linux/drivers/gpu/drm/nouveau/nvd0_display.c

1743 lines
46 KiB
C
Raw Normal View History

/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <linux/dma-mapping.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fence.h"
#include "nv50_display.h"
#include <core/client.h>
#include <core/gpuobj.h>
#include <core/class.h>
#include <subdev/timer.h>
#include <subdev/bar.h>
#include <subdev/fb.h>
#define EVO_DMA_NR 9
#define EVO_MASTER (0x00)
#define EVO_FLIP(c) (0x01 + (c))
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
#define EVO_CURS(c) (0x0d + (c))
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
#define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10)
#define EVO_CORE_HANDLE (0xd1500000)
#define EVO_CHAN_HANDLE(t,i) (0xd15c0000 | (((t) & 0x00ff) << 8) | (i))
#define EVO_CHAN_OCLASS(t,c) ((nv_hclass(c) & 0xff00) | ((t) & 0x00ff))
#define EVO_PUSH_HANDLE(t,i) (0xd15b0000 | (i) | \
(((NV50_DISP_##t##_CLASS) & 0x00ff) << 8))
/******************************************************************************
* EVO channel
*****************************************************************************/
struct nvd0_chan {
struct nouveau_object *user;
u32 handle;
};
static int
nvd0_chan_create(struct nouveau_object *core, u32 bclass, u8 head,
void *data, u32 size, struct nvd0_chan *chan)
{
struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
const u32 oclass = EVO_CHAN_OCLASS(bclass, core);
const u32 handle = EVO_CHAN_HANDLE(bclass, head);
int ret;
ret = nouveau_object_new(client, EVO_CORE_HANDLE, handle,
oclass, data, size, &chan->user);
if (ret)
return ret;
chan->handle = handle;
return 0;
}
static void
nvd0_chan_destroy(struct nouveau_object *core, struct nvd0_chan *chan)
{
struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
if (chan->handle)
nouveau_object_del(client, EVO_CORE_HANDLE, chan->handle);
}
/******************************************************************************
* PIO EVO channel
*****************************************************************************/
struct nvd0_pioc {
struct nvd0_chan base;
};
static void
nvd0_pioc_destroy(struct nouveau_object *core, struct nvd0_pioc *pioc)
{
nvd0_chan_destroy(core, &pioc->base);
}
static int
nvd0_pioc_create(struct nouveau_object *core, u32 bclass, u8 head,
void *data, u32 size, struct nvd0_pioc *pioc)
{
return nvd0_chan_create(core, bclass, head, data, size, &pioc->base);
}
/******************************************************************************
* DMA EVO channel
*****************************************************************************/
struct nvd0_dmac {
struct nvd0_chan base;
dma_addr_t handle;
u32 *ptr;
};
static void
nvd0_dmac_destroy(struct nouveau_object *core, struct nvd0_dmac *dmac)
{
if (dmac->ptr) {
struct pci_dev *pdev = nv_device(core)->pdev;
pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
}
nvd0_chan_destroy(core, &dmac->base);
}
static int
nvd0_dmac_create(struct nouveau_object *core, u32 bclass, u8 head,
void *data, u32 size, u64 syncbuf,
struct nvd0_dmac *dmac)
{
struct nouveau_fb *pfb = nouveau_fb(core);
struct nouveau_object *client = nv_pclass(core, NV_CLIENT_CLASS);
struct nouveau_object *object;
u32 pushbuf = *(u32 *)data;
dma_addr_t handle;
void *ptr;
int ret;
ptr = pci_alloc_consistent(nv_device(core)->pdev, PAGE_SIZE, &handle);
if (!ptr)
return -ENOMEM;
ret = nouveau_object_new(client, NVDRM_DEVICE, pushbuf,
NV_DMA_FROM_MEMORY_CLASS,
&(struct nv_dma_class) {
.flags = NV_DMA_TARGET_PCI_US |
NV_DMA_ACCESS_RD,
.start = handle + 0x0000,
.limit = handle + 0x0fff,
}, sizeof(struct nv_dma_class), &object);
if (ret)
return ret;
ret = nvd0_chan_create(core, bclass, head, data, size, &dmac->base);
if (ret)
return ret;
dmac->handle = handle;
dmac->ptr = ptr;
ret = nouveau_object_new(client, dmac->base.handle, NvEvoSync,
NV_DMA_IN_MEMORY_CLASS,
&(struct nv_dma_class) {
.flags = NV_DMA_TARGET_VRAM |
NV_DMA_ACCESS_RDWR,
.start = syncbuf + 0x0000,
.limit = syncbuf + 0x0fff,
}, sizeof(struct nv_dma_class), &object);
if (ret)
goto out;
ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM,
