linux/drivers/block/aoe/aoedev.c

532 lines
11 KiB
C
Raw Normal View History

/* Copyright (c) 2013 Coraid, Inc. See COPYING for GPL terms. */
/*
* aoedev.c
* AoE device utility functions; maintains device list.
*/
#include <linux/hdreg.h>
#include <linux/blk-mq.h>
#include <linux/netdevice.h>
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
#include <linux/delay.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/kdev_t.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include "aoe.h"
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
static void freetgt(struct aoedev *d, struct aoetgt *t);
static void skbpoolfree(struct aoedev *d);
static int aoe_dyndevs = 1;
module_param(aoe_dyndevs, int, 0644);
MODULE_PARM_DESC(aoe_dyndevs, "Use dynamic minor numbers for devices.");
static struct aoedev *devlist;
static DEFINE_SPINLOCK(devlist_lock);
/* Because some systems will have one, many, or no
* - partitions,
* - slots per shelf,
* - or shelves,
* we need some flexibility in the way the minor numbers
* are allocated. So they are dynamic.
*/
#define N_DEVS ((1U<<MINORBITS)/AOE_PARTITIONS)
static DEFINE_SPINLOCK(used_minors_lock);
static DECLARE_BITMAP(used_minors, N_DEVS);
static int
minor_get_dyn(ulong *sysminor)
{
ulong flags;
ulong n;
int error = 0;
spin_lock_irqsave(&used_minors_lock, flags);
n = find_first_zero_bit(used_minors, N_DEVS);
if (n < N_DEVS)
set_bit(n, used_minors);
else
error = -1;
spin_unlock_irqrestore(&used_minors_lock, flags);
*sysminor = n * AOE_PARTITIONS;
return error;
}
static int
minor_get_static(ulong *sysminor, ulong aoemaj, int aoemin)
{
ulong flags;
ulong n;
int error = 0;
enum {
/* for backwards compatibility when !aoe_dyndevs,
* a static number of supported slots per shelf */
NPERSHELF = 16,
};
if (aoemin >= NPERSHELF) {
pr_err("aoe: %s %d slots per shelf\n",
"static minor device numbers support only",
NPERSHELF);
error = -1;
goto out;
}
n = aoemaj * NPERSHELF + aoemin;
if (n >= N_DEVS) {
pr_err("aoe: %s with e%ld.%d\n",
"cannot use static minor device numbers",
aoemaj, aoemin);
error = -1;
goto out;
}
spin_lock_irqsave(&used_minors_lock, flags);
if (test_bit(n, used_minors)) {
pr_err("aoe: %s %lu\n",
"existing device already has static minor number",
n);
error = -1;
} else
set_bit(n, used_minors);
spin_unlock_irqrestore(&used_minors_lock, flags);
*sysminor = n * AOE_PARTITIONS;
out:
return error;
}
static int
minor_get(ulong *sysminor, ulong aoemaj, int aoemin)
{
if (aoe_dyndevs)
return minor_get_dyn(sysminor);
else
return minor_get_static(sysminor, aoemaj, aoemin);
}
static void
minor_free(ulong minor)
{
ulong flags;
minor /= AOE_PARTITIONS;
BUG_ON(minor >= N_DEVS);
spin_lock_irqsave(&used_minors_lock, flags);
BUG_ON(!test_bit(minor, used_minors));
clear_bit(minor, used_minors);
spin_unlock_irqrestore(&used_minors_lock, flags);
}
/*
* Users who grab a pointer to the device with aoedev_by_aoeaddr
* automatically get a reference count and must be responsible
* for performing a aoedev_put. With the addition of async
* kthread processing I'm no longer confident that we can
* guarantee consistency in the face of device flushes.
*
* For the time being, we only bother to add extra references for
* frames sitting on the iocq. When the kthreads finish processing
* these frames, they will aoedev_put the device.
