_GEN(dev->mdev, pg) ||
RDMA/mlx5: Clarify what the UMR is for when creating MRs Once a mkey is created it can be modified using UMR. This is desirable for performance reasons. However, different hardware has restrictions on what modifications are possible using UMR. Make sense of these checks: - mlx5_ib_can_reconfig_with_umr() returns true if the access flags can be altered. Most cases create MRs using 0 access flags (now made clear by consistent use of set_mkc_access_pd_addr_fields()), but the old logic here was tormented. Make it clear that this is checking if the current access_flags can be modified using UMR to different access_flags. It is always OK to use UMR to change flags that all HW supports. - mlx5_ib_can_load_pas_with_umr() returns true if UMR can be used to enable and update the PAS/XLT. Enabling requires updating the entity size, so UMR ends up completely disabled on this old hardware. Make it clear why it is disabled. FRWR, ODP and cache always requires mlx5_ib_can_load_pas_with_umr(). - mlx5_ib_pas_fits_in_mr() is used to tell if an existing MR can be resized to hold a new PAS list. This only works for cached MR's because we don't store the PAS list size in other cases. To be very clear, arrange things so any pre-created MR's in the cache check the newly requested access_flags before allowing the MR to leave the cache. If UMR cannot set the required access_flags the cache fails to create the MR. This in turn means relaxed ordering and atomic are now correctly blocked early for implicit ODP on older HW. Link: https://lore.kernel.org/r/20200914112653.345244-6-leon@kernel.org Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-09-14 19:26:53 +08:00
!mlx5_ib_can_load_pas_with_umr(dev, 0))
return;
caps->general_caps = IB_ODP_SUPPORT;
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
dev->odp_max_size = U64_MAX;
else
dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
MLX5_CAP_GEN(dev->mdev, null_mkey) &&
MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
!MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
}
static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
int error)
{
int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
pfault->wqe.wq_num : pfault->token;
u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = {};
int err;
MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
MLX5_SET(page_fault_resume_in, in, token, pfault->token);
MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
MLX5_SET(page_fault_resume_in, in, error, !!error);
err = mlx5_cmd_exec_in(dev->mdev, page_fault_resume, in);
if (err)
mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
wq_num, err);
}
static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
unsigned long idx)
{
struct ib_umem_odp *odp;
struct mlx5_ib_mr *mr;
struct mlx5_ib_mr *ret;
int err;
odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
idx * MLX5_IMR_MTT_SIZE,
MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
if (IS_ERR(odp))
return ERR_CAST(odp);
ret = mr = mlx5_mr_cache_alloc(
mr_to_mdev(imr), MLX5_IMR_MTT_CACHE_ENTRY, imr->access_flags);
if (IS_ERR(mr))
goto out_umem;
mr->ibmr.pd = imr->ibmr.pd;
mr->ibmr.device = &mr_to_mdev(imr)->ib_dev;
mr->umem = &odp->umem;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
mr->parent = imr;
odp->private = mr;
/*
* First refcount is owned by the xarray and second refconut
* is returned to the caller.
*/
refcount_set(&mr->mmkey.usecount, 2);
err = mlx5_ib_update_xlt(mr, 0,
MLX5_IMR_MTT_ENTRIES,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE);
if (err) {
ret = ERR_PTR(err);
goto out_mr;
}
xa_lock(&imr->implicit_children);
ret = __xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
GFP_KERNEL);
if (unlikely(ret)) {
if (xa_is_err(ret)) {
ret = ERR_PTR(xa_err(ret));
goto out_lock;
}
/*
* Another thread beat us to creating the child mr, use
* theirs.
*/
refcount_inc(&ret->mmkey.usecount);
goto out_lock;
}
xa_unlock(&imr->implicit_children);
mlx5_ib_dbg(mr_to_mdev(imr), "key %x mr %p\n", mr->mmkey.key, mr);
return mr;
out_lock:
xa_unlock(&imr->implicit_children);
out_mr:
mlx5_mr_cache_free(mr_to_mdev(imr), mr);
out_umem:
ib_umem_odp_release(odp);
return ret;
}
struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
struct ib_udata *udata,
int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
struct ib_umem_odp *umem_odp;
struct mlx5_ib_mr *imr;
int err;
if (!mlx5_ib_can_load_pas_with_umr(dev,
MLX5_IMR_MTT_ENTRIES * PAGE_SIZE))
return ERR_PTR(-EOPNOTSUPP);
umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
if (IS_ERR(umem_odp))
return ERR_CAST(umem_odp);
