linux/drivers/net/gianfar.c

2353 lines
61 KiB
C
Raw Normal View History

/*
* drivers/net/gianfar.c
*
* Gianfar Ethernet Driver
* This driver is designed for the non-CPM ethernet controllers
* on the 85xx and 83xx family of integrated processors
* Based on 8260_io/fcc_enet.c
*
* Author: Andy Fleming
* Maintainer: Kumar Gala
*
* Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
* Copyright (c) 2007 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Gianfar: AKA Lambda Draconis, "Dragon"
* RA 11 31 24.2
* Dec +69 19 52
* V 3.84
* B-V +1.62
*
* Theory of operation
*
* The driver is initialized through of_device. Configuration information
* is therefore conveyed through an OF-style device tree.
*
* The Gianfar Ethernet Controller uses a ring of buffer
* descriptors. The beginning is indicated by a register
* pointing to the physical address of the start of the ring.
* The end is determined by a "wrap" bit being set in the
* last descriptor of the ring.
*
* When a packet is received, the RXF bit in the
* IEVENT register is set, triggering an interrupt when the
* corresponding bit in the IMASK register is also set (if
* interrupt coalescing is active, then the interrupt may not
* happen immediately, but will wait until either a set number
* of frames or amount of time have passed). In NAPI, the
* interrupt handler will signal there is work to be done, and
* exit. This method will start at the last known empty
* descriptor, and process every subsequent descriptor until there
* are none left with data (NAPI will stop after a set number of
* packets to give time to other tasks, but will eventually
* process all the packets). The data arrives inside a
* pre-allocated skb, and so after the skb is passed up to the
* stack, a new skb must be allocated, and the address field in
* the buffer descriptor must be updated to indicate this new
* skb.
*
* When the kernel requests that a packet be transmitted, the
* driver starts where it left off last time, and points the
* descriptor at the buffer which was passed in. The driver
* then informs the DMA engine that there are packets ready to
* be transmitted. Once the controller is finished transmitting
* the packet, an interrupt may be triggered (under the same
* conditions as for reception, but depending on the TXF bit).
* The driver then cleans up the buffer.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/of_mdio.h>
#include <linux/of_platform.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/in.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/of.h>
#include "gianfar.h"
#include "fsl_pq_mdio.h"
#define TX_TIMEOUT (1*HZ)
#undef BRIEF_GFAR_ERRORS
#undef VERBOSE_GFAR_ERRORS
const char gfar_driver_name[] = "Gianfar Ethernet";
const char gfar_driver_version[] = "1.3";
static int gfar_enet_open(struct net_device *dev);
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void gfar_reset_task(struct work_struct *work);
static void gfar_timeout(struct net_device *dev);
static int gfar_close(struct net_device *dev);
struct sk_buff *gfar_new_skb(struct net_device *dev);
static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
struct sk_buff *skb);
static int gfar_set_mac_address(struct net_device *dev);
static int gfar_change_mtu(struct net_device *dev, int new_mtu);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t gfar_error(int irq, void *dev_id);
static irqreturn_t gfar_transmit(int irq, void *dev_id);
static irqreturn_t gfar_interrupt(int irq, void *dev_id);
static void adjust_link(struct net_device *dev);
static void init_registers(struct net_device *dev);
static int init_phy(struct net_device *dev);
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match);
static int gfar_remove(struct of_device *ofdev);
static void free_skb_resources(struct gfar_private *priv);
static void gfar_set_multi(struct net_device *dev);
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
static void gfar_configure_serdes(struct net_device *dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
static int gfar_poll(struct napi_struct *napi, int budget);
#ifdef CONFIG_NET_POLL_CONTROLLER
static void gfar_netpoll(struct net_device *dev);
#endif
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
static int gfar_clean_tx_ring(struct net_device *dev);
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull);
static void gfar_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp);
void gfar_halt(struct net_device *dev);
static void gfar_halt_nodisable(struct net_device *dev);
void gfar_start(struct net_device *dev);
static void gfar_clear_exact_match(struct net_device *dev);
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Gianfar Ethernet Driver");
MODULE_LICENSE("GPL");
static const struct net_device_ops gfar_netdev_ops = {
.ndo_open = gfar_enet_open,
.ndo_start_xmit = gfar_start_xmit,
.ndo_stop = gfar_close,
.ndo_change_mtu = gfar_change_mtu,
.ndo_set_multicast_list = gfar_set_multi,
.ndo_tx_timeout = gfar_timeout,
.ndo_do_ioctl = gfar_ioctl,
.ndo_vlan_rx_register = gfar_vlan_rx_register,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = gfar_netpoll,
#endif
};
/* Returns 1 if incoming frames use an FCB */
static inline int gfar_uses_fcb(struct gfar_private *priv)
{
return priv->vlgrp || priv->rx_csum_enable;
}
static int gfar_of_init(struct net_device *dev)
{
const char *model;
const char *ctype;
const void *mac_addr;
u64 addr, size;
int err = 0;
struct gfar_private *priv = netdev_priv(dev);
struct device_node *np = priv->node;
const u32 *stash;
const u32 *stash_len;
const u32 *stash_idx;
if (!np || !of_device_is_available(np))
return -ENODEV;
/* get a pointer to the register memory */
addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
priv->regs = ioremap(addr, size);
if (priv->regs == NULL)
return -ENOMEM;
priv->interruptTransmit = irq_of_parse_and_map(np, 0);
model = of_get_property(np, "model", NULL);
/* If we aren't the FEC we have multiple interrupts */
if (model && strcasecmp(model, "FEC")) {
priv->interruptReceive = irq_of_parse_and_map(np, 1);
priv->interruptError = irq_of_parse_and_map(np, 2);
if (priv->interruptTransmit < 0 ||
priv->interruptReceive < 0 ||
priv->interruptError < 0) {
err = -EINVAL;
goto err_out;
}
}
stash = of_get_property(np, "bd-stash", NULL);
if(stash) {
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
priv->bd_stash_en = 1;
}
stash_len = of_get_property(np, "rx-stash-len", NULL);
if (stash_len)
priv->rx_stash_size = *stash_len;
stash_idx = of_get_property(np, "rx-stash-idx", NULL);
if (stash_idx)
priv->rx_stash_index = *stash_idx;
if (stash_len || stash_idx)
priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
mac_addr = of_get_mac_address(np);
if (mac_addr)
memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
if (model && !strcasecmp(model, "TSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR;
if (model && !strcasecmp(model, "eTSEC"))
priv->device_flags =
FSL_GIANFAR_DEV_HAS_GIGABIT |
FSL_GIANFAR_DEV_HAS_COALESCE |
FSL_GIANFAR_DEV_HAS_RMON |
FSL_GIANFAR_DEV_HAS_MULTI_INTR |
FSL_GIANFAR_DEV_HAS_PADDING |
FSL_GIANFAR_DEV_HAS_CSUM |
FSL_GIANFAR_DEV_HAS_VLAN |
FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
ctype = of_get_property(np, "phy-connection-type", NULL);
/* We only care about rgmii-id. The rest are autodetected */
if (ctype && !strcmp(ctype, "rgmii-id"))
priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
else
priv->interface = PHY_INTERFACE_MODE_MII;
if (of_get_property(np, "fsl,magic-packet", NULL))
priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
if (!priv->phy_node) {
u32 *fixed_link;
fixed_link = (u32 *)of_get_property(np, "fixed-link", NULL);
if (!fixed_link) {
err = -ENODEV;
goto err_out;
}
}
/* Find the TBI PHY. If it's not there, we don't support SGMII */
priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
return 0;
err_out:
iounmap(priv->regs);
return err;
}
/* Ioctl MII Interface */
static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct gfar_private *priv = netdev_priv(dev);