*/
void
aoedev_put(struct aoedev *d)
{
ulong flags;
spin_lock_irqsave(&devlist_lock, flags);
d->ref--;
spin_unlock_irqrestore(&devlist_lock, flags);
}
static void
dummy_timer(struct timer_list *t)
{
struct aoedev *d;
d = from_timer(d, t, timer);
if (d->flags & DEVFL_TKILL)
return;
d->timer.expires = jiffies + HZ;
add_timer(&d->timer);
}
static void
aoe_failip(struct aoedev *d)
{
struct request *rq;
struct aoe_req *req;
struct bio *bio;
aoe_failbuf(d, d->ip.buf);
rq = d->ip.rq;
if (rq == NULL)
return;
req = blk_mq_rq_to_pdu(rq);
while ((bio = d->ip.nxbio)) {
bio->bi_status = BLK_STS_IOERR;
d->ip.nxbio = bio->bi_next;
req->nr_bios--;
}
if (!req->nr_bios)
aoe_end_request(d, rq, 0);
}
static void
downdev_frame(struct list_head *pos)
{
struct frame *f;
f = list_entry(pos, struct frame, head);
list_del(pos);
if (f->buf) {
f->buf->nframesout--;
aoe_failbuf(f->t->d, f->buf);
}
aoe_freetframe(f);
}
void
aoedev_downdev(struct aoedev *d)
{
struct aoetgt *t, **tt, **te;
struct list_head *head, *pos, *nx;
int i;
d->flags &= ~DEVFL_UP;
/* clean out active and to-be-retransmitted buffers */
for (i = 0; i < NFACTIVE; i++) {
head = &d->factive[i];
list_for_each_safe(pos, nx, head)
downdev_frame(pos);
}
head = &d->rexmitq;
list_for_each_safe(pos, nx, head)
downdev_frame(pos);
/* reset window dressings */
tt = d->targets;
te = tt + d->ntargets;
for (; tt < te && (t = *tt); tt++) {
aoecmd_wreset(t);
t->nout = 0;
}
/* clean out the in-process request (if any) */
aoe_failip(d);
/* fast fail all pending I/O */
if (d->blkq) {
/* UP is cleared, freeze+quiesce to insure all are errored */
blk_mq_freeze_queue(d->blkq);
blk_mq_quiesce_queue(d->blkq);
blk_mq_unquiesce_queue(d->blkq);
blk_mq_unfreeze_queue(d->blkq);
}
if (d->gd)
set_capacity(d->gd, 0);
}
/* return whether the user asked for this particular
* device to be flushed
*/
static int
user_req(char *s, size_t slen, struct aoedev *d)
{
const char *p;
size_t lim;
if (!d->gd)
return 0;
p = kbasename(d->gd->disk_name);
lim = sizeof(d->gd->disk_name);
lim -= p - d->gd->disk_name;
if (slen < lim)
lim = slen;
return !strncmp(s, p, lim);
}
static void
freedev(struct aoedev *d)
{
struct aoetgt **t, **e;
int freeing = 0;
unsigned long flags;
spin_lock_irqsave(&d->lock, flags);
if (d->flags & DEVFL_TKILL
&& !(d->flags & DEVFL_FREEING)) {
d->flags |= DEVFL_FREEING;
freeing = 1;
}
spin_unlock_irqrestore(&d->lock, flags);
if (!freeing)
return;
del_timer_sync(&d->timer);
if (d->gd) {
aoedisk_rm_debugfs(d);
del_gendisk(d->gd);
blk_cleanup_disk(d->gd);
blk_mq_free_tag_set(&d->tag_set);
}
t = d->targets;
e = t + d->ntargets;
for (; t < e && *t; t++)
freetgt(d, *t);
mempool_destroy(d->bufpool);
skbpoolfree(d);
minor_free(d->sysminor);
spin_lock_irqsave(&d->lock, flags);
d->flags |= DEVFL_FREED;
spin_unlock_irqrestore(&d->lock, flags);
}
enum flush_parms {
NOT_EXITING = 0,
EXITING = 1,
};
static int
flush(const char __user *str, size_t cnt, int exiting)
{
ulong flags;
struct aoedev *d, **dd;
char buf[16];
int all = 0;
int specified = 0; /* flush a specific device */
unsigned int skipflags;
skipflags = DEVFL_GDALLOC | DEVFL_NEWSIZE | DEVFL_TKILL;
if (!exiting && cnt >= 3) {
if (cnt > sizeof buf)
cnt = sizeof buf;
if (copy_from_user(buf, str, cnt))
return -EFAULT;
all = !strncmp(buf, "all", 3);
if (!all)
specified = 1;
}
flush_scheduled_work();
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
/* pass one: do aoedev_downdev, which might sleep */
restart1:
spin_lock_irqsave(&devlist_lock, flags);
for (d = devlist; d; d = d->next) {