NV_DMA_IN_MEMORY_CLASS,
&(struct nv_dma_class) {
.flags = NV_DMA_TARGET_VRAM |
NV_DMA_ACCESS_RDWR,
.start = 0,
.limit = pfb->ram.size - 1,
}, sizeof(struct nv_dma_class), &object);
if (ret)
goto out;
ret = nouveau_object_new(client, dmac->base.handle, NvEvoVRAM_LP,
NV_DMA_IN_MEMORY_CLASS,
&(struct nv_dma_class) {
.flags = NV_DMA_TARGET_VRAM |
NV_DMA_ACCESS_RDWR,
.start = 0,
.limit = pfb->ram.size - 1,
.conf0 = NVD0_DMA_CONF0_ENABLE |
NVD0_DMA_CONF0_PAGE_LP,
}, sizeof(struct nv_dma_class), &object);
if (ret)
goto out;
ret = nouveau_object_new(client, dmac->base.handle, NvEvoFB32,
NV_DMA_IN_MEMORY_CLASS,
&(struct nv_dma_class) {
.flags = NV_DMA_TARGET_VRAM |
NV_DMA_ACCESS_RDWR,
.start = 0,
.limit = pfb->ram.size - 1,
.conf0 = 0x00fe |
NVD0_DMA_CONF0_ENABLE |
NVD0_DMA_CONF0_PAGE_LP,
}, sizeof(struct nv_dma_class), &object);
out:
if (ret)
nvd0_dmac_destroy(core, dmac);
return ret;
}
struct nvd0_mast {
struct nvd0_dmac base;
};
struct nvd0_curs {
struct nvd0_pioc base;
};
struct nvd0_sync {
struct nvd0_dmac base;
struct {
u32 offset;
u16 value;
} sem;
};
struct nvd0_ovly {
struct nvd0_dmac base;
};
struct nvd0_oimm {
struct nvd0_pioc base;
};
struct nvd0_head {
struct nouveau_crtc base;
struct nvd0_curs curs;
struct nvd0_sync sync;
struct nvd0_ovly ovly;
struct nvd0_oimm oimm;
};
#define nvd0_head(c) ((struct nvd0_head *)nouveau_crtc(c))
#define nvd0_curs(c) (&nvd0_head(c)->curs)
#define nvd0_sync(c) (&nvd0_head(c)->sync)
#define nvd0_ovly(c) (&nvd0_head(c)->ovly)
#define nvd0_oimm(c) (&nvd0_head(c)->oimm)
#define nvd0_chan(c) (&(c)->base.base)
struct nvd0_disp {
struct nouveau_object *core;
struct nvd0_mast mast;
u32 modeset;
struct nouveau_bo *sync;
};
static struct nvd0_disp *
nvd0_disp(struct drm_device *dev)
{
return nouveau_display(dev)->priv;
}
#define nvd0_mast(d) (&nvd0_disp(d)->mast)
static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder *encoder)
{
return nouveau_encoder(encoder)->crtc;
}
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
static u32 *
evo_wait(void *evoc, int nr)
{
struct nvd0_dmac *dmac = evoc;
u32 put = nv_ro32(dmac->base.user, 0x0000) / 4;
if (put + nr >= (PAGE_SIZE / 4)) {
dmac->ptr[put] = 0x20000000;
nv_wo32(dmac->base.user, 0x0000, 0x00000000);
if (!nv_wait(dmac->base.user, 0x0004, ~0, 0x00000000)) {
NV_ERROR(dmac->base.user, "channel stalled\n");
return NULL;
}
put = 0;
}
return dmac->ptr + put;
}
static void
evo_kick(u32 *push, void *evoc)
{
struct nvd0_dmac *dmac = evoc;
nv_wo32(dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
}
#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d) *((p)++) = (d)
static bool
evo_sync_wait(void *data)
{
return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
}
static int
evo_sync(struct drm_device *dev)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nvd0_disp *disp = nvd0_disp(dev);
struct nvd0_mast *mast = nvd0_mast(dev);
u32 *push = evo_wait(mast, 8);
if (push) {
nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000 | EVO_MAST_NTFY);
evo_mthd(push, 0x0080, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_kick(push, mast);
if (nv_wait_cb(device, evo_sync_wait, disp->sync))
return 0;
}
return -EBUSY;
}
/******************************************************************************
* Page flipping channel
*****************************************************************************/
struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
{
return nvd0_disp(dev)->sync;
}
void
nvd0_display_flip_stop(struct drm_crtc *crtc)
{
struct nvd0_sync *sync = nvd0_sync(crtc);
u32 *push;
push = evo_wait(sync, 8);
if (push) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, sync);
}
}
int
nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct nouveau_channel *chan, u32 swap_interval)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nvd0_disp *disp = nvd0_disp(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nvd0_sync *sync = nvd0_sync(crtc);
u64 offset;
u32 *push;
int ret;
swap_interval <<= 4;
if (swap_interval == 0)
swap_interval |= 0x100;
push = evo_wait(sync, 128);