if (!netif_running(dev))
return -EINVAL;
if (!priv->phydev)
return -ENODEV;
return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
}
/* Set up the ethernet device structure, private data,
* and anything else we need before we start */
static int gfar_probe(struct of_device *ofdev,
const struct of_device_id *match)
{
u32 tempval;
struct net_device *dev = NULL;
struct gfar_private *priv = NULL;
DECLARE_MAC_BUF(mac);
int err = 0;
int len_devname;
/* Create an ethernet device instance */
dev = alloc_etherdev(sizeof (*priv));
if (NULL == dev)
return -ENOMEM;
priv = netdev_priv(dev);
priv->ndev = dev;
priv->ofdev = ofdev;
priv->node = ofdev->node;
SET_NETDEV_DEV(dev, &ofdev->dev);
err = gfar_of_init(dev);
if (err)
goto regs_fail;
spin_lock_init(&priv->txlock);
spin_lock_init(&priv->rxlock);
spin_lock_init(&priv->bflock);
INIT_WORK(&priv->reset_task, gfar_reset_task);
dev_set_drvdata(&ofdev->dev, priv);
/* Stop the DMA engine now, in case it was running before */
/* (The firmware could have used it, and left it running). */
gfar_halt(dev);
/* Reset MAC layer */
gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
/* We need to delay at least 3 TX clocks */
udelay(2);
tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
gfar_write(&priv->regs->maccfg1, tempval);
/* Initialize MACCFG2. */
gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
/* Initialize ECNTRL */
gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
/* Set the dev->base_addr to the gfar reg region */
dev->base_addr = (unsigned long) (priv->regs);
SET_NETDEV_DEV(dev, &ofdev->dev);
/* Fill in the dev structure */
dev->watchdog_timeo = TX_TIMEOUT;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
dev->mtu = 1500;
dev->netdev_ops = &gfar_netdev_ops;
dev->ethtool_ops = &gfar_ethtool_ops;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
priv->rx_csum_enable = 1;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
} else
priv->rx_csum_enable = 0;
priv->vlgrp = NULL;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
priv->extended_hash = 1;
priv->hash_width = 9;
priv->hash_regs[0] = &priv->regs->igaddr0;
priv->hash_regs[1] = &priv->regs->igaddr1;
priv->hash_regs[2] = &priv->regs->igaddr2;
priv->hash_regs[3] = &priv->regs->igaddr3;
priv->hash_regs[4] = &priv->regs->igaddr4;
priv->hash_regs[5] = &priv->regs->igaddr5;
priv->hash_regs[6] = &priv->regs->igaddr6;
priv->hash_regs[7] = &priv->regs->igaddr7;
priv->hash_regs[8] = &priv->regs->gaddr0;
priv->hash_regs[9] = &priv->regs->gaddr1;
priv->hash_regs[10] = &priv->regs->gaddr2;
priv->hash_regs[11] = &priv->regs->gaddr3;
priv->hash_regs[12] = &priv->regs->gaddr4;
priv->hash_regs[13] = &priv->regs->gaddr5;
priv->hash_regs[14] = &priv->regs->gaddr6;
priv->hash_regs[15] = &priv->regs->gaddr7;
} else {
priv->extended_hash = 0;
priv->hash_width = 8;
priv->hash_regs[0] = &priv->regs->gaddr0;
priv->hash_regs[1] = &priv->regs->gaddr1;
priv->hash_regs[2] = &priv->regs->gaddr2;
priv->hash_regs[3] = &priv->regs->gaddr3;
priv->hash_regs[4] = &priv->regs->gaddr4;
priv->hash_regs[5] = &priv->regs->gaddr5;
priv->hash_regs[6] = &priv->regs->gaddr6;
priv->hash_regs[7] = &priv->regs->gaddr7;
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
priv->padding = DEFAULT_PADDING;
else
priv->padding = 0;
if (dev->features & NETIF_F_IP_CSUM)
dev->hard_header_len += GMAC_FCB_LEN;
priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
priv->txcoalescing = DEFAULT_TX_COALESCE;
priv->txic = DEFAULT_TXIC;
priv->rxcoalescing = DEFAULT_RX_COALESCE;
priv->rxic = DEFAULT_RXIC;
/* Enable most messages by default */
priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
/* Carrier starts down, phylib will bring it up */
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
dev->name);
goto register_fail;
}
device_init_wakeup(&dev->dev,
priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
/* fill out IRQ number and name fields */
len_devname = strlen(dev->name);
strncpy(&priv->int_name_tx[0], dev->name, len_devname);
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
strncpy(&priv->int_name_tx[len_devname],
"_tx", sizeof("_tx") + 1);
strncpy(&priv->int_name_rx[0], dev->name, len_devname);
strncpy(&priv->int_name_rx[len_devname],
"_rx", sizeof("_rx") + 1);
strncpy(&priv->int_name_er[0], dev->name, len_devname);
strncpy(&priv->int_name_er[len_devname],
"_er", sizeof("_er") + 1);
} else
priv->int_name_tx[len_devname] = '\0';
/* Create all the sysfs files */
gfar_init_sysfs(dev);
/* Print out the device info */
printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
/* Even more device info helps when determining which kernel */
/* provided which set of benchmarks. */
printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
dev->name, priv->rx_ring_size, priv->tx_ring_size);
return 0;
register_fail:
iounmap(priv->regs);
regs_fail:
if (priv->phy_node)
of_node_put(priv->phy_node);
if (priv->tbi_node)
of_node_put(priv->tbi_node);
free_netdev(dev);
return err;
}
static int gfar_remove(struct of_device *ofdev)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
if (priv->phy_node)
of_node_put(priv->phy_node);
if (priv->tbi_node)
of_node_put(priv->tbi_node);
dev_set_drvdata(&ofdev->dev, NULL);
iounmap(priv->regs);
free_netdev(priv->ndev);
return 0;
}
#ifdef CONFIG_PM
static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
struct net_device *dev = priv->ndev;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
netif_device_detach(dev);
if (netif_running(dev)) {
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
gfar_halt_nodisable(dev);
/* Disable Tx, and Rx if wake-on-LAN is disabled. */
tempval = gfar_read(&priv->regs->maccfg1);
tempval &= ~MACCFG1_TX_EN;
if (!magic_packet)
tempval &= ~MACCFG1_RX_EN;
gfar_write(&priv->regs->maccfg1, tempval);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
napi_disable(&priv->napi);
if (magic_packet) {
/* Enable interrupt on Magic Packet */
gfar_write(&priv->regs->imask, IMASK_MAG);
/* Enable Magic Packet mode */
tempval = gfar_read(&priv->regs->maccfg2);
tempval |= MACCFG2_MPEN;
gfar_write(&priv->regs->maccfg2, tempval);
} else {
phy_stop(priv->phydev);
}
}
return 0;
}
static int gfar_resume(struct of_device *ofdev)
{
struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
struct net_device *dev = priv->ndev;
unsigned long flags;
u32 tempval;
int magic_packet = priv->wol_en &&
(priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
if (!netif_running(dev)) {
netif_device_attach(dev);
return 0;
}
if (!magic_packet && priv->phydev)
phy_start(priv->phydev);
/* Disable Magic Packet mode, in case something
* else woke us up.
*/
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
tempval = gfar_read(&priv->regs->maccfg2);
tempval &= ~MACCFG2_MPEN;
gfar_write(&priv->regs->maccfg2, tempval);
gfar_start(dev);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
netif_device_attach(dev);
napi_enable(&priv->napi);
return 0;
}
#else
#define gfar_suspend NULL
#define gfar_resume NULL
#endif
/* Reads the controller's registers to determine what interface
* connects it to the PHY.
*/
static phy_interface_t gfar_get_interface(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
u32 ecntrl = gfar_read(&priv->regs->ecntrl);
if (ecntrl & ECNTRL_SGMII_MODE)
return PHY_INTERFACE_MODE_SGMII;
if (ecntrl & ECNTRL_TBI_MODE) {
if (ecntrl & ECNTRL_REDUCED_MODE)
return PHY_INTERFACE_MODE_RTBI;
else
return PHY_INTERFACE_MODE_TBI;
}
if (ecntrl & ECNTRL_REDUCED_MODE) {
if (ecntrl & ECNTRL_REDUCED_MII_MODE)
return PHY_INTERFACE_MODE_RMII;
else {
phy_interface_t interface = priv->interface;
/*
* This isn't autodetected right now, so it must
* be set by the device tree or platform code.
*/
if (interface == PHY_INTERFACE_MODE_RGMII_ID)
return PHY_INTERFACE_MODE_RGMII_ID;
return PHY_INTERFACE_MODE_RGMII;
}
}
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
return PHY_INTERFACE_MODE_GMII;
return PHY_INTERFACE_MODE_MII;
}
/* Initializes driver's PHY state, and attaches to the PHY.
* Returns 0 on success.