RDMA/mlx5: Clarify what the UMR is for when creating MRs Once a mkey is created it can be modified using UMR. This is desirable for performance reasons. However, different hardware has restrictions on what modifications are possible using UMR. Make sense of these checks: - mlx5_ib_can_reconfig_with_umr() returns true if the access flags can be altered. Most cases create MRs using 0 access flags (now made clear by consistent use of set_mkc_access_pd_addr_fields()), but the old logic here was tormented. Make it clear that this is checking if the current access_flags can be modified using UMR to different access_flags. It is always OK to use UMR to change flags that all HW supports. - mlx5_ib_can_load_pas_with_umr() returns true if UMR can be used to enable and update the PAS/XLT. Enabling requires updating the entity size, so UMR ends up completely disabled on this old hardware. Make it clear why it is disabled. FRWR, ODP and cache always requires mlx5_ib_can_load_pas_with_umr(). - mlx5_ib_pas_fits_in_mr() is used to tell if an existing MR can be resized to hold a new PAS list. This only works for cached MR's because we don't store the PAS list size in other cases. To be very clear, arrange things so any pre-created MR's in the cache check the newly requested access_flags before allowing the MR to leave the cache. If UMR cannot set the required access_flags the cache fails to create the MR. This in turn means relaxed ordering and atomic are now correctly blocked early for implicit ODP on older HW. Link: https://lore.kernel.org/r/20200914112653.345244-6-leon@kernel.org Signed-off-by: Leon Romanovsky <leonro@nvidia.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-09-14 19:26:53 +08:00
imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY, access_flags);
if (IS_ERR(imr)) {
err = PTR_ERR(imr);
goto out_umem;
}
imr->ibmr.pd = &pd->ibpd;
imr->mmkey.iova = 0;
imr->umem = &umem_odp->umem;
imr->ibmr.lkey = imr->mmkey.key;
imr->ibmr.rkey = imr->mmkey.key;
imr->ibmr.device = &dev->ib_dev;
imr->umem = &umem_odp->umem;
imr->is_odp_implicit = true;
xa_init(&imr->implicit_children);
err = mlx5_ib_update_xlt(imr, 0,
mlx5_imr_ksm_entries,
MLX5_KSM_PAGE_SHIFT,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE);
if (err)
goto out_mr;
err = mlx5r_store_odp_mkey(dev, &imr->mmkey);
if (err)
goto out_mr;
mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
return imr;
out_mr:
mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
mlx5_mr_cache_free(dev, imr);
out_umem:
ib_umem_odp_release(umem_odp);
return ERR_PTR(err);
}
void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
{
struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
struct mlx5_ib_dev *dev = mr_to_mdev(imr);
struct mlx5_ib_mr *mtt;
unsigned long idx;
xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
/*
* All work on the prefetch list must be completed, xa_erase() prevented
* new work from being created.
*/
mlx5r_deref_wait_odp_mkey(&imr->mmkey);
/*
* At this point it is forbidden for any other thread to enter
* pagefault_mr() on this imr. It is already forbidden to call
* pagefault_mr() on an implicit child. Due to this additions to
* implicit_children are prevented.
* In addition, any new call to destroy_unused_implicit_child_mr()
* may return immediately.
*/
/*
* Fence the imr before we destroy the children. This allows us to
* skip updating the XLT of the imr during destroy of the child mkey
* the imr points to.
*/
mlx5_mr_cache_invalidate(imr);
xa_for_each(&imr->implicit_children, idx, mtt) {
xa_erase(&imr->implicit_children, idx);
free_implicit_child_mr(mtt, false);
}
mlx5_mr_cache_free(dev, imr);
ib_umem_odp_release(odp_imr);
}
/**
* mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
* @mr: to fence
*
* On return no parallel threads will be touching this MR and no DMA will be
* active.
*/
void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
{
/* Prevent new page faults and prefetch requests from succeeding */
xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
/* Wait for all running page-fault handlers to finish. */
mlx5r_deref_wait_odp_mkey(&mr->mmkey);
dma_fence_odp_mr(mr);
}
/**
* mlx5_ib_fence_dmabuf_mr - Stop all access to the dmabuf MR
* @mr: to fence
*
* On return no parallel threads will be touching this MR and no DMA will be
* active.
*/
void mlx5_ib_fence_dmabuf_mr(struct mlx5_ib_mr *mr)
{
struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
/* Prevent new page faults and prefetch requests from succeeding */
xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
mlx5r_deref_wait_odp_mkey(&mr->mmkey);
dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
mlx5_mr_cache_invalidate(mr);
umem_dmabuf->private = NULL;
ib_umem_dmabuf_unmap_pages(umem_dmabuf);
dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
if (!mr->cache_ent) {
mlx5_core_destroy_mkey(mr_to_mdev(mr)->mdev, &mr->mmkey);
WARN_ON(mr->descs);
}
}
#define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
#define MLX5_PF_FLAGS_SNAPSHOT BIT(2)
#define MLX5_PF_FLAGS_ENABLE BIT(3)
static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
u64 user_va, size_t bcnt, u32 *bytes_mapped,
u32 flags)
{
int page_shift, ret, np;
bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
u64 access_mask;
u64 start_idx;
bool fault = !(flags & MLX5_PF_FLAGS_SNAPSHOT);
u32 xlt_flags = MLX5_IB_UPD_XLT_ATOMIC;
if (flags & MLX5_PF_FLAGS_ENABLE)
xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
page_shift = odp->page_shift;
start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
access_mask = ODP_READ_ALLOWED_BIT;
if (odp->umem.writable && !downgrade)
access_mask |= ODP_WRITE_ALLOWED_BIT;
np = ib_umem_odp_map_dma_and_lock(odp, user_va, bcnt, access_mask, fault);
if (np < 0)
return np;
/*
* No need to check whether the MTTs really belong to this MR, since
* ib_umem_odp_map_dma_and_lock already checks this.