spin_lock(&d->lock);
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
if (d->flags & DEVFL_TKILL)
goto cont;
if (exiting) {
/* unconditionally take each device down */
} else if (specified) {
if (!user_req(buf, cnt, d))
goto cont;
} else if ((!all && (d->flags & DEVFL_UP))
|| d->flags & skipflags
|| d->nopen
|| d->ref)
goto cont;
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
spin_unlock(&d->lock);
spin_unlock_irqrestore(&devlist_lock, flags);
aoedev_downdev(d);
d->flags |= DEVFL_TKILL;
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
goto restart1;
cont:
spin_unlock(&d->lock);
}
spin_unlock_irqrestore(&devlist_lock, flags);
/* pass two: call freedev, which might sleep,
* for aoedevs marked with DEVFL_TKILL
*/
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
restart2:
spin_lock_irqsave(&devlist_lock, flags);
for (d = devlist; d; d = d->next) {
spin_lock(&d->lock);
if (d->flags & DEVFL_TKILL
&& !(d->flags & DEVFL_FREEING)) {
spin_unlock(&d->lock);
spin_unlock_irqrestore(&devlist_lock, flags);
freedev(d);
block: aoe: Fix kernel crash due to atomic sleep when exiting Since commit 3582dd291788 ("aoe: convert aoeblk to blk-mq"), aoedev_downdev has had the possibility of sleeping and causing the following crash. BUG: scheduling while atomic: rmmod/2242/0x00000003 Modules linked in: aoe Preemption disabled at: [<ffffffffc01d95e5>] flush+0x95/0x4a0 [aoe] CPU: 7 PID: 2242 Comm: rmmod Tainted: G I 5.2.3 #1 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 Call Trace: dump_stack+0x4f/0x6a ? flush+0x95/0x4a0 [aoe] __schedule_bug.cold+0x44/0x54 __schedule+0x44f/0x680 schedule+0x44/0xd0 blk_mq_freeze_queue_wait+0x46/0xb0 ? wait_woken+0x80/0x80 blk_mq_freeze_queue+0x1b/0x20 aoedev_downdev+0x111/0x160 [aoe] flush+0xff/0x4a0 [aoe] aoedev_exit+0x23/0x30 [aoe] aoe_exit+0x35/0x948 [aoe] __se_sys_delete_module+0x183/0x210 __x64_sys_delete_module+0x16/0x20 do_syscall_64+0x4d/0x130 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f24e0043b07 Code: 73 01 c3 48 8b 0d 89 73 0b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 59 73 0b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe18f7f1e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f24e0043b07 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000555c3ecf87c8 RBP: 00007ffe18f7f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f24e00b4ac0 R11: 0000000000000206 R12: 00007ffe18f7f238 R13: 00007ffe18f7f410 R14: 00007ffe18f80e73 R15: 0000555c3ecf8760 This patch, handling in the same way of pass two, unlocks the locks and restart pass one after aoedev_downdev is done. Fixes: 3582dd291788 ("aoe: convert aoeblk to blk-mq") Signed-off-by: He Zhe <zhe.he@windriver.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-08 11:09:54 +08:00
goto restart2;
}
spin_unlock(&d->lock);
}
/* pass three: remove aoedevs marked with DEVFL_FREED */
for (dd = &devlist, d = *dd; d; d = *dd) {
struct aoedev *doomed = NULL;
spin_lock(&d->lock);
if (d->flags & DEVFL_FREED) {
*dd = d->next;
doomed = d;
} else {
dd = &d->next;
}
spin_unlock(&d->lock);
if (doomed)
kfree(doomed->targets);
kfree(doomed);
}
spin_unlock_irqrestore(&devlist_lock, flags);
return 0;
}
int
aoedev_flush(const char __user *str, size_t cnt)
{
return flush(str, cnt, NOT_EXITING);
}
/* This has been confirmed to occur once with Tms=3*1000 due to the
* driver changing link and not processing its transmit ring. The
* problem is hard enough to solve by returning an error that I'm
* still punting on "solving" this.