if (unlikely(push == NULL))
return -EBUSY;
/* synchronise with the rendering channel, if necessary */
if (likely(chan)) {
ret = RING_SPACE(chan, 10);
if (ret)
return ret;
offset = nvc0_fence_crtc(chan, nv_crtc->index);
offset += sync->sem.offset;
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(offset));
OUT_RING (chan, lower_32_bits(offset));
OUT_RING (chan, 0xf00d0000 | sync->sem.value);
OUT_RING (chan, 0x1002);
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(offset));
OUT_RING (chan, lower_32_bits(offset ^ 0x10));
OUT_RING (chan, 0x74b1e000);
OUT_RING (chan, 0x1001);
FIRE_RING (chan);
} else {
nouveau_bo_wr32(disp->sync, sync->sem.offset / 4,
0xf00d0000 | sync->sem.value);
evo_sync(crtc->dev);
}
/* queue the flip */
evo_mthd(push, 0x0100, 1);
evo_data(push, 0xfffe0000);
evo_mthd(push, 0x0084, 1);
evo_data(push, swap_interval);
if (!(swap_interval & 0x00000100)) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, 0x40000000);
}
evo_mthd(push, 0x0088, 4);
evo_data(push, sync->sem.offset);
evo_data(push, 0xf00d0000 | sync->sem.value);
evo_data(push, 0x74b1e000);
evo_data(push, NvEvoSync);
evo_mthd(push, 0x00a0, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, nv_fb->r_dma);
evo_mthd(push, 0x0110, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0400, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, sync);
sync->sem.offset ^= 0x10;
sync->sem.value++;
return 0;
}
/******************************************************************************
* CRTC
*****************************************************************************/
static int
nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
{
struct nouveau_drm *drm = nouveau_drm(nv_crtc->base.dev);
struct drm_device *dev = nv_crtc->base.dev;
struct nouveau_connector *nv_connector;
struct drm_connector *connector;
u32 *push, mode = 0x00;
u32 mthd;
nv_connector = nouveau_crtc_connector_get(nv_crtc);
connector = &nv_connector->base;
if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = nv_connector->dithering_mode;
}
if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= nv_connector->dithering_depth;
}
if (nv_device(drm->device)->card_type < NV_E0)
mthd = 0x0490 + (nv_crtc->index * 0x0300);
else
mthd = 0x04a0 + (nv_crtc->index * 0x0300);
push = evo_wait(nvd0_mast(dev), 4);
if (push) {
evo_mthd(push, mthd, 1);
evo_data(push, mode);
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, nvd0_mast(dev));
}
return 0;
}
static int
nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
{
struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
struct drm_device *dev = nv_crtc->base.dev;
struct drm_crtc *crtc = &nv_crtc->base;
struct nouveau_connector *nv_connector;
int mode = DRM_MODE_SCALE_NONE;
u32 oX, oY, *push;
/* start off at the resolution we programmed the crtc for, this
* effectively handles NONE/FULL scaling
*/
nv_connector = nouveau_crtc_connector_get(nv_crtc);
if (nv_connector && nv_connector->native_mode)
mode = nv_connector->scaling_mode;
if (mode != DRM_MODE_SCALE_NONE)
omode = nv_connector->native_mode;
else
omode = umode;
oX = omode->hdisplay;
oY = omode->vdisplay;
if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
oY *= 2;
/* add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
(nv_connector->underscan == UNDERSCAN_AUTO &&
nv_connector->edid &&
drm_detect_hdmi_monitor(nv_connector->edid)))) {
u32 bX = nv_connector->underscan_hborder;
u32 bY = nv_connector->underscan_vborder;
u32 aspect = (oY << 19) / oX;
if (bX) {
oX -= (bX * 2);
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
} else {
oX -= (oX >> 4) + 32;
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
}
/* handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
oX = min((u32)umode->hdisplay, oX);
oY = min((u32)umode->vdisplay, oY);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (oY < oX) {
u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
oX = ((oY * aspect) + (aspect / 2)) >> 19;
} else {
u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
break;
default:
break;
}
push = evo_wait(nvd0_mast(dev), 8);