*/
ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, xlt_flags);
mutex_unlock(&odp->umem_mutex);
if (ret < 0) {
if (ret != -EAGAIN)
mlx5_ib_err(mr_to_mdev(mr),
"Failed to update mkey page tables\n");
goto out;
}
if (bytes_mapped) {
u32 new_mappings = (np << page_shift) -
(user_va - round_down(user_va, 1 << page_shift));
*bytes_mapped += min_t(u32, new_mappings, bcnt);
}
return np << (page_shift - PAGE_SHIFT);
out:
return ret;
}
static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
struct ib_umem_odp *odp_imr, u64 user_va,
size_t bcnt, u32 *bytes_mapped, u32 flags)
{
unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
unsigned long upd_start_idx = end_idx + 1;
unsigned long upd_len = 0;
unsigned long npages = 0;
int err;
int ret;
if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
return -EFAULT;
/* Fault each child mr that intersects with our interval. */
while (bcnt) {
unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
struct ib_umem_odp *umem_odp;
struct mlx5_ib_mr *mtt;
u64 len;
xa_lock(&imr->implicit_children);
mtt = xa_load(&imr->implicit_children, idx);
if (unlikely(!mtt)) {
xa_unlock(&imr->implicit_children);
mtt = implicit_get_child_mr(imr, idx);
if (IS_ERR(mtt)) {
ret = PTR_ERR(mtt);
goto out;
}
upd_start_idx = min(upd_start_idx, idx);
upd_len = idx - upd_start_idx + 1;
} else {
refcount_inc(&mtt->mmkey.usecount);
xa_unlock(&imr->implicit_children);
}
umem_odp = to_ib_umem_odp(mtt->umem);
len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
user_va;
ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
bytes_mapped, flags);
mlx5r_deref_odp_mkey(&mtt->mmkey);
if (ret < 0)
goto out;
user_va += len;
bcnt -= len;
npages += ret;
}
ret = npages;
/*
* Any time the implicit_children are changed we must perform an
* update of the xlt before exiting to ensure the HW and the
* implicit_children remains synchronized.
*/
out:
if (likely(!upd_len))
return ret;
/*
* Notice this is not strictly ordered right, the KSM is updated after
* the implicit_children is updated, so a parallel page fault could
* see a MR that is not yet visible in the KSM. This is similar to a
* parallel page fault seeing a MR that is being concurrently removed
* from the KSM. Both of these improbable situations are resolved
* safely by resuming the HW and then taking another page fault. The
* next pagefault handler will see the new information.
*/
mutex_lock(&odp_imr->umem_mutex);
err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
mutex_unlock(&odp_imr->umem_mutex);
if (err) {
mlx5_ib_err(mr_to_mdev(imr), "Failed to update PAS\n");
return err;
}
return ret;
}
static int pagefault_dmabuf_mr(struct mlx5_ib_mr *mr, size_t bcnt,
u32 *bytes_mapped, u32 flags)
{
struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
u32 xlt_flags = 0;
int err;
unsigned int page_size;
if (flags & MLX5_PF_FLAGS_ENABLE)
xlt_flags |= MLX5_IB_UPD_XLT_ENABLE;
dma_resv_lock(umem_dmabuf->attach->dmabuf->resv, NULL);
err = ib_umem_dmabuf_map_pages(umem_dmabuf);
if (err) {
dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
return err;
}
page_size = mlx5_umem_find_best_pgsz(&umem_dmabuf->umem, mkc,
log_page_size, 0,
umem_dmabuf->umem.iova);
if (unlikely(page_size < PAGE_SIZE)) {
ib_umem_dmabuf_unmap_pages(umem_dmabuf);
err = -EINVAL;
} else {
err = mlx5_ib_update_mr_pas(mr, xlt_flags);
}
dma_resv_unlock(umem_dmabuf->attach->dmabuf->resv);
if (err)
return err;
if (bytes_mapped)
*bytes_mapped += bcnt;
return ib_umem_num_pages(mr->umem);
}
/*
* Returns:
* -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
* not accessible, or the MR is no longer valid.
* -EAGAIN/-ENOMEM: The operation should be retried
*
* -EINVAL/others: General internal malfunction
* >0: Number of pages mapped
*/
static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
u32 *bytes_mapped, u32 flags)
{
struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
if (unlikely(io_virt < mr->mmkey.iova))
return -EFAULT;
if (mr->umem->is_dmabuf)
return pagefault_dmabuf_mr(mr, bcnt, bytes_mapped, flags);
if (!odp->is_implicit_odp) {
u64 user_va;
if (check_add_overflow(io_virt - mr->mmkey.iova,
(u64)odp->umem.address, &user_va))
return -EFAULT;
if (unlikely(user_va >= ib_umem_end(odp) ||
ib_umem_end(odp) - user_va < bcnt))
return -EFAULT;
return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
flags);
}
return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
flags);
}
int mlx5_ib_init_odp_mr(struct mlx5_ib_mr *mr)
{
int ret;
ret = pagefault_real_mr(mr, to_ib_umem_odp(mr->umem), mr->umem->address,
mr->umem->length, NULL,
MLX5_PF_FLAGS_SNAPSHOT | MLX5_PF_FLAGS_ENABLE);
return ret >= 0 ? 0 : ret;
}
int mlx5_ib_init_dmabuf_mr(struct mlx5_ib_mr *mr)
{
int ret;
ret = pagefault_dmabuf_mr(mr, mr->umem->length, NULL,
MLX5_PF_FLAGS_ENABLE);
return ret >= 0 ? 0 : ret;
}
struct pf_frame {
struct pf_frame *next;
u32 key;
u64 io_virt;
size_t bcnt;
int depth;
};
static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
{
if (!mmkey)
return false;
if (mmkey->type == MLX5_MKEY_MW)
return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
return mmkey->key == key;
}
static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
{
struct mlx5_ib_mw *mw;
struct mlx5_ib_devx_mr *devx_mr;
if (mmkey->type == MLX5_MKEY_MW) {
mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
return mw->ndescs;
}
devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
mmkey);
return devx_mr->ndescs;
}
/*
* Handle a single data segment in a page-fault WQE or RDMA region.