*/
static int init_phy(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
uint gigabit_support =
priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
SUPPORTED_1000baseT_Full : 0;
phy_interface_t interface;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
interface = gfar_get_interface(dev);
if (priv->phy_node) {
priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link,
0, interface);
if (!priv->phydev) {
dev_err(&dev->dev, "error: Could not attach to PHY\n");
return -ENODEV;
}
}
if (interface == PHY_INTERFACE_MODE_SGMII)
gfar_configure_serdes(dev);
/* Remove any features not supported by the controller */
priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
priv->phydev->advertising = priv->phydev->supported;
return 0;
}
/*
* Initialize TBI PHY interface for communicating with the
* SERDES lynx PHY on the chip. We communicate with this PHY
* through the MDIO bus on each controller, treating it as a
* "normal" PHY at the address found in the TBIPA register. We assume
* that the TBIPA register is valid. Either the MDIO bus code will set
* it to a value that doesn't conflict with other PHYs on the bus, or the
* value doesn't matter, as there are no other PHYs on the bus.
*/
static void gfar_configure_serdes(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct phy_device *tbiphy;
if (!priv->tbi_node) {
dev_warn(&dev->dev, "error: SGMII mode requires that the "
"device tree specify a tbi-handle\n");
return;
}
gianfar: Fix race in TBI/SerDes configuration The init_phy() function attaches to the PHY, then configures the SerDes<->TBI link (in SGMII mode). The TBI is on the MDIO bus with the PHY (sort of) and is accessed via the gianfar's MDIO registers, using the functions gfar_local_mdio_read/write(), which don't do any locking. The previously attached PHY will start a work-queue on a timer, and probably an irq handler as well, which will talk to the PHY and thus use the MDIO bus. This uses phy_read/write(), which have locking, but not against the gfar_local_mdio versions. The result is that PHY code will try to use the MDIO bus at the same time as the SerDes setup code, corrupting the transfers. Setting up the SerDes before attaching to the PHY will insure that there is no race between the SerDes code and *our* PHY, but doesn't fix everything. Typically the PHYs for all gianfar devices are on the same MDIO bus, which is associated with the first gianfar device. This means that the first gianfar's SerDes code could corrupt the MDIO transfers for a different gianfar's PHY. The lock used by phy_read/write() is contained in the mii_bus structure, which is pointed to by the PHY. This is difficult to access from the gianfar drivers, as there is no link between a gianfar device and the mii_bus which shares the same MDIO registers. As far as the device layer and drivers are concerned they are two unrelated devices (which happen to share registers). Generally all gianfar devices' PHYs will be on the bus associated with the first gianfar. But this might not be the case, so simply locking the gianfar's PHY's mii bus might not lock the mii bus that the SerDes setup code is going to use. We solve this by having the code that creates the gianfar platform device look in the device tree for an mdio device that shares the gianfar's registers. If one is found the ID of its platform device is saved in the gianfar's platform data. A new function in the gianfar mii code, gfar_get_miibus(), can use the bus ID to search through the platform devices for a gianfar_mdio device with the right ID. The platform device's driver data is the mii_bus structure, which the SerDes setup code can use to lock the current bus. Signed-off-by: Trent Piepho <tpiepho@freescale.com> CC: Andy Fleming <afleming@freescale.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-10-31 09:17:06 +08:00
tbiphy = of_phy_find_device(priv->tbi_node);
if (!tbiphy) {
dev_err(&dev->dev, "error: Could not get TBI device\n");
return;
}
/*
* If the link is already up, we must already be ok, and don't need to
* configure and reset the TBI<->SerDes link. Maybe U-Boot configured
* everything for us? Resetting it takes the link down and requires
* several seconds for it to come back.
*/
if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
return;
/* Single clk mode, mii mode off(for serdes communication) */
phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
phy_write(tbiphy, MII_ADVERTISE,
ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
ADVERTISE_1000XPSE_ASYM);
phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
}
static void init_registers(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
/* Initialize IMASK */
gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
/* Init hash registers to zero */
gfar_write(&priv->regs->igaddr0, 0);
gfar_write(&priv->regs->igaddr1, 0);
gfar_write(&priv->regs->igaddr2, 0);
gfar_write(&priv->regs->igaddr3, 0);
gfar_write(&priv->regs->igaddr4, 0);
gfar_write(&priv->regs->igaddr5, 0);
gfar_write(&priv->regs->igaddr6, 0);
gfar_write(&priv->regs->igaddr7, 0);
gfar_write(&priv->regs->gaddr0, 0);
gfar_write(&priv->regs->gaddr1, 0);
gfar_write(&priv->regs->gaddr2, 0);
gfar_write(&priv->regs->gaddr3, 0);
gfar_write(&priv->regs->gaddr4, 0);
gfar_write(&priv->regs->gaddr5, 0);
gfar_write(&priv->regs->gaddr6, 0);
gfar_write(&priv->regs->gaddr7, 0);
/* Zero out the rmon mib registers if it has them */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
/* Mask off the CAM interrupts */
gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
}
/* Initialize the max receive buffer length */
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
/* Initialize the Minimum Frame Length Register */
gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
}
/* Halt the receive and transmit queues */
static void gfar_halt_nodisable(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Mask all interrupts */
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Clear all interrupts */
gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
/* Stop the DMA, and wait for it to stop */
tempval = gfar_read(&priv->regs->dmactrl);
if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
!= (DMACTRL_GRS | DMACTRL_GTS)) {
tempval |= (DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
while (!(gfar_read(&priv->regs->ievent) &
(IEVENT_GRSC | IEVENT_GTSC)))
cpu_relax();
}
}
/* Halt the receive and transmit queues */
void gfar_halt(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
gfar_halt_nodisable(dev);
/* Disable Rx and Tx */
tempval = gfar_read(&regs->maccfg1);
tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
}
void stop_gfar(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
phy_stop(priv->phydev);
/* Lock it down */
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
gfar_halt(dev);
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
/* Free the IRQs */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
free_irq(priv->interruptError, dev);
free_irq(priv->interruptTransmit, dev);
free_irq(priv->interruptReceive, dev);
} else {
free_irq(priv->interruptTransmit, dev);
}
free_skb_resources(priv);
dma_free_coherent(&priv->ofdev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
}
/* If there are any tx skbs or rx skbs still around, free them.