*/
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
static void
skbfree(struct sk_buff *skb)
{
enum { Sms = 250, Tms = 30 * 1000};
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
int i = Tms / Sms;
if (skb == NULL)
return;
while (atomic_read(&skb_shinfo(skb)->dataref) != 1 && i-- > 0)
msleep(Sms);
if (i < 0) {
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
printk(KERN_ERR
"aoe: %s holds ref: %s\n",
skb->dev ? skb->dev->name : "netif",
"cannot free skb -- memory leaked.");
return;
}
skb->truesize -= skb->data_len;
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
skb_shinfo(skb)->nr_frags = skb->data_len = 0;
skb_trim(skb, 0);
dev_kfree_skb(skb);
}
static void
skbpoolfree(struct aoedev *d)
{
struct sk_buff *skb, *tmp;
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
skb_queue_walk_safe(&d->skbpool, skb, tmp)
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
skbfree(skb);
__skb_queue_head_init(&d->skbpool);
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
}
/* find it or allocate it */
struct aoedev *
aoedev_by_aoeaddr(ulong maj, int min, int do_alloc)
{
struct aoedev *d;
int i;
ulong flags;
ulong sysminor = 0;
spin_lock_irqsave(&devlist_lock, flags);
for (d=devlist; d; d=d->next)
if (d->aoemajor == maj && d->aoeminor == min) {
spin_lock(&d->lock);
if (d->flags & DEVFL_TKILL) {
spin_unlock(&d->lock);
d = NULL;
goto out;
}
d->ref++;
spin_unlock(&d->lock);
break;
}
if (d || !do_alloc || minor_get(&sysminor, maj, min) < 0)
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
goto out;
d = kcalloc(1, sizeof *d, GFP_ATOMIC);
if (!d)
goto out;
d->targets = kcalloc(NTARGETS, sizeof(*d->targets), GFP_ATOMIC);
if (!d->targets) {
kfree(d);
d = NULL;
goto out;
}
d->ntargets = NTARGETS;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
INIT_WORK(&d->work, aoecmd_sleepwork);
spin_lock_init(&d->lock);
INIT_LIST_HEAD(&d->rq_list);
skb_queue_head_init(&d->skbpool);
timer_setup(&d->timer, dummy_timer, 0);
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
d->timer.expires = jiffies + HZ;
add_timer(&d->timer);
d->bufpool = NULL; /* defer to aoeblk_gdalloc */
d->tgt = d->targets;
d->ref = 1;
for (i = 0; i < NFACTIVE; i++)
INIT_LIST_HEAD(&d->factive[i]);
INIT_LIST_HEAD(&d->rexmitq);
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
d->sysminor = sysminor;
d->aoemajor = maj;
d->aoeminor = min;
d->rttavg = RTTAVG_INIT;
d->rttdev = RTTDEV_INIT;
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
d->next = devlist;
devlist = d;
out:
spin_unlock_irqrestore(&devlist_lock, flags);
return d;
}
static void
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
freetgt(struct aoedev *d, struct aoetgt *t)
{
struct frame *f;
struct list_head *pos, *nx, *head;
struct aoeif *ifp;
for (ifp = t->ifs; ifp < &t->ifs[NAOEIFS]; ++ifp) {
if (!ifp->nd)
break;
dev_put(ifp->nd);
}
head = &t->ffree;
list_for_each_safe(pos, nx, head) {
list_del(pos);
f = list_entry(pos, struct frame, head);
aoe: dynamically allocate a capped number of skbs when necessary What this Patch Does Even before this recent series of 12 patches to 2.6.22-rc4, the aoe driver was reusing a small set of skbs that were allocated once and were only used for outbound AoE commands. The network layer cannot be allowed to put_page on the data that is still associated with a bio we haven't returned to the block layer, so the aoe driver (even before the patch under discussion) is still the owner of skbs that have been handed to the network layer for transmission. We need to keep track of these skbs so that we can free them, but by tracking them, we can also easily re-use them. The new patch was a response to the behavior of certain network drivers. We cannot reuse an skb that the network driver still has in its transmit ring. Network drivers can defer transmit ring cleanup and then use the state in the skb to determine how many data segments to clean up in its transmit ring. The tg3 driver is one driver that behaves in this way. When the network driver defers cleanup of its transmit ring, the aoe driver can find itself in a situation where it would like to send