*
* Returns number of OS pages retrieved on success. The caller may continue to
* the next data segment.
* Can return the following error codes:
* -EAGAIN to designate a temporary error. The caller will abort handling the
* page fault and resolve it.
* -EFAULT when there's an error mapping the requested pages. The caller will
* abort the page fault handling.
*/
static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
struct ib_pd *pd, u32 key,
u64 io_virt, size_t bcnt,
u32 *bytes_committed,
u32 *bytes_mapped)
{
int npages = 0, ret, i, outlen, cur_outlen = 0, depth = 0;
struct pf_frame *head = NULL, *frame;
struct mlx5_core_mkey *mmkey;
struct mlx5_ib_mr *mr;
struct mlx5_klm *pklm;
u32 *out = NULL;
size_t offset;
int ndescs;
io_virt += *bytes_committed;
bcnt -= *bytes_committed;
next_mr:
xa_lock(&dev->odp_mkeys);
mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
if (!mmkey) {
xa_unlock(&dev->odp_mkeys);
mlx5_ib_dbg(
dev,
"skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
key);
if (bytes_mapped)
*bytes_mapped += bcnt;
/*
* The user could specify a SGL with multiple lkeys and only
* some of them are ODP. Treat the non-ODP ones as fully
* faulted.
*/
ret = 0;
goto end;
}
refcount_inc(&mmkey->usecount);
xa_unlock(&dev->odp_mkeys);
if (!mkey_is_eq(mmkey, key)) {
mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
ret = -EFAULT;
goto end;
}
switch (mmkey->type) {
case MLX5_MKEY_MR:
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
if (ret < 0)
goto end;
mlx5_update_odp_stats(mr, faults, ret);
npages += ret;
ret = 0;
break;
case MLX5_MKEY_MW:
case MLX5_MKEY_INDIRECT_DEVX:
ndescs = get_indirect_num_descs(mmkey);
if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
mlx5_ib_dbg(dev, "indirection level exceeded\n");
ret = -EFAULT;
goto end;
}
outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
sizeof(*pklm) * (ndescs - 2);
if (outlen > cur_outlen) {
kfree(out);
out = kzalloc(outlen, GFP_KERNEL);
if (!out) {
ret = -ENOMEM;
goto end;
}
cur_outlen = outlen;
}
pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
bsf0_klm0_pas_mtt0_1);
ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
if (ret)
goto end;
offset = io_virt - MLX5_GET64(query_mkey_out, out,
memory_key_mkey_entry.start_addr);
for (i = 0; bcnt && i < ndescs; i++, pklm++) {
if (offset >= be32_to_cpu(pklm->bcount)) {
offset -= be32_to_cpu(pklm->bcount);
continue;
}
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame) {
ret = -ENOMEM;
goto end;
}
frame->key = be32_to_cpu(pklm->key);
frame->io_virt = be64_to_cpu(pklm->va) + offset;
frame->bcnt = min_t(size_t, bcnt,
be32_to_cpu(pklm->bcount) - offset);
frame->depth = depth + 1;
frame->next = head;
head = frame;
bcnt -= frame->bcnt;
offset = 0;
}
break;
default:
mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
ret = -EFAULT;
goto end;
}
if (head) {
frame = head;
head = frame->next;
key = frame->key;
io_virt = frame->io_virt;
bcnt = frame->bcnt;
depth = frame->depth;
kfree(frame);
mlx5r_deref_odp_mkey(mmkey);
goto next_mr;
}
end:
if (mmkey)
mlx5r_deref_odp_mkey(mmkey);
while (head) {
frame = head;
head = frame->next;
kfree(frame);
}
kfree(out);
*bytes_committed = 0;
return ret ? ret : npages;
}
/*
* Parse a series of data segments for page fault handling.
*
* @dev: Pointer to mlx5 IB device
* @pfault: contains page fault information.
* @wqe: points at the first data segment in the WQE.
* @wqe_end: points after the end of the WQE.
* @bytes_mapped: receives the number of bytes that the function was able to
* map. This allows the caller to decide intelligently whether
* enough memory was mapped to resolve the page fault
* successfully (e.g. enough for the next MTU, or the entire
* WQE).
* @total_wqe_bytes: receives the total data size of this WQE in bytes (minus
* the committed bytes).
* @receive_queue: receive WQE end of sg list
*
* Returns the number of pages loaded if positive, zero for an empty WQE, or a
* negative error code.