* Then free tx_skbuff and rx_skbuff */
static void free_skb_resources(struct gfar_private *priv)
{
struct rxbd8 *rxbdp;
struct txbd8 *txbdp;
int i, j;
/* Go through all the buffer descriptors and free their data buffers */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
if (!priv->tx_skbuff[i])
continue;
dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
txbdp->lstatus = 0;
for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
txbdp++;
dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
txbdp->length, DMA_TO_DEVICE);
}
txbdp++;
dev_kfree_skb_any(priv->tx_skbuff[i]);
priv->tx_skbuff[i] = NULL;
}
kfree(priv->tx_skbuff);
rxbdp = priv->rx_bd_base;
/* rx_skbuff is not guaranteed to be allocated, so only
* free it and its contents if it is allocated */
if(priv->rx_skbuff != NULL) {
for (i = 0; i < priv->rx_ring_size; i++) {
if (priv->rx_skbuff[i]) {
dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
priv->rx_buffer_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]);
priv->rx_skbuff[i] = NULL;
}
rxbdp->lstatus = 0;
rxbdp->bufPtr = 0;
rxbdp++;
}
kfree(priv->rx_skbuff);
}
}
void gfar_start(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
/* Enable Rx and Tx in MACCFG1 */
tempval = gfar_read(&regs->maccfg1);
tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
gfar_write(&regs->maccfg1, tempval);
/* Initialize DMACTRL to have WWR and WOP */
tempval = gfar_read(&priv->regs->dmactrl);
tempval |= DMACTRL_INIT_SETTINGS;
gfar_write(&priv->regs->dmactrl, tempval);
/* Make sure we aren't stopped */
tempval = gfar_read(&priv->regs->dmactrl);
tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
gfar_write(&priv->regs->dmactrl, tempval);
/* Clear THLT/RHLT, so that the DMA starts polling now */
gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
/* Unmask the interrupts we look for */
gfar_write(&regs->imask, IMASK_DEFAULT);
dev->trans_start = jiffies;
}
/* Bring the controller up and running */
int startup_gfar(struct net_device *dev)
{
struct txbd8 *txbdp;
struct rxbd8 *rxbdp;
dma_addr_t addr = 0;
unsigned long vaddr;
int i;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
int err = 0;
u32 rctrl = 0;
u32 attrs = 0;
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Allocate memory for the buffer descriptors */
vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
sizeof (struct txbd8) * priv->tx_ring_size +
sizeof (struct rxbd8) * priv->rx_ring_size,
&addr, GFP_KERNEL);
if (vaddr == 0) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
dev->name);
return -ENOMEM;
}
priv->tx_bd_base = (struct txbd8 *) vaddr;
/* enet DMA only understands physical addresses */
gfar_write(&regs->tbase0, addr);
/* Start the rx descriptor ring where the tx ring leaves off */
addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
priv->rx_bd_base = (struct rxbd8 *) vaddr;
gfar_write(&regs->rbase0, addr);
/* Setup the skbuff rings */
priv->tx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->tx_ring_size, GFP_KERNEL);
if (NULL == priv->tx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
dev->name);
err = -ENOMEM;
goto tx_skb_fail;
}
for (i = 0; i < priv->tx_ring_size; i++)
priv->tx_skbuff[i] = NULL;
priv->rx_skbuff =
(struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
priv->rx_ring_size, GFP_KERNEL);
if (NULL == priv->rx_skbuff) {
if (netif_msg_ifup(priv))
printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
dev->name);
err = -ENOMEM;
goto rx_skb_fail;
}
for (i = 0; i < priv->rx_ring_size; i++)
priv->rx_skbuff[i] = NULL;
/* Initialize some variables in our dev structure */
priv->num_txbdfree = priv->tx_ring_size;
priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
priv->cur_rx = priv->rx_bd_base;
priv->skb_curtx = priv->skb_dirtytx = 0;
priv->skb_currx = 0;
/* Initialize Transmit Descriptor Ring */
txbdp = priv->tx_bd_base;
for (i = 0; i < priv->tx_ring_size; i++) {
txbdp->lstatus = 0;
txbdp->bufPtr = 0;
txbdp++;
}
/* Set the last descriptor in the ring to indicate wrap */
txbdp--;
txbdp->status |= TXBD_WRAP;
rxbdp = priv->rx_bd_base;
for (i = 0; i < priv->rx_ring_size; i++) {
struct sk_buff *skb;
skb = gfar_new_skb(dev);
if (!skb) {
printk(KERN_ERR "%s: Can't allocate RX buffers\n",
dev->name);
goto err_rxalloc_fail;
}
priv->rx_skbuff[i] = skb;
gfar_new_rxbdp(dev, rxbdp, skb);
rxbdp++;
}
/* Set the last descriptor in the ring to wrap */
rxbdp--;
rxbdp->status |= RXBD_WRAP;
/* If the device has multiple interrupts, register for
* them. Otherwise, only register for the one */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
/* Install our interrupt handlers for Error,
* Transmit, and Receive */
if (request_irq(priv->interruptError, gfar_error,
0, priv->int_name_er, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptError);
err = -1;
goto err_irq_fail;
}
if (request_irq(priv->interruptTransmit, gfar_transmit,
0, priv->int_name_tx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto tx_irq_fail;
}
if (request_irq(priv->interruptReceive, gfar_receive,
0, priv->int_name_rx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
dev->name, priv->interruptReceive);
err = -1;
goto rx_irq_fail;
}
} else {
if (request_irq(priv->interruptTransmit, gfar_interrupt,
0, priv->int_name_tx, dev) < 0) {
if (netif_msg_intr(priv))
printk(KERN_ERR "%s: Can't get IRQ %d\n",
dev->name, priv->interruptTransmit);
err = -1;
goto err_irq_fail;
}
}
phy_start(priv->phydev);
/* Configure the coalescing support */
gfar_write(&regs->txic, 0);
if (priv->txcoalescing)
gfar_write(&regs->txic, priv->txic);
gfar_write(&regs->rxic, 0);
if (priv->rxcoalescing)
gfar_write(&regs->rxic, priv->rxic);
if (priv->rx_csum_enable)
rctrl |= RCTRL_CHECKSUMMING;
if (priv->extended_hash) {
rctrl |= RCTRL_EXTHASH;
gfar_clear_exact_match(dev);
rctrl |= RCTRL_EMEN;
}
if (priv->padding) {
rctrl &= ~RCTRL_PAL_MASK;
rctrl |= RCTRL_PADDING(priv->padding);
}
/* Init rctrl based on our settings */
gfar_write(&priv->regs->rctrl, rctrl);
if (dev->features & NETIF_F_IP_CSUM)
gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
/* Set the extraction length and index */
attrs = ATTRELI_EL(priv->rx_stash_size) |
ATTRELI_EI(priv->rx_stash_index);
gfar_write(&priv->regs->attreli, attrs);
/* Start with defaults, and add stashing or locking
* depending on the approprate variables */
attrs = ATTR_INIT_SETTINGS;
if (priv->bd_stash_en)
attrs |= ATTR_BDSTASH;
if (priv->rx_stash_size != 0)
attrs |= ATTR_BUFSTASH;
gfar_write(&priv->regs->attr, attrs);
gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
/* Start the controller */
gfar_start(dev);
return 0;
rx_irq_fail:
free_irq(priv->interruptTransmit, dev);
tx_irq_fail:
free_irq(priv->interruptError, dev);
err_irq_fail:
err_rxalloc_fail:
rx_skb_fail:
free_skb_resources(priv);
tx_skb_fail:
dma_free_coherent(&priv->ofdev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
gfar_read(&regs->tbase0));
return err;
}
/* Called when something needs to use the ethernet device */
/* Returns 0 for success. */
static int gfar_enet_open(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
int err;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_enable(&priv->napi);
skb_queue_head_init(&priv->rx_recycle);
/* Initialize a bunch of registers */
init_registers(dev);
gfar_set_mac_address(dev);
err = init_phy(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
if(err) {
napi_disable(&priv->napi);
return err;
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
}
err = startup_gfar(dev);
if (err) {
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_disable(&priv->napi);
return err;
}
netif_start_queue(dev);
device_set_wakeup_enable(&dev->dev, priv->wol_en);
return err;
}
static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
{
struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
memset(fcb, 0, GMAC_FCB_LEN);
return fcb;
}
static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
{
u8 flags = 0;
/* If we're here, it's a IP packet with a TCP or UDP
* payload. We set it to checksum, using a pseudo-header
* we provide
*/
flags = TXFCB_DEFAULT;
/* Tell the controller what the protocol is */
/* And provide the already calculated phcs */
if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
flags |= TXFCB_UDP;
fcb->phcs = udp_hdr(skb)->check;
} else
fcb->phcs = tcp_hdr(skb)->check;
/* l3os is the distance between the start of the
* frame (skb->data) and the start of the IP hdr.
* l4os is the distance between the start of the
* l3 hdr and the l4 hdr */
fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
fcb->l4os = skb_network_header_len(skb);
fcb->flags = flags;
}
void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
{
fcb->flags |= TXFCB_VLN;
fcb->vlctl = vlan_tx_tag_get(skb);
}
static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
struct txbd8 *base, int ring_size)
{
struct txbd8 *new_bd = bdp + stride;
return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
}
static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
int ring_size)
{
return skip_txbd(bdp, 1, base, ring_size);
}
/* This is called by the kernel when a frame is ready for transmission. */
/* It is pointed to by the dev->hard_start_xmit function pointer */
static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txfcb *fcb = NULL;
struct txbd8 *txbdp, *txbdp_start, *base;
u32 lstatus;
int i;
u32 bufaddr;
unsigned long flags;
unsigned int nr_frags, length;
base = priv->tx_bd_base;
/* make space for additional header when fcb is needed */
if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
(priv->vlgrp && vlan_tx_tag_present(skb))) &&
(skb_headroom(skb) < GMAC_FCB_LEN)) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
if (!skb_new) {
dev->stats.tx_errors++;
kfree_skb(skb);
return NETDEV_TX_OK;
}
kfree_skb(skb);
skb = skb_new;
}
/* total number of fragments in the SKB */
nr_frags = skb_shinfo(skb)->nr_frags;
spin_lock_irqsave(&priv->txlock, flags);
/* check if there is space to queue this packet */
if ((nr_frags+1) > priv->num_txbdfree) {
/* no space, stop the queue */
netif_stop_queue(dev);
dev->stats.tx_fifo_errors++;
spin_unlock_irqrestore(&priv->txlock, flags);
return NETDEV_TX_BUSY;
}
/* Update transmit stats */
dev->stats.tx_bytes += skb->len;
txbdp = txbdp_start = priv->cur_tx;
if (nr_frags == 0) {
lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
} else {
/* Place the fragment addresses and lengths into the TxBDs */
for (i = 0; i < nr_frags; i++) {
/* Point at the next BD, wrapping as needed */
txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
length = skb_shinfo(skb)->frags[i].size;
lstatus = txbdp->lstatus | length |
BD_LFLAG(TXBD_READY);
/* Handle the last BD specially */
if (i == nr_frags - 1)
lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
bufaddr = dma_map_page(&priv->ofdev->dev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
length,
DMA_TO_DEVICE);
/* set the TxBD length and buffer pointer */
txbdp->bufPtr = bufaddr;
txbdp->lstatus = lstatus;
}
lstatus = txbdp_start->lstatus;
}
/* Set up checksumming */
if (CHECKSUM_PARTIAL == skb->ip_summed) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
gfar_tx_checksum(skb, fcb);
}
if (priv->vlgrp && vlan_tx_tag_present(skb)) {
if (unlikely(NULL == fcb)) {
fcb = gfar_add_fcb(skb);
lstatus |= BD_LFLAG(TXBD_TOE);
}
gfar_tx_vlan(skb, fcb);
}
/* setup the TxBD length and buffer pointer for the first BD */
priv->tx_skbuff[priv->skb_curtx] = skb;
txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
/*
* The powerpc-specific eieio() is used, as wmb() has too strong
* semantics (it requires synchronization between cacheable and
* uncacheable mappings, which eieio doesn't provide and which we
* don't need), thus requiring a more expensive sync instruction. At
* some point, the set of architecture-independent barrier functions
* should be expanded to include weaker barriers.