an AoE command, and the AoE target is ready for more work, but the network driver still has all of the pre-allocated skbs. In that case, the new patch just calls alloc_skb, as you'd expect. We don't want to get carried away, though. We try not to do excessive allocation in the write path, so we cap the number of skbs we dynamically allocate. Probably calling it a "dynamic pool" is misleading. We were already trying to use a small fixed-size set of pre-allocated skbs before this patch, and this patch just provides a little headroom (with a ceiling, though) to accomodate network drivers that hang onto skbs, by allocating when needed. The d->skbpool_hd list of allocated skbs is necessary so that we can free them later. We didn't notice the need for this headroom until AoE targets got fast enough. Alternatives If the network layer never did a put_page on the pages in the bio's we get from the block layer, then it would be possible for us to hand skbs to the network layer and forget about them, allowing the network layer to free skbs itself (and thereby calling our own skb->destructor callback function if we needed that). In that case we could get rid of the pre-allocated skbs and also the d->skbpool_hd, instead just calling alloc_skb every time we wanted to transmit a packet. The slab allocator would effectively maintain the list of skbs. Besides a loss of CPU cache locality, the main concern with that approach the danger that it would increase the likelihood of deadlock when VM is trying to free pages by writing dirty data from the page cache through the aoe driver out to persistent storage on an AoE device. Right now we have a situation where we have pre-allocation that corresponds to how much we use, which seems ideal. Of course, there's still the separate issue of receiving the packets that tell us that a write has successfully completed on the AoE target. When memory is low and VM is using AoE to flush dirty data to free up pages, it would be perfect if there were a way for us to register a fast callback that could recognize write command completion responses. But I don't think the current problems with the receive side of the situation are a justification for exacerbating the problem on the transmit side. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:05 +08:00
skbfree(f->skb);
kfree(f);
}
aoe: handle multiple network paths to AoE device A remote AoE device is something can process ATA commands and is identified by an AoE shelf number and an AoE slot number. Such a device might have more than one network interface, and it might be reachable by more than one local network interface. This patch tracks the available network paths available to each AoE device, allowing them to be used more efficiently. Andrew Morton asked about the call to msleep_interruptible in the revalidate function. Yes, if a signal is pending, then msleep_interruptible will not return 0. That means we will not loop but will call aoenet_xmit with a NULL skb, which is a noop. If the system is too low on memory or the aoe driver is too low on frames, then the user can hit control-C to interrupt the attempt to do a revalidate. I have added a comment to the code summarizing that. Andrew Morton asked whether the allocation performed inside addtgt could use a more relaxed allocation like GFP_KERNEL, but addtgt is called when the aoedev lock has been locked with spin_lock_irqsave. It would be nice to allocate the memory under fewer restrictions, but targets are only added when the device is being discovered, and if the target can't be added right now, we can try again in a minute when then next AoE config query broadcast goes out. Andrew Morton pointed out that the "too many targets" message could be printed for failing GFP_ATOMIC allocations. The last patch in this series makes the messages more specific. Signed-off-by: Ed L. Cashin <ecashin@coraid.com> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-08 20:20:00 +08:00
kfree(t);
}
void
aoedev_exit(void)
{
flush_scheduled_work();
flush(NULL, 0, EXITING);
}
int __init
aoedev_init(void)
{
return 0;
}