*/
static int pagefault_data_segments(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
void *wqe,
void *wqe_end, u32 *bytes_mapped,
u32 *total_wqe_bytes, bool receive_queue)
{
int ret = 0, npages = 0;
u64 io_virt;
u32 key;
u32 byte_count;
size_t bcnt;
int inline_segment;
if (bytes_mapped)
*bytes_mapped = 0;
if (total_wqe_bytes)
*total_wqe_bytes = 0;
while (wqe < wqe_end) {
struct mlx5_wqe_data_seg *dseg = wqe;
io_virt = be64_to_cpu(dseg->addr);
key = be32_to_cpu(dseg->lkey);
byte_count = be32_to_cpu(dseg->byte_count);
inline_segment = !!(byte_count & MLX5_INLINE_SEG);
bcnt = byte_count & ~MLX5_INLINE_SEG;
if (inline_segment) {
bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
16);
} else {
wqe += sizeof(*dseg);
}
/* receive WQE end of sg list. */
if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
io_virt == 0)
break;
if (!inline_segment && total_wqe_bytes) {
*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
pfault->bytes_committed);
}
/* A zero length data segment designates a length of 2GB. */
if (bcnt == 0)
bcnt = 1U << 31;
if (inline_segment || bcnt <= pfault->bytes_committed) {
pfault->bytes_committed -=
min_t(size_t, bcnt,
pfault->bytes_committed);
continue;
}
ret = pagefault_single_data_segment(dev, NULL, key,
io_virt, bcnt,
&pfault->bytes_committed,
bytes_mapped);
if (ret < 0)
break;
npages += ret;
}
return ret < 0 ? ret : npages;
}
/*
* Parse initiator WQE. Advances the wqe pointer to point at the
* scatter-gather list, and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_initiator_pfault_handler(
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
{
struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
u16 wqe_index = pfault->wqe.wqe_index;
struct mlx5_base_av *av;
unsigned ds, opcode;
u32 qpn = qp->trans_qp.base.mqp.qpn;
ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
ds, wqe_length);
return -EFAULT;
}
if (ds == 0) {
mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
wqe_index, qpn);
return -EFAULT;
}
*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
*wqe += sizeof(*ctrl);
opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
MLX5_WQE_CTRL_OPCODE_MASK;
if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
*wqe += sizeof(struct mlx5_wqe_xrc_seg);
if (qp->type == IB_QPT_UD || qp->type == MLX5_IB_QPT_DCI) {
av = *wqe;
if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
*wqe += sizeof(struct mlx5_av);
else
*wqe += sizeof(struct mlx5_base_av);
}
switch (opcode) {
case MLX5_OPCODE_RDMA_WRITE:
case MLX5_OPCODE_RDMA_WRITE_IMM:
case MLX5_OPCODE_RDMA_READ:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
break;
case MLX5_OPCODE_ATOMIC_CS:
case MLX5_OPCODE_ATOMIC_FA:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
*wqe += sizeof(struct mlx5_wqe_atomic_seg);
break;
}
return 0;
}
/*
* Parse responder WQE and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
struct mlx5_ib_srq *srq,
void **wqe, void **wqe_end,
int wqe_length)
{
int wqe_size = 1 << srq->msrq.wqe_shift;
if (wqe_size > wqe_length) {
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
return -EFAULT;
}
*wqe_end = *wqe + wqe_size;
*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
return 0;
}
static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
struct mlx5_ib_qp *qp,
void *wqe, void **wqe_end,
int wqe_length)
{
struct mlx5_ib_wq *wq = &qp->rq;
int wqe_size = 1 << wq->wqe_shift;
if (qp->flags_en & MLX5_QP_FLAG_SIGNATURE) {
mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
return -EFAULT;
}
if (wqe_size > wqe_length) {
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
return -EFAULT;
}
*wqe_end = wqe + wqe_size;
return 0;
}
static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
u32 wq_num, int pf_type)
{
struct mlx5_core_rsc_common *common = NULL;
struct mlx5_core_srq *srq;
switch (pf_type) {
case MLX5_WQE_PF_TYPE_RMP:
srq = mlx5_cmd_get_srq(dev, wq_num);
if (srq)
common = &srq->common;
break;
case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
case MLX5_WQE_PF_TYPE_RESP:
case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
common = mlx5_core_res_hold(dev, wq_num, MLX5_RES_QP);
break;
default:
break;
}
return common;
}
static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
{
struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
return to_mibqp(mqp);
}
static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
{
struct mlx5_core_srq *msrq =
container_of(res, struct mlx5_core_srq, common);
return to_mibsrq(msrq);
}
static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
u16 wqe_index = pfault->wqe.wqe_index;
void *wqe, *wqe_start = NULL, *wqe_end = NULL;
u32 bytes_mapped, total_wqe_bytes;
struct mlx5_core_rsc_common *res;
int resume_with_error = 1;
struct mlx5_ib_qp *qp;
size_t bytes_copied;
int ret = 0;
res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
if (!res) {
mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
return;
}
if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
res->res != MLX5_RES_XSRQ) {
mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
pfault->type);
goto resolve_page_fault;
}
wqe_start = (void *)__get_free_page(GFP_KERNEL);
if (!wqe_start) {
mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
goto resolve_page_fault;
}
wqe = wqe_start;
qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
if (qp && sq) {
ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_initiator_pfault_handler(
dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
} else if (qp && !sq) {
ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_responder_pfault_handler_rq(
dev, qp, wqe, &wqe_end, bytes_copied);
} else if (!qp) {
struct mlx5_ib_srq *srq = res_to_srq(res);
ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_responder_pfault_handler_srq(
dev, srq, &wqe, &wqe_end, bytes_copied);
}
if (ret < 0 || wqe >= wqe_end)
goto resolve_page_fault;
ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
&total_wqe_bytes, !sq);
if (ret == -EAGAIN)
goto out;
if (ret < 0 || total_wqe_bytes > bytes_mapped)
goto resolve_page_fault;
out:
ret = 0;
resume_with_error = 0;
read_user:
if (ret)
mlx5_ib_err(
dev,
"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
ret, wqe_index, pfault->token);
resolve_page_fault:
mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
pfault->wqe.wq_num, resume_with_error,
pfault->type);
mlx5_core_res_put(res);
free_page((unsigned long)wqe_start);
}
static int pages_in_range(u64 address, u32 length)
{
return (ALIGN(address + length, PAGE_SIZE) -
(address & PAGE_MASK)) >> PAGE_SHIFT;
}
static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
u64 address;
u32 length;
u32 prefetch_len = pfault->bytes_committed;
int prefetch_activated = 0;
u32 rkey = pfault->rdma.r_key;
int ret;
/* The RDMA responder handler handles the page fault in two parts.