if (push) {
evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
evo_kick(push, nvd0_mast(dev));
if (update) {
nvd0_display_flip_stop(crtc);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
}
}
return 0;
}
static int
nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
int x, int y, bool update)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
u32 *push;
push = evo_wait(nvd0_mast(fb->dev), 16);
if (push) {
evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_data(push, nvfb->r_dma);
evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
evo_data(push, (y << 16) | x);
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, nvd0_mast(fb->dev));
}
nv_crtc->fb.tile_flags = nvfb->r_dma;
return 0;
}
static void
nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
struct drm_device *dev = nv_crtc->base.dev;
u32 *push = evo_wait(nvd0_mast(dev), 16);
if (push) {
if (show) {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x85000000);
evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, NvEvoVRAM);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, nvd0_mast(dev));
}
}
static void
nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}
static void
nvd0_crtc_prepare(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 *push;
nvd0_display_flip_stop(crtc);
push = evo_wait(nvd0_mast(crtc->dev), 2);
if (push) {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_kick(push, nvd0_mast(crtc->dev));
}
nvd0_crtc_cursor_show(nv_crtc, false, false);
}
static void
nvd0_crtc_commit(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 *push;
push = evo_wait(nvd0_mast(crtc->dev), 32);
if (push) {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, nv_crtc->fb.tile_flags);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, NvEvoVRAM);
evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0xffffff00);
evo_kick(push, nvd0_mast(crtc->dev));
}
nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
}
static bool
nvd0_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int
nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
int ret;
ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
if (ret)
return ret;
if (old_fb) {
nvfb = nouveau_framebuffer(old_fb);
nouveau_bo_unpin(nvfb->nvbo);
}
return 0;
}
static int
nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
struct drm_display_mode *mode, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_connector *nv_connector;
u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
u32 vblan2e = 0, vblan2s = 1;
u32 *push;
int ret;
hactive = mode->htotal;
hsynce = mode->hsync_end - mode->hsync_start - 1;
hbackp = mode->htotal - mode->hsync_end;
hblanke = hsynce + hbackp;
hfrontp = mode->hsync_start - mode->hdisplay;
hblanks = mode->htotal - hfrontp - 1;
vactive = mode->vtotal * vscan / ilace;
vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
vblanke = vsynce + vbackp;
vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
vblanks = vactive - vfrontp - 1;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vblan2e = vactive + vsynce + vbackp;
vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
vactive = (vactive * 2) + 1;
}
ret = nvd0_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
push = evo_wait(nvd0_mast(crtc->dev), 64);
if (push) {
evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000); /* ??? */
evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
evo_data(push, mode->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, mode->clock * 1000);
evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
evo_kick(push, nvd0_mast(crtc->dev));
}
nv_connector = nouveau_crtc_connector_get(nv_crtc);
nvd0_crtc_set_dither(nv_crtc, false);
nvd0_crtc_set_scale(nv_crtc, false);
nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
return 0;
}
static int
nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
if (!crtc->fb) {
NV_DEBUG(drm, "No FB bound\n");
return 0;
}
ret = nvd0_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
nvd0_display_flip_stop(crtc);
nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
return 0;