*/
eieio();
txbdp_start->lstatus = lstatus;
/* Update the current skb pointer to the next entry we will use
* (wrapping if necessary) */
priv->skb_curtx = (priv->skb_curtx + 1) &
TX_RING_MOD_MASK(priv->tx_ring_size);
priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
/* reduce TxBD free count */
priv->num_txbdfree -= (nr_frags + 1);
dev->trans_start = jiffies;
/* If the next BD still needs to be cleaned up, then the bds
are full. We need to tell the kernel to stop sending us stuff. */
if (!priv->num_txbdfree) {
netif_stop_queue(dev);
dev->stats.tx_fifo_errors++;
}
/* Tell the DMA to go go go */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
/* Unlock priv */
spin_unlock_irqrestore(&priv->txlock, flags);
return NETDEV_TX_OK;
}
/* Stops the kernel queue, and halts the controller */
static int gfar_close(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
napi_disable(&priv->napi);
skb_queue_purge(&priv->rx_recycle);
cancel_work_sync(&priv->reset_task);
stop_gfar(dev);
/* Disconnect from the PHY */
phy_disconnect(priv->phydev);
priv->phydev = NULL;
netif_stop_queue(dev);
return 0;
}
/* Changes the mac address if the controller is not running. */
static int gfar_set_mac_address(struct net_device *dev)
{
gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
return 0;
}
/* Enables and disables VLAN insertion/extraction */
static void gfar_vlan_rx_register(struct net_device *dev,
struct vlan_group *grp)
{
struct gfar_private *priv = netdev_priv(dev);
unsigned long flags;
u32 tempval;
spin_lock_irqsave(&priv->rxlock, flags);
priv->vlgrp = grp;
if (grp) {
/* Enable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval |= TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Enable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval |= RCTRL_VLEX;
tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
gfar_write(&priv->regs->rctrl, tempval);
} else {
/* Disable VLAN tag insertion */
tempval = gfar_read(&priv->regs->tctrl);
tempval &= ~TCTRL_VLINS;
gfar_write(&priv->regs->tctrl, tempval);
/* Disable VLAN tag extraction */
tempval = gfar_read(&priv->regs->rctrl);
tempval &= ~RCTRL_VLEX;
/* If parse is no longer required, then disable parser */
if (tempval & RCTRL_REQ_PARSER)
tempval |= RCTRL_PRSDEP_INIT;
else
tempval &= ~RCTRL_PRSDEP_INIT;
gfar_write(&priv->regs->rctrl, tempval);
}
gfar_change_mtu(dev, dev->mtu);
spin_unlock_irqrestore(&priv->rxlock, flags);
}
static int gfar_change_mtu(struct net_device *dev, int new_mtu)
{
int tempsize, tempval;
struct gfar_private *priv = netdev_priv(dev);
int oldsize = priv->rx_buffer_size;
int frame_size = new_mtu + ETH_HLEN;
if (priv->vlgrp)
frame_size += VLAN_HLEN;
if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
if (netif_msg_drv(priv))
printk(KERN_ERR "%s: Invalid MTU setting\n",
dev->name);
return -EINVAL;
}
if (gfar_uses_fcb(priv))
frame_size += GMAC_FCB_LEN;
frame_size += priv->padding;
tempsize =
(frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
INCREMENTAL_BUFFER_SIZE;
/* Only stop and start the controller if it isn't already
* stopped, and we changed something */
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
stop_gfar(dev);
priv->rx_buffer_size = tempsize;
dev->mtu = new_mtu;
gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
/* If the mtu is larger than the max size for standard
* ethernet frames (ie, a jumbo frame), then set maccfg2
* to allow huge frames, and to check the length */
tempval = gfar_read(&priv->regs->maccfg2);
if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
else
tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
gfar_write(&priv->regs->maccfg2, tempval);
if ((oldsize != tempsize) && (dev->flags & IFF_UP))
startup_gfar(dev);
return 0;
}
/* gfar_reset_task gets scheduled when a packet has not been
* transmitted after a set amount of time.
* For now, assume that clearing out all the structures, and
* starting over will fix the problem.
*/
static void gfar_reset_task(struct work_struct *work)
{
struct gfar_private *priv = container_of(work, struct gfar_private,
reset_task);
struct net_device *dev = priv->ndev;
if (dev->flags & IFF_UP) {
gianfar: stop send queue before resetting gianfar After a transmit timed out, the reset task will be called, which will free the allocated resources(stop_gfar). If gfar_poll will be called before the resources get allocated again gfar_clean_tx_ring will call dev_kfree_skb_any(NULL). Example crash: ops: Kernel access of bad area, sig: 11 [#1] PREEMPT RSBBA100 Modules linked in: NIP: c01a10c4 LR: c013b254 CTR: c013c038 REGS: c02e7d20 TRAP: 0300 Not tainted (2.6.27.20) MSR: 00001032 <ME,IR,DR> CR: 24000082 XER: 20000000 DAR: 000000a0, DSISR: 20000000 TASK = c02ce578[0] 'swapper' THREAD: c02e6000 GPR00: 000000a0 c02e7dd0 c02ce578 00000000 00000040 00000001 c02ec1c0 00001032 GPR08: c080d1e0 df9ea800 00000000 00000000 24000082 ffffffff 0404f000 00000000 GPR16: ffffffbf ffffffff ffffffff ffdff7ff ffffffff c02d0fd4 00100100 00200200 GPR24: c031220c 00000001 00000001 00000000 00000000 df849800 ff109000 df849b80 NIP [c01a10c4] dev_kfree_skb_irq+0x18/0x70 LR [c013b254] gfar_clean_tx_ring+0x70/0x11c Call Trace: [c02e7dd0] [c003e978] update_wall_time+0x730/0x744 (unreliable) [c02e7df0] [c013b254] gfar_clean_tx_ring+0x70/0x11c [c02e7e10] [c013c07c] gfar_poll+0x44/0x150 [c02e7e30] [c01a064c] net_rx_action+0xa8/0x19c [c02e7e70] [c00251d4] __do_softirq+0x64/0xc0 [c02e7e90] [c0006384] do_softirq+0x40/0x58 [c02e7ea0] [c00250a8] irq_exit+0x40/0x9c [c02e7eb0] [c000642c] do_IRQ+0x90/0xac [c02e7ec0] [c0010ab4] ret_from_except+0x0/0x14 --- Exception: 501 at cpu_idle+0x9c/0xf8 LR = cpu_idle+0x9c/0xf8 [c02e7f80] [c0009820] cpu_idle+0x58/0xf8 (unreliable) [c02e7fa0] [c01fb8c8] __got2_end+0x7c/0x90 [c02e7fc0] [c026c794] start_kernel+0x2c0/0x2d4 [c02e7ff0] [00003438] 0x3438 Instruction dump: 7fa00124 80010024 bba10014 38210020 7c0803a6 4e800020 9421ffe0 7c0802a6 7c6b1b78 90010024 380300a0 bfa10014 <7d200028> 3129ffff 7d20012d 40a2fff4 Kernel panic - not syncing: Fatal exception in interrupt This Patch calls netif_stop_queue before calling stop_gfar. Signed-off-by: Markus Brunner <super.firetwister@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-15 17:35:40 +08:00
netif_stop_queue(dev);
stop_gfar(dev);
startup_gfar(dev);