* First it brings the necessary pages for the current packet
* (and uses the pfault context), and then (after resuming the QP)
* prefetches more pages. The second operation cannot use the pfault
* context and therefore uses the dummy_pfault context allocated on
* the stack */
pfault->rdma.rdma_va += pfault->bytes_committed;
pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
pfault->rdma.rdma_op_len);
pfault->bytes_committed = 0;
address = pfault->rdma.rdma_va;
length = pfault->rdma.rdma_op_len;
/* For some operations, the hardware cannot tell the exact message
* length, and in those cases it reports zero. Use prefetch
* logic. */
if (length == 0) {
prefetch_activated = 1;
length = pfault->rdma.packet_size;
prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
}
ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
&pfault->bytes_committed, NULL);
if (ret == -EAGAIN) {
/* We're racing with an invalidation, don't prefetch */
prefetch_activated = 0;
} else if (ret < 0 || pages_in_range(address, length) > ret) {
mlx5_ib_page_fault_resume(dev, pfault, 1);
if (ret != -ENOENT)
mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
ret, pfault->token, pfault->type);
return;
}
mlx5_ib_page_fault_resume(dev, pfault, 0);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
pfault->token, pfault->type,
prefetch_activated);
/* At this point, there might be a new pagefault already arriving in
* the eq, switch to the dummy pagefault for the rest of the
* processing. We're still OK with the objects being alive as the
* work-queue is being fenced. */
if (prefetch_activated) {
u32 bytes_committed = 0;
ret = pagefault_single_data_segment(dev, NULL, rkey, address,
prefetch_len,
&bytes_committed, NULL);
if (ret < 0 && ret != -EAGAIN) {
mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
ret, pfault->token, address, prefetch_len);
}
}
}
static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
{
u8 event_subtype = pfault->event_subtype;
switch (event_subtype) {
case MLX5_PFAULT_SUBTYPE_WQE:
mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
break;
case MLX5_PFAULT_SUBTYPE_RDMA:
mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
break;
default:
mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
event_subtype);
mlx5_ib_page_fault_resume(dev, pfault, 1);
}
}
static void mlx5_ib_eqe_pf_action(struct work_struct *work)
{
struct mlx5_pagefault *pfault = container_of(work,
struct mlx5_pagefault,
work);
struct mlx5_ib_pf_eq *eq = pfault->eq;
mlx5_ib_pfault(eq->dev, pfault);
mempool_free(pfault, eq->pool);
}
static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
{
struct mlx5_eqe_page_fault *pf_eqe;
struct mlx5_pagefault *pfault;
struct mlx5_eqe *eqe;
int cc = 0;
while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
if (!pfault) {
schedule_work(&eq->work);
break;
}
pf_eqe = &eqe->data.page_fault;
pfault->event_subtype = eqe->sub_type;
pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
eqe->sub_type, pfault->bytes_committed);
switch (eqe->sub_type) {
case MLX5_PFAULT_SUBTYPE_RDMA:
/* RDMA based event */
pfault->type =
be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
pfault->token =
be32_to_cpu(pf_eqe->rdma.pftype_token) &
MLX5_24BIT_MASK;
pfault->rdma.r_key =
be32_to_cpu(pf_eqe->rdma.r_key);
pfault->rdma.packet_size =
be16_to_cpu(pf_eqe->rdma.packet_length);
pfault->rdma.rdma_op_len =
be32_to_cpu(pf_eqe->rdma.rdma_op_len);
pfault->rdma.rdma_va =
be64_to_cpu(pf_eqe->rdma.rdma_va);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
pfault->type, pfault->token,
pfault->rdma.r_key);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
pfault->rdma.rdma_op_len,
pfault->rdma.rdma_va);
break;
case MLX5_PFAULT_SUBTYPE_WQE:
/* WQE based event */
pfault->type =
(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
pfault->token =
be32_to_cpu(pf_eqe->wqe.token);
pfault->wqe.wq_num =
be32_to_cpu(pf_eqe->wqe.pftype_wq) &
MLX5_24BIT_MASK;
pfault->wqe.wqe_index =
be16_to_cpu(pf_eqe->wqe.wqe_index);
pfault->wqe.packet_size =
be16_to_cpu(pf_eqe->wqe.packet_length);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
pfault->type, pfault->token,
pfault->wqe.wq_num,
pfault->wqe.wqe_index);
break;
default:
mlx5_ib_warn(eq->dev,
"Unsupported page fault event sub-type: 0x%02hhx\n",
eqe->sub_type);
/* Unsupported page faults should still be
* resolved by the page fault handler
*/
}
pfault->eq = eq;
INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
queue_work(eq->wq, &pfault->work);
cc = mlx5_eq_update_cc(eq->core, ++cc);
}
mlx5_eq_update_ci(eq->core, cc, 1);
}
static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
void *data)
{
struct mlx5_ib_pf_eq *eq =
container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
unsigned long flags;
if (spin_trylock_irqsave(&eq->lock, flags)) {
mlx5_ib_eq_pf_process(eq);
spin_unlock_irqrestore(&eq->lock, flags);
} else {
schedule_work(&eq->work);
}
return IRQ_HANDLED;
}
/* mempool_refill() was proposed but unfortunately wasn't accepted
* http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
* Cheap workaround.