}
static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y,
enum mode_set_atomic state)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nvd0_display_flip_stop(crtc);
nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
return 0;
}
static void
nvd0_crtc_lut_load(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
}
}
static int
nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t handle, uint32_t width, uint32_t height)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_gem_object *gem;
struct nouveau_bo *nvbo;
bool visible = (handle != 0);
int i, ret = 0;
if (visible) {
if (width != 64 || height != 64)
return -EINVAL;
gem = drm_gem_object_lookup(dev, file_priv, handle);
if (unlikely(!gem))
return -ENOENT;
nvbo = nouveau_gem_object(gem);
ret = nouveau_bo_map(nvbo);
if (ret == 0) {
for (i = 0; i < 64 * 64; i++) {
u32 v = nouveau_bo_rd32(nvbo, i);
nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
}
nouveau_bo_unmap(nvbo);
}
drm_gem_object_unreference_unlocked(gem);
}
if (visible != nv_crtc->cursor.visible) {
nvd0_crtc_cursor_show(nv_crtc, visible, true);
nv_crtc->cursor.visible = visible;
}
return ret;
}
static int
nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct nvd0_curs *curs = nvd0_curs(crtc);
struct nvd0_chan *chan = nvd0_chan(curs);
nv_wo32(chan->user, 0x0084, (y << 16) | (x & 0xffff));
nv_wo32(chan->user, 0x0080, 0x00000000);
return 0;
}
static void
nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t start, uint32_t size)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 end = max(start + size, (u32)256);
u32 i;
for (i = start; i < end; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
nvd0_crtc_lut_load(crtc);
}
static void
nvd0_crtc_destroy(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nvd0_disp *disp = nvd0_disp(crtc->dev);
struct nvd0_head *head = nvd0_head(crtc);
nvd0_dmac_destroy(disp->core, &head->ovly.base);
nvd0_pioc_destroy(disp->core, &head->oimm.base);
nvd0_dmac_destroy(disp->core, &head->sync.base);
nvd0_pioc_destroy(disp->core, &head->curs.base);
nouveau_bo_unmap(nv_crtc->cursor.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
nouveau_bo_unmap(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
.dpms = nvd0_crtc_dpms,
.prepare = nvd0_crtc_prepare,
.commit = nvd0_crtc_commit,
.mode_fixup = nvd0_crtc_mode_fixup,
.mode_set = nvd0_crtc_mode_set,
.mode_set_base = nvd0_crtc_mode_set_base,
.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
.load_lut = nvd0_crtc_lut_load,
};
static const struct drm_crtc_funcs nvd0_crtc_func = {
.cursor_set = nvd0_crtc_cursor_set,
.cursor_move = nvd0_crtc_cursor_move,
.gamma_set = nvd0_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = nvd0_crtc_destroy,
.page_flip = nouveau_crtc_page_flip,
};
static void
nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
{
}
static void
nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
{
}
static int
nvd0_crtc_create(struct drm_device *dev, struct nouveau_object *core, int index)
{
struct nvd0_disp *disp = nvd0_disp(dev);
struct nvd0_head *head;
struct drm_crtc *crtc;
int ret, i;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOMEM;
head->base.index = index;
head->base.set_dither = nvd0_crtc_set_dither;
head->base.set_scale = nvd0_crtc_set_scale;
head->base.cursor.set_offset = nvd0_cursor_set_offset;
head->base.cursor.set_pos = nvd0_cursor_set_pos;
for (i = 0; i < 256; i++) {
head->base.lut.r[i] = i << 8;
head->base.lut.g[i] = i << 8;
head->base.lut.b[i] = i << 8;
}
crtc = &head->base.base;
drm_crtc_init(dev, crtc, &nvd0_crtc_func);
drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
drm_mode_crtc_set_gamma_size(crtc, 256);
ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, &head->base.lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(head->base.lut.nvbo);
if (ret)
nouveau_bo_ref(NULL, &head->base.lut.nvbo);
}
if (ret)
goto out;
nvd0_crtc_lut_load(crtc);
/* allocate cursor resources */
ret = nvd0_pioc_create(disp->core, NV50_DISP_CURS_CLASS, index,
&(struct nv50_display_curs_class) {
.head = index,