gianfar: stop send queue before resetting gianfar After a transmit timed out, the reset task will be called, which will free the allocated resources(stop_gfar). If gfar_poll will be called before the resources get allocated again gfar_clean_tx_ring will call dev_kfree_skb_any(NULL). Example crash: ops: Kernel access of bad area, sig: 11 [#1] PREEMPT RSBBA100 Modules linked in: NIP: c01a10c4 LR: c013b254 CTR: c013c038 REGS: c02e7d20 TRAP: 0300 Not tainted (2.6.27.20) MSR: 00001032 <ME,IR,DR> CR: 24000082 XER: 20000000 DAR: 000000a0, DSISR: 20000000 TASK = c02ce578[0] 'swapper' THREAD: c02e6000 GPR00: 000000a0 c02e7dd0 c02ce578 00000000 00000040 00000001 c02ec1c0 00001032 GPR08: c080d1e0 df9ea800 00000000 00000000 24000082 ffffffff 0404f000 00000000 GPR16: ffffffbf ffffffff ffffffff ffdff7ff ffffffff c02d0fd4 00100100 00200200 GPR24: c031220c 00000001 00000001 00000000 00000000 df849800 ff109000 df849b80 NIP [c01a10c4] dev_kfree_skb_irq+0x18/0x70 LR [c013b254] gfar_clean_tx_ring+0x70/0x11c Call Trace: [c02e7dd0] [c003e978] update_wall_time+0x730/0x744 (unreliable) [c02e7df0] [c013b254] gfar_clean_tx_ring+0x70/0x11c [c02e7e10] [c013c07c] gfar_poll+0x44/0x150 [c02e7e30] [c01a064c] net_rx_action+0xa8/0x19c [c02e7e70] [c00251d4] __do_softirq+0x64/0xc0 [c02e7e90] [c0006384] do_softirq+0x40/0x58 [c02e7ea0] [c00250a8] irq_exit+0x40/0x9c [c02e7eb0] [c000642c] do_IRQ+0x90/0xac [c02e7ec0] [c0010ab4] ret_from_except+0x0/0x14 --- Exception: 501 at cpu_idle+0x9c/0xf8 LR = cpu_idle+0x9c/0xf8 [c02e7f80] [c0009820] cpu_idle+0x58/0xf8 (unreliable) [c02e7fa0] [c01fb8c8] __got2_end+0x7c/0x90 [c02e7fc0] [c026c794] start_kernel+0x2c0/0x2d4 [c02e7ff0] [00003438] 0x3438 Instruction dump: 7fa00124 80010024 bba10014 38210020 7c0803a6 4e800020 9421ffe0 7c0802a6 7c6b1b78 90010024 380300a0 bfa10014 <7d200028> 3129ffff 7d20012d 40a2fff4 Kernel panic - not syncing: Fatal exception in interrupt This Patch calls netif_stop_queue before calling stop_gfar. Signed-off-by: Markus Brunner <super.firetwister@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-15 17:35:40 +08:00
netif_start_queue(dev);
}
netif_tx_schedule_all(dev);
}
static void gfar_timeout(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
dev->stats.tx_errors++;
schedule_work(&priv->reset_task);
}
/* Interrupt Handler for Transmit complete */
static int gfar_clean_tx_ring(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct txbd8 *bdp;
struct txbd8 *lbdp = NULL;
struct txbd8 *base = priv->tx_bd_base;
struct sk_buff *skb;
int skb_dirtytx;
int tx_ring_size = priv->tx_ring_size;
int frags = 0;
int i;
int howmany = 0;
u32 lstatus;
bdp = priv->dirty_tx;
skb_dirtytx = priv->skb_dirtytx;
while ((skb = priv->tx_skbuff[skb_dirtytx])) {
frags = skb_shinfo(skb)->nr_frags;
lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
lstatus = lbdp->lstatus;
/* Only clean completed frames */
if ((lstatus & BD_LFLAG(TXBD_READY)) &&
(lstatus & BD_LENGTH_MASK))
break;
dma_unmap_single(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
for (i = 0; i < frags; i++) {
dma_unmap_page(&priv->ofdev->dev,
bdp->bufPtr,
bdp->length,
DMA_TO_DEVICE);
bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
bdp = next_txbd(bdp, base, tx_ring_size);
}
/*
* If there's room in the queue (limit it to rx_buffer_size)
* we add this skb back into the pool, if it's the right size
*/
if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
skb_recycle_check(skb, priv->rx_buffer_size +
RXBUF_ALIGNMENT))
__skb_queue_head(&priv->rx_recycle, skb);
else
dev_kfree_skb_any(skb);
priv->tx_skbuff[skb_dirtytx] = NULL;
skb_dirtytx = (skb_dirtytx + 1) &
TX_RING_MOD_MASK(tx_ring_size);
howmany++;
priv->num_txbdfree += frags + 1;
}
/* If we freed a buffer, we can restart transmission, if necessary */
if (netif_queue_stopped(dev) && priv->num_txbdfree)
netif_wake_queue(dev);
/* Update dirty indicators */
priv->skb_dirtytx = skb_dirtytx;
priv->dirty_tx = bdp;
dev->stats.tx_packets += howmany;
return howmany;
}
static void gfar_schedule_cleanup(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
gianfar: Fix soft lockup with multi-interrupt TSECs This patch fixes following bug: BUG: soft lockup - CPU#0 stuck for 61s! [S03mountvirtfs-:922] Modules linked in: NIP: c006505c LR: c00675f0 CTR: c0020438 REGS: c7a1db90 TRAP: 0901 Not tainted (2.6.28-rc8-01311-g8c7396a) MSR: 00009032 <EE,ME,IR,DR> CR: 28248442 XER: 20000000 TASK = c7a288a0[922] 'S03mountvirtfs-' THREAD: c7a1c000 GPR00: 00009032 c7a1dc40 c7a288a0 00000024 c79a1840 00000000 00000300 00000020 GPR08: c035f97c 00000000 00004008 c04d5210 00000000 NIP [c006505c] handle_IRQ_event+0x34/0xb0 LR [c00675f0] handle_level_irq+0xa8/0x144 Call Trace: [c7a1dc40] [c00204d8] ipic_mask_irq+0xa0/0xb4 (unreliable) [c7a1dc60] [c00675f0] handle_level_irq+0xa8/0x144 [c7a1dc80] [c00067f8] do_IRQ+0x78/0x108 [c7a1dc90] [c0014d7c] ret_from_except+0x0/0x14 --- Exception: 501 at gfar_schedule_cleanup+0x54/0x7c LR = gfar_transmit+0x14/0x28 [c7a1dd50] [c0352a3c] _spin_unlock_irqrestore+0x18/0x30 (unreliable) [c7a1dd60] [c01f49a8] gfar_transmit+0x14/0x28 [c7a1dd70] [c0065084] handle_IRQ_event+0x5c/0xb0 [c7a1dd90] [c00675f0] handle_level_irq+0xa8/0x144 [c7a1ddb0] [c00067f8] do_IRQ+0x78/0x108 [c7a1ddc0] [c0014d7c] ret_from_except+0x0/0x14 --- Exception: 501 at up_read+0x10/0x48 LR = do_page_fault+0x2b0/0x3e0 [c7a1de80] [c7a177e8] 0xc7a177e8 (unreliable) [c7a1de90] [c0017964] do_page_fault+0x2b0/0x3e0 [c7a1df40] [c0014b14] handle_page_fault+0xc/0x80 --- Exception: 301 at 0xfe98b7c LR = 0xfe989c0 Instruction dump: 7c0802a6 bf810010 7c9f2378 7c7c1b78 90010024 80040004 70090020 40820010 7c0000a6 60008000 7c000124 3bc00000 <3ba00000> 48000010 83ff0014 2f9f0000 The bug introduced by commit 8c7396aebb68994c0519e438eecdf4d5fa9c7844 ("gianfar: Merge Tx and Rx interrupt for scheduling clean up ring"). The commit merged TX and RX interrupt code into a single routine that schedules NAPI, but no locks were introduced. This causes irq races, so when irqs are enabled and netif_rx_schedule_prep() returns 0, nobody disable the interrupts again. This leads to interrupt storm and finally to the lockup. Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-13 13:57:34 +08:00
unsigned long flags;
spin_lock_irqsave(&priv->txlock, flags);
spin_lock(&priv->rxlock);
if (napi_schedule_prep(&priv->napi)) {
gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
__napi_schedule(&priv->napi);
} else {
/*
* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived.