*/
static void mempool_refill(mempool_t *pool)
{
while (pool->curr_nr < pool->min_nr)
mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
}
static void mlx5_ib_eq_pf_action(struct work_struct *work)
{
struct mlx5_ib_pf_eq *eq =
container_of(work, struct mlx5_ib_pf_eq, work);
mempool_refill(eq->pool);
spin_lock_irq(&eq->lock);
mlx5_ib_eq_pf_process(eq);
spin_unlock_irq(&eq->lock);
}
enum {
MLX5_IB_NUM_PF_EQE = 0x1000,
MLX5_IB_NUM_PF_DRAIN = 64,
};
static int
mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
{
struct mlx5_eq_param param = {};
int err;
INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
spin_lock_init(&eq->lock);
eq->dev = dev;
eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
sizeof(struct mlx5_pagefault));
if (!eq->pool)
return -ENOMEM;
eq->wq = alloc_workqueue("mlx5_ib_page_fault",
WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
MLX5_NUM_CMD_EQE);
if (!eq->wq) {
err = -ENOMEM;
goto err_mempool;
}
eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
param = (struct mlx5_eq_param) {
.irq_index = 0,
.nent = MLX5_IB_NUM_PF_EQE,
};
param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
eq->core = mlx5_eq_create_generic(dev->mdev, &param);
if (IS_ERR(eq->core)) {
err = PTR_ERR(eq->core);
goto err_wq;
}
err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
if (err) {
mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
goto err_eq;
}
return 0;
err_eq:
mlx5_eq_destroy_generic(dev->mdev, eq->core);
err_wq:
destroy_workqueue(eq->wq);
err_mempool:
mempool_destroy(eq->pool);
return err;
}
static int
mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
{
int err;
mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
cancel_work_sync(&eq->work);
destroy_workqueue(eq->wq);
mempool_destroy(eq->pool);
return err;
}
void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
{
if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
return;
switch (ent->order - 2) {
case MLX5_IMR_MTT_CACHE_ENTRY:
ent->page = PAGE_SHIFT;
ent->xlt = MLX5_IMR_MTT_ENTRIES *
sizeof(struct mlx5_mtt) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
ent->limit = 0;
break;
case MLX5_IMR_KSM_CACHE_ENTRY:
ent->page = MLX5_KSM_PAGE_SHIFT;
ent->xlt = mlx5_imr_ksm_entries *
sizeof(struct mlx5_klm) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
ent->limit = 0;
break;
}
}
static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
.advise_mr = mlx5_ib_advise_mr,
};
int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
{
int ret = 0;
if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
return ret;
ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
if (ret) {
mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
return ret;
}
}
ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
return ret;
}
void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
{
if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
return;
mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
}
int mlx5_ib_odp_init(void)
{
mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
MLX5_IMR_MTT_BITS);
return 0;
}
struct prefetch_mr_work {
struct work_struct work;
u32 pf_flags;
u32 num_sge;
struct {
u64 io_virt;
struct mlx5_ib_mr *mr;
size_t length;
} frags[];
};
static void destroy_prefetch_work(struct prefetch_mr_work *work)
{
u32 i;
for (i = 0; i < work->num_sge; ++i)
mlx5r_deref_odp_mkey(&work->frags[i].mr->mmkey);
kvfree(work);
}
static struct mlx5_ib_mr *
get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
u32 lkey)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_core_mkey *mmkey;
struct mlx5_ib_mr *mr = NULL;
xa_lock(&dev->odp_mkeys);
mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
goto end;
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
if (mr->ibmr.pd != pd) {
mr = NULL;
goto end;
}
/* prefetch with write-access must be supported by the MR */
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
!mr->umem->writable) {
mr = NULL;
goto end;
}
refcount_inc(&mmkey->usecount);
end:
xa_unlock(&dev->odp_mkeys);
return mr;
}
static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
{
struct prefetch_mr_work *work =
container_of(w, struct prefetch_mr_work, work);
u32 bytes_mapped = 0;
int ret;
u32 i;