}, sizeof(struct nv50_display_curs_class),
&head->curs.base);
if (ret)
goto out;
ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, &head->base.cursor.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.cursor.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(head->base.cursor.nvbo);
if (ret)
nouveau_bo_ref(NULL, &head->base.cursor.nvbo);
}
if (ret)
goto out;
/* allocate page flip / sync resources */
ret = nvd0_dmac_create(disp->core, NV50_DISP_SYNC_CLASS, index,
&(struct nv50_display_sync_class) {
.pushbuf = EVO_PUSH_HANDLE(SYNC, index),
.head = index,
}, sizeof(struct nv50_display_sync_class),
disp->sync->bo.offset, &head->sync.base);
if (ret)
goto out;
head->sync.sem.offset = EVO_SYNC(1 + index, 0x00);
/* allocate overlay resources */
ret = nvd0_pioc_create(disp->core, NV50_DISP_OIMM_CLASS, index,
&(struct nv50_display_oimm_class) {
.head = index,
}, sizeof(struct nv50_display_oimm_class),
&head->oimm.base);
if (ret)
goto out;
ret = nvd0_dmac_create(disp->core, NV50_DISP_OVLY_CLASS, index,
&(struct nv50_display_ovly_class) {
.pushbuf = EVO_PUSH_HANDLE(OVLY, index),
.head = index,
}, sizeof(struct nv50_display_ovly_class),
disp->sync->bo.offset, &head->ovly.base);
if (ret)
goto out;
out:
if (ret)
nvd0_crtc_destroy(crtc);
return ret;
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
int or = nv_encoder->or;
u32 dpms_ctrl;
dpms_ctrl = 0x00000000;
if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
dpms_ctrl |= 0x00000001;
if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
dpms_ctrl |= 0x00000004;
nv_call(disp->core, NV50_DISP_DAC_PWR + or, dpms_ctrl);
}
static bool
nvd0_dac_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nvd0_dac_commit(struct drm_encoder *encoder)
{
}
static void
nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
u32 syncs, magic, *push;
syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
magic = 0x31ec6000 | (nv_crtc->index << 25);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(nvd0_mast(encoder->dev), 8);
if (push) {
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, 0x00ff);
evo_kick(push, nvd0_mast(encoder->dev));
}
nv_encoder->crtc = encoder->crtc;
}
static void
nvd0_dac_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
u32 *push;
if (nv_encoder->crtc) {
nvd0_crtc_prepare(nv_encoder->crtc);
push = evo_wait(nvd0_mast(dev), 4);
if (push) {
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, nvd0_mast(dev));
}
nv_encoder->crtc = NULL;
}
}
static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
int ret, or = nouveau_encoder(encoder)->or;
u32 load;
ret = nv_exec(disp->core, NV50_DISP_DAC_LOAD + or, &load, sizeof(load));
if (ret || load != 7)
return connector_status_disconnected;
return connector_status_connected;
}
static void
nvd0_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
.dpms = nvd0_dac_dpms,
.mode_fixup = nvd0_dac_mode_fixup,
.prepare = nvd0_dac_disconnect,
.commit = nvd0_dac_commit,
.mode_set = nvd0_dac_mode_set,
.disable = nvd0_dac_disconnect,
.get_crtc = nvd0_display_crtc_get,
.detect = nvd0_dac_detect
};
static const struct drm_encoder_funcs nvd0_dac_func = {
.destroy = nvd0_dac_destroy,
};
static int
nvd0_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct drm_device *dev = connector->dev;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or,
nv_connector->base.eld,
nv_connector->base.eld[2] * 4);
}
static void
nvd0_audio_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
nv_exec(disp->core, NVA3_DISP_SOR_HDA_ELD + nv_encoder->or, NULL, 0);
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
u32 rekey = 56; /* binary driver, and tegra constant */
u32 max_ac_packet;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= rekey;
max_ac_packet -= 18; /* constant from tegra */
max_ac_packet /= 32;
nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff,
NV84_DISP_SOR_HDMI_PWR_STATE_ON |
(max_ac_packet << 16) | rekey);
nvd0_audio_mode_set(encoder, mode);
}
static void
nvd0_hdmi_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
struct nvd0_disp *disp = nvd0_disp(encoder->dev);