*/
gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
}
gianfar: Fix soft lockup with multi-interrupt TSECs This patch fixes following bug: BUG: soft lockup - CPU#0 stuck for 61s! [S03mountvirtfs-:922] Modules linked in: NIP: c006505c LR: c00675f0 CTR: c0020438 REGS: c7a1db90 TRAP: 0901 Not tainted (2.6.28-rc8-01311-g8c7396a) MSR: 00009032 <EE,ME,IR,DR> CR: 28248442 XER: 20000000 TASK = c7a288a0[922] 'S03mountvirtfs-' THREAD: c7a1c000 GPR00: 00009032 c7a1dc40 c7a288a0 00000024 c79a1840 00000000 00000300 00000020 GPR08: c035f97c 00000000 00004008 c04d5210 00000000 NIP [c006505c] handle_IRQ_event+0x34/0xb0 LR [c00675f0] handle_level_irq+0xa8/0x144 Call Trace: [c7a1dc40] [c00204d8] ipic_mask_irq+0xa0/0xb4 (unreliable) [c7a1dc60] [c00675f0] handle_level_irq+0xa8/0x144 [c7a1dc80] [c00067f8] do_IRQ+0x78/0x108 [c7a1dc90] [c0014d7c] ret_from_except+0x0/0x14 --- Exception: 501 at gfar_schedule_cleanup+0x54/0x7c LR = gfar_transmit+0x14/0x28 [c7a1dd50] [c0352a3c] _spin_unlock_irqrestore+0x18/0x30 (unreliable) [c7a1dd60] [c01f49a8] gfar_transmit+0x14/0x28 [c7a1dd70] [c0065084] handle_IRQ_event+0x5c/0xb0 [c7a1dd90] [c00675f0] handle_level_irq+0xa8/0x144 [c7a1ddb0] [c00067f8] do_IRQ+0x78/0x108 [c7a1ddc0] [c0014d7c] ret_from_except+0x0/0x14 --- Exception: 501 at up_read+0x10/0x48 LR = do_page_fault+0x2b0/0x3e0 [c7a1de80] [c7a177e8] 0xc7a177e8 (unreliable) [c7a1de90] [c0017964] do_page_fault+0x2b0/0x3e0 [c7a1df40] [c0014b14] handle_page_fault+0xc/0x80 --- Exception: 301 at 0xfe98b7c LR = 0xfe989c0 Instruction dump: 7c0802a6 bf810010 7c9f2378 7c7c1b78 90010024 80040004 70090020 40820010 7c0000a6 60008000 7c000124 3bc00000 <3ba00000> 48000010 83ff0014 2f9f0000 The bug introduced by commit 8c7396aebb68994c0519e438eecdf4d5fa9c7844 ("gianfar: Merge Tx and Rx interrupt for scheduling clean up ring"). The commit merged TX and RX interrupt code into a single routine that schedules NAPI, but no locks were introduced. This causes irq races, so when irqs are enabled and netif_rx_schedule_prep() returns 0, nobody disable the interrupts again. This leads to interrupt storm and finally to the lockup. Signed-off-by: Anton Vorontsov <avorontsov@ru.mvista.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-13 13:57:34 +08:00
spin_unlock(&priv->rxlock);
spin_unlock_irqrestore(&priv->txlock, flags);
}
/* Interrupt Handler for Transmit complete */
static irqreturn_t gfar_transmit(int irq, void *dev_id)
{
gfar_schedule_cleanup((struct net_device *)dev_id);
return IRQ_HANDLED;
}
static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
struct sk_buff *skb)
{
struct gfar_private *priv = netdev_priv(dev);
u32 lstatus;
bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
lstatus |= BD_LFLAG(RXBD_WRAP);
eieio();
bdp->lstatus = lstatus;
}
struct sk_buff * gfar_new_skb(struct net_device *dev)
{
unsigned int alignamount;
struct gfar_private *priv = netdev_priv(dev);
struct sk_buff *skb = NULL;
skb = __skb_dequeue(&priv->rx_recycle);
if (!skb)
skb = netdev_alloc_skb(dev,
priv->rx_buffer_size + RXBUF_ALIGNMENT);
if (!skb)
return NULL;
alignamount = RXBUF_ALIGNMENT -
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
(((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
/* We need the data buffer to be aligned properly. We will reserve
* as many bytes as needed to align the data properly
*/
skb_reserve(skb, alignamount);
return skb;
}
static inline void count_errors(unsigned short status, struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct net_device_stats *stats = &dev->stats;
struct gfar_extra_stats *estats = &priv->extra_stats;
/* If the packet was truncated, none of the other errors
* matter */
if (status & RXBD_TRUNCATED) {
stats->rx_length_errors++;
estats->rx_trunc++;
return;
}
/* Count the errors, if there were any */
if (status & (RXBD_LARGE | RXBD_SHORT)) {
stats->rx_length_errors++;
if (status & RXBD_LARGE)
estats->rx_large++;
else
estats->rx_short++;
}
if (status & RXBD_NONOCTET) {
stats->rx_frame_errors++;
estats->rx_nonoctet++;
}
if (status & RXBD_CRCERR) {
estats->rx_crcerr++;
stats->rx_crc_errors++;
}
if (status & RXBD_OVERRUN) {
estats->rx_overrun++;
stats->rx_crc_errors++;
}
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
irqreturn_t gfar_receive(int irq, void *dev_id)
{
gfar_schedule_cleanup((struct net_device *)dev_id);
return IRQ_HANDLED;
}
static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
{
/* If valid headers were found, and valid sums
* were verified, then we tell the kernel that no
* checksumming is necessary. Otherwise, it is */
if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
}
/* gfar_process_frame() -- handle one incoming packet if skb
* isn't NULL. */
static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
int amount_pull)
{
struct gfar_private *priv = netdev_priv(dev);
struct rxfcb *fcb = NULL;
int ret;
/* fcb is at the beginning if exists */
fcb = (struct rxfcb *)skb->data;
/* Remove the FCB from the skb */
/* Remove the padded bytes, if there are any */
if (amount_pull)
skb_pull(skb, amount_pull);
if (priv->rx_csum_enable)
gfar_rx_checksum(skb, fcb);
/* Tell the skb what kind of packet this is */
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet up the stack */
if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
else
ret = netif_receive_skb(skb);
if (NET_RX_DROP == ret)
priv->extra_stats.kernel_dropped++;
return 0;
}
/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
* until the budget/quota has been reached. Returns the number
* of frames handled
*/
int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
{
struct rxbd8 *bdp, *base;
struct sk_buff *skb;
int pkt_len;
int amount_pull;
int howmany = 0;
struct gfar_private *priv = netdev_priv(dev);
/* Get the first full descriptor */
bdp = priv->cur_rx;
base = priv->rx_bd_base;
amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
priv->padding;
while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
struct sk_buff *newskb;
rmb();
/* Add another skb for the future */
newskb = gfar_new_skb(dev);
skb = priv->rx_skbuff[priv->skb_currx];
dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
priv->rx_buffer_size, DMA_FROM_DEVICE);
/* We drop the frame if we failed to allocate a new buffer */
if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
bdp->status & RXBD_ERR)) {
count_errors(bdp->status, dev);
if (unlikely(!newskb))
newskb = skb;
else if (skb)
__skb_queue_head(&priv->rx_recycle, skb);
} else {
/* Increment the number of packets */
dev->stats.rx_packets++;
howmany++;
if (likely(skb)) {
pkt_len = bdp->length - ETH_FCS_LEN;
/* Remove the FCS from the packet length */
skb_put(skb, pkt_len);
dev->stats.rx_bytes += pkt_len;
if (in_irq() || irqs_disabled())
printk("Interrupt problem!\n");
gfar_process_frame(dev, skb, amount_pull);
} else {
if (netif_msg_rx_err(priv))
printk(KERN_WARNING
"%s: Missing skb!\n", dev->name);
dev->stats.rx_dropped++;
priv->extra_stats.rx_skbmissing++;
}
}
priv->rx_skbuff[priv->skb_currx] = newskb;