RDMA/mlx5: Add missing srcu_read_lock in ODP implicit flow According to the locking scheme, mlx5_ib_update_xlt() should be called with srcu_read_lock(dev->odp->srcu). Prefetch missed this. This fixes the below WARN from lockdep_assert_held(): WARNING: CPU: 1 PID: 1130 at drivers/infiniband/hw/mlx5/odp.c:132 mlx5_odp_populate_xlt+0x175/0x180 [mlx5_ib] Modules linked in: xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 br_netfilter overlay ib_srp scsi_transport_srp rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core mlx5_core mlxfw ptp pps_core CPU: 1 PID: 1130 Comm: kworker/u16:11 Tainted: G W 5.8.0-rc5_for_upstream_debug_2020_07_13_11_04 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: events_unbound mlx5_ib_prefetch_mr_work [mlx5_ib] RIP: 0010:mlx5_odp_populate_xlt+0x175/0x180 [mlx5_ib] Code: 08 e2 85 c0 0f 84 65 ff ff ff 49 8b 87 60 01 00 00 be ff ff ff ff 48 8d b8 b0 39 00 00 e8 93 e0 50 e1 85 c0 0f 85 45 ff ff ff <0f> 0b e9 3e ff ff ff 0f 0b eb c7 0f 1f 44 00 00 48 8b 87 98 0f 00 RSP: 0018:ffff88840f44fc68 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88840cc9d000 RCX: ffff88840efcd940 RDX: 0000000000000000 RSI: ffff88844871b9b0 RDI: ffff88840efce100 RBP: ffff88840cc9d040 R08: 0000000000000040 R09: 0000000000000001 R10: ffff88846ced3068 R11: 0000000000000000 R12: 00000000000156ec R13: 0000000000000004 R14: 0000000000000004 R15: ffff888439941000 FS: 0000000000000000(0000) GS:ffff88846fa80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f8536d12430 CR3: 0000000437a5e006 CR4: 0000000000360ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_update_xlt+0x37c/0x7c0 [mlx5_ib] pagefault_mr+0x315/0x440 [mlx5_ib] mlx5_ib_prefetch_mr_work+0x56/0xa0 [mlx5_ib] process_one_work+0x215/0x5c0 worker_thread+0x3c/0x380 ? process_one_work+0x5c0/0x5c0 kthread+0x133/0x150 ? kthread_park+0x90/0x90 ret_from_fork+0x1f/0x30 Hold the SRCU during prefetch, even though it strictly isn't needed since prefetch is holding the num_deferred_work it does make it easier to reason about. Fixes: 5256edcb98a1 ("RDMA/mlx5: Rework implicit ODP destroy") Link: https://lore.kernel.org/r/20200719065747.131157-1-leon@kernel.org Signed-off-by: Maor Gottlieb <maorg@mellanox.com> Signed-off-by: Leon Romanovsky <leonro@mellanox.com> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2020-07-19 14:57:47 +08:00
/* We rely on IB/core that work is executed if we have num_sge != 0 only. */
WARN_ON(!work->num_sge);
for (i = 0; i < work->num_sge; ++i) {
ret = pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
work->frags[i].length, &bytes_mapped,
work->pf_flags);
if (ret <= 0)
continue;
mlx5_update_odp_stats(work->frags[i].mr, prefetch, ret);
}
destroy_prefetch_work(work);
}
static bool init_prefetch_work(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 pf_flags, struct prefetch_mr_work *work,
struct ib_sge *sg_list, u32 num_sge)
{
u32 i;
INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
work->pf_flags = pf_flags;
for (i = 0; i < num_sge; ++i) {
work->frags[i].io_virt = sg_list[i].addr;
work->frags[i].length = sg_list[i].length;
work->frags[i].mr =
get_prefetchable_mr(pd, advice, sg_list[i].lkey);
if (!work->frags[i].mr) {
work->num_sge = i;
return false;
}
}
work->num_sge = num_sge;
return true;
}
static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 pf_flags, struct ib_sge *sg_list,
u32 num_sge)
{
u32 bytes_mapped = 0;
int ret = 0;
u32 i;
for (i = 0; i < num_sge; ++i) {
struct mlx5_ib_mr *mr;
mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
if (!mr)
return -ENOENT;
ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
&bytes_mapped, pf_flags);
if (ret < 0) {
mlx5r_deref_odp_mkey(&mr->mmkey);
return ret;
}
mlx5_update_odp_stats(mr, prefetch, ret);
mlx5r_deref_odp_mkey(&mr->mmkey);
}
return 0;
}
int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 flags, struct ib_sge *sg_list, u32 num_sge)
{
u32 pf_flags = 0;
struct prefetch_mr_work *work;
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
pf_flags |= MLX5_PF_FLAGS_SNAPSHOT;
if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
num_sge);
work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
if (!work)
return -ENOMEM;
if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
destroy_prefetch_work(work);
return -EINVAL;
}
queue_work(system_unbound_wq, &work->work);
return 0;
}