const u32 moff = (nv_crtc->index << 3) | nv_encoder->or;
nvd0_audio_disconnect(encoder);
nv_call(disp->core, NV84_DISP_SOR_HDMI_PWR + moff, 0x00000000);
}
/******************************************************************************
* SOR
*****************************************************************************/
static void
nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_output *dcb, u8 pattern)
{
struct nvd0_disp *disp = nvd0_disp(dev);
const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
const u32 moff = (link << 2) | or;
nv_call(disp->core, NV94_DISP_SOR_DP_TRAIN + moff, pattern);
}
static void
nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_output *dcb,
u8 lane, u8 swing, u8 preem)
{
struct nvd0_disp *disp = nvd0_disp(dev);
const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
const u32 moff = (link << 2) | or;
const u32 data = (swing << 8) | preem;
nv_call(disp->core, NV94_DISP_SOR_DP_DRVCTL(lane) + moff, data);
}
static void
nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_output *dcb, int crtc,
int link_nr, u32 link_bw, bool enhframe)
{
struct nvd0_disp *disp = nvd0_disp(dev);
const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
const u32 moff = (crtc << 3) | (link << 2) | or;
u32 data = ((link_bw / 27000) << 8) | link_nr;
if (enhframe)
data |= NV94_DISP_SOR_DP_LNKCTL_FRAME_ENH;
nv_call(disp->core, NV94_DISP_SOR_DP_LNKCTL + moff, data);
}
static void
nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
struct nvd0_disp *disp = nvd0_disp(dev);
struct drm_encoder *partner;
int or = nv_encoder->or;
nv_encoder->last_dpms = mode;
list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
continue;
if (nv_partner != nv_encoder &&
nv_partner->dcb->or == nv_encoder->dcb->or) {
if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
return;
break;
}
}
nv_call(disp->core, NV50_DISP_SOR_PWR + or, (mode == DRM_MODE_DPMS_ON));
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
struct dp_train_func func = {
.link_set = nvd0_sor_dp_link_set,
.train_set = nvd0_sor_dp_train_set,
.train_adj = nvd0_sor_dp_train_adj
};
nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
}
}
static bool
nvd0_sor_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nvd0_sor_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
u32 *push;
if (nv_encoder->crtc) {
nvd0_crtc_prepare(nv_encoder->crtc);
push = evo_wait(nvd0_mast(dev), 4);
if (push) {
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, nvd0_mast(dev));
}
nvd0_hdmi_disconnect(encoder);
nv_encoder->crtc = NULL;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
}
}
static void
nvd0_sor_prepare(struct drm_encoder *encoder)
{
nvd0_sor_disconnect(encoder);
if (nouveau_encoder(encoder)->dcb->type == DCB_OUTPUT_DP)
evo_sync(encoder->dev);
}
static void
nvd0_sor_commit(struct drm_encoder *encoder)
{
}
static void
nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
struct drm_display_mode *mode)
{
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &drm->vbios;
u32 mode_ctrl = (1 << nv_crtc->index);
u32 syncs, magic, *push;
u32 or_config;
syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
magic = 0x31ec6000 | (nv_crtc->index << 25);
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (nv_encoder->dcb->sorconf.link & 1) {
if (mode->clock < 165000)
mode_ctrl |= 0x00000100;
else
mode_ctrl |= 0x00000500;
} else {
mode_ctrl |= 0x00000200;
}
or_config = (mode_ctrl & 0x00000f00) >> 8;
if (mode->clock >= 165000)
or_config |= 0x0100;
nvd0_hdmi_mode_set(encoder, mode);
break;
case DCB_OUTPUT_LVDS:
or_config = (mode_ctrl & 0x00000f00) >> 8;
if (bios->fp_no_ddc) {
if (bios->fp.dual_link)
or_config |= 0x0100;
if (bios->fp.if_is_24bit)
or_config |= 0x0200;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
or_config |= 0x0100;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
or_config |= 0x0100;
}
if (or_config & 0x0100) {
if (bios->fp.strapless_is_24bit & 2)
or_config |= 0x0200;
} else {
if (bios->fp.strapless_is_24bit & 1)
or_config |= 0x0200;
}
if (nv_connector->base.display_info.bpc == 8)
or_config |= 0x0200;
}
break;
case DCB_OUTPUT_DP:
if (nv_connector->base.display_info.bpc == 6) {
nv_encoder->dp.datarate = mode->clock * 18 / 8;
syncs |= 0x00000002 << 6;
} else {
nv_encoder->dp.datarate = mode->clock * 24 / 8;
syncs |= 0x00000005 << 6;
}
if (nv_encoder->dcb->sorconf.link & 1)
mode_ctrl |= 0x00000800;
else
mode_ctrl |= 0x00000900;
or_config = (mode_ctrl & 0x00000f00) >> 8;
break;
default:
BUG_ON(1);
break;
}
nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(nvd0_mast(dev), 8);
if (push) {
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
evo_data(push, mode_ctrl);
evo_data(push, or_config);
evo_kick(push, nvd0_mast(dev));
}
nv_encoder->crtc = encoder->crtc;
}
static void
nvd0_sor_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
.dpms = nvd0_sor_dpms,
.mode_fixup = nvd0_sor_mode_fixup,
.prepare = nvd0_sor_prepare,
.commit = nvd0_sor_commit,
.mode_set = nvd0_sor_mode_set,
.disable = nvd0_sor_disconnect,
.get_crtc = nvd0_display_crtc_get,
};
static const struct drm_encoder_funcs nvd0_sor_func = {
.destroy = nvd0_sor_destroy,
};
static int
nvd0_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct drm_device *dev = connector->dev;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Init
*****************************************************************************/
void
nvd0_display_fini(struct drm_device *dev)
{
}
int
nvd0_display_init(struct drm_device *dev)
{
u32 *push = evo_wait(nvd0_mast(dev), 32);
if (push) {
evo_mthd(push, 0x0088, 1);
evo_data(push, NvEvoSync);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000);
evo_mthd(push, 0x008c, 1);
evo_data(push, 0x00000000);
evo_kick(push, nvd0_mast(dev));
return 0;
}
return -EBUSY;
}
void
nvd0_display_destroy(struct drm_device *dev)
{
struct nvd0_disp *disp = nvd0_disp(dev);
nvd0_dmac_destroy(disp->core, &disp->mast.base);
nouveau_bo_unmap(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_display(dev)->priv = NULL;
kfree(disp);
}
int
nvd0_display_create(struct drm_device *dev)
{
static const u16 oclass[] = {
NVE0_DISP_CLASS,
NVD0_DISP_CLASS,
};
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcb = &drm->vbios.dcb;
struct drm_connector *connector, *tmp;
struct nvd0_disp *disp;
struct dcb_output *dcbe;
int crtcs, ret, i;
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nvd0_display_destroy;
nouveau_display(dev)->init = nvd0_display_init;
nouveau_display(dev)->fini = nvd0_display_fini;
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
/* attempt to allocate a supported evo display class */
ret = -ENODEV;
for (i = 0; ret && i < ARRAY_SIZE(oclass); i++) {
ret = nouveau_object_new(nv_object(drm), NVDRM_DEVICE,
0xd1500000, oclass[i], NULL, 0,
&disp->core);
}
if (ret)
goto out;
/* allocate master evo channel */
ret = nvd0_dmac_create(disp->core, NV50_DISP_MAST_CLASS, 0,
&(struct nv50_display_mast_class) {
.pushbuf = EVO_PUSH_HANDLE(MAST, 0),
}, sizeof(struct nv50_display_mast_class),
disp->sync->bo.offset, &disp->mast.base);
if (ret)
goto out;
/* create crtc objects to represent the hw heads */
crtcs = nv_rd32(device, 0x022448);
for (i = 0; i < crtcs; i++) {
ret = nvd0_crtc_create(dev, disp->core, i);
if (ret)
goto out;
}
/* create encoder/connector objects based on VBIOS DCB table */
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe->connector);
if (IS_ERR(connector))
continue;
if (dcbe->location != DCB_LOC_ON_CHIP) {
NV_WARN(drm, "skipping off-chip encoder %d/%d\n",
dcbe->type, ffs(dcbe->or) - 1);
continue;
}
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_LVDS:
case DCB_OUTPUT_DP:
nvd0_sor_create(connector, dcbe);
break;
case DCB_OUTPUT_ANALOG:
nvd0_dac_create(connector, dcbe);
break;
default:
NV_WARN(drm, "skipping unsupported encoder %d/%d\n",
dcbe->type, ffs(dcbe->or) - 1);
continue;
}
}
/* cull any connectors we created that don't have an encoder */
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->encoder_ids[0])
continue;
NV_WARN(drm, "%s has no encoders, removing\n",
drm_get_connector_name(connector));
connector->funcs->destroy(connector);
}
out:
if (ret)
nvd0_display_destroy(dev);
return ret;
}