/* Setup the new bdp */
gfar_new_rxbdp(dev, bdp, newskb);
/* Update to the next pointer */
bdp = next_bd(bdp, base, priv->rx_ring_size);
/* update to point at the next skb */
priv->skb_currx =
(priv->skb_currx + 1) &
RX_RING_MOD_MASK(priv->rx_ring_size);
}
/* Update the current rxbd pointer to be the next one */
priv->cur_rx = bdp;
return howmany;
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
static int gfar_poll(struct napi_struct *napi, int budget)
{
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
struct net_device *dev = priv->ndev;
int tx_cleaned = 0;
int rx_cleaned = 0;
unsigned long flags;
/* Clear IEVENT, so interrupts aren't called again
* because of the packets that have already arrived */
gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
/* If we fail to get the lock, don't bother with the TX BDs */
if (spin_trylock_irqsave(&priv->txlock, flags)) {
tx_cleaned = gfar_clean_tx_ring(dev);
spin_unlock_irqrestore(&priv->txlock, flags);
}
rx_cleaned = gfar_clean_rx_ring(dev, budget);
if (tx_cleaned)
return budget;
if (rx_cleaned < budget) {
napi_complete(napi);
/* Clear the halt bit in RSTAT */
gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
gfar_write(&priv->regs->imask, IMASK_DEFAULT);
/* If we are coalescing interrupts, update the timer */
/* Otherwise, clear it */
if (likely(priv->rxcoalescing)) {
gfar_write(&priv->regs->rxic, 0);
gfar_write(&priv->regs->rxic, priv->rxic);
}
if (likely(priv->txcoalescing)) {
gfar_write(&priv->regs->txic, 0);
gfar_write(&priv->regs->txic, priv->txic);
}
}
return rx_cleaned;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void gfar_netpoll(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
/* If the device has multiple interrupts, run tx/rx */
if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
disable_irq(priv->interruptTransmit);
disable_irq(priv->interruptReceive);
disable_irq(priv->interruptError);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptError);
enable_irq(priv->interruptReceive);
enable_irq(priv->interruptTransmit);
} else {
disable_irq(priv->interruptTransmit);
gfar_interrupt(priv->interruptTransmit, dev);
enable_irq(priv->interruptTransmit);
}
}
#endif
/* The interrupt handler for devices with one interrupt */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t gfar_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Check for reception */
if (events & IEVENT_RX_MASK)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
gfar_receive(irq, dev_id);
/* Check for transmit completion */
if (events & IEVENT_TX_MASK)
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
gfar_transmit(irq, dev_id);
/* Check for errors */
if (events & IEVENT_ERR_MASK)
gfar_error(irq, dev_id);
return IRQ_HANDLED;
}
/* Called every time the controller might need to be made
* aware of new link state. The PHY code conveys this
* information through variables in the phydev structure, and this
* function converts those variables into the appropriate
* register values, and can bring down the device if needed.
*/
static void adjust_link(struct net_device *dev)
{
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
unsigned long flags;
struct phy_device *phydev = priv->phydev;
int new_state = 0;
spin_lock_irqsave(&priv->txlock, flags);
if (phydev->link) {
u32 tempval = gfar_read(&regs->maccfg2);
u32 ecntrl = gfar_read(&regs->ecntrl);
/* Now we make sure that we can be in full duplex mode.
* If not, we operate in half-duplex mode. */
if (phydev->duplex != priv->oldduplex) {
new_state = 1;
if (!(phydev->duplex))
tempval &= ~(MACCFG2_FULL_DUPLEX);
else
tempval |= MACCFG2_FULL_DUPLEX;
priv->oldduplex = phydev->duplex;
}
if (phydev->speed != priv->oldspeed) {
new_state = 1;
switch (phydev->speed) {
case 1000:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
ecntrl &= ~(ECNTRL_R100);
break;
case 100:
case 10:
tempval =
((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
/* Reduced mode distinguishes
* between 10 and 100 */
if (phydev->speed == SPEED_100)
ecntrl |= ECNTRL_R100;
else
ecntrl &= ~(ECNTRL_R100);
break;
default:
if (netif_msg_link(priv))
printk(KERN_WARNING
"%s: Ack! Speed (%d) is not 10/100/1000!\n",
dev->name, phydev->speed);
break;
}
priv->oldspeed = phydev->speed;
}
gfar_write(&regs->maccfg2, tempval);
gfar_write(&regs->ecntrl, ecntrl);
if (!priv->oldlink) {
new_state = 1;
priv->oldlink = 1;
}
} else if (priv->oldlink) {
new_state = 1;
priv->oldlink = 0;
priv->oldspeed = 0;
priv->oldduplex = -1;
}
if (new_state && netif_msg_link(priv))
phy_print_status(phydev);
spin_unlock_irqrestore(&priv->txlock, flags);
}
/* Update the hash table based on the current list of multicast
* addresses we subscribe to. Also, change the promiscuity of
* the device based on the flags (this function is called
* whenever dev->flags is changed */
static void gfar_set_multi(struct net_device *dev)
{
struct dev_mc_list *mc_ptr;
struct gfar_private *priv = netdev_priv(dev);
struct gfar __iomem *regs = priv->regs;
u32 tempval;
if(dev->flags & IFF_PROMISC) {
/* Set RCTRL to PROM */
tempval = gfar_read(&regs->rctrl);
tempval |= RCTRL_PROM;
gfar_write(&regs->rctrl, tempval);
} else {
/* Set RCTRL to not PROM */
tempval = gfar_read(&regs->rctrl);
tempval &= ~(RCTRL_PROM);
gfar_write(&regs->rctrl, tempval);
}
if(dev->flags & IFF_ALLMULTI) {
/* Set the hash to rx all multicast frames */
gfar_write(&regs->igaddr0, 0xffffffff);
gfar_write(&regs->igaddr1, 0xffffffff);
gfar_write(&regs->igaddr2, 0xffffffff);
gfar_write(&regs->igaddr3, 0xffffffff);
gfar_write(&regs->igaddr4, 0xffffffff);
gfar_write(&regs->igaddr5, 0xffffffff);
gfar_write(&regs->igaddr6, 0xffffffff);
gfar_write(&regs->igaddr7, 0xffffffff);
gfar_write(&regs->gaddr0, 0xffffffff);
gfar_write(&regs->gaddr1, 0xffffffff);
gfar_write(&regs->gaddr2, 0xffffffff);
gfar_write(&regs->gaddr3, 0xffffffff);
gfar_write(&regs->gaddr4, 0xffffffff);
gfar_write(&regs->gaddr5, 0xffffffff);
gfar_write(&regs->gaddr6, 0xffffffff);
gfar_write(&regs->gaddr7, 0xffffffff);
} else {
int em_num;
int idx;
/* zero out the hash */
gfar_write(&regs->igaddr0, 0x0);
gfar_write(&regs->igaddr1, 0x0);
gfar_write(&regs->igaddr2, 0x0);
gfar_write(&regs->igaddr3, 0x0);
gfar_write(&regs->igaddr4, 0x0);
gfar_write(&regs->igaddr5, 0x0);
gfar_write(&regs->igaddr6, 0x0);
gfar_write(&regs->igaddr7, 0x0);
gfar_write(&regs->gaddr0, 0x0);
gfar_write(&regs->gaddr1, 0x0);
gfar_write(&regs->gaddr2, 0x0);
gfar_write(&regs->gaddr3, 0x0);
gfar_write(&regs->gaddr4, 0x0);
gfar_write(&regs->gaddr5, 0x0);
gfar_write(&regs->gaddr6, 0x0);
gfar_write(&regs->gaddr7, 0x0);
/* If we have extended hash tables, we need to
* clear the exact match registers to prepare for
* setting them */
if (priv->extended_hash) {
em_num = GFAR_EM_NUM + 1;
gfar_clear_exact_match(dev);
idx = 1;
} else {
idx = 0;
em_num = 0;
}
if(dev->mc_count == 0)
return;
/* Parse the list, and set the appropriate bits */
for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
if (idx < em_num) {
gfar_set_mac_for_addr(dev, idx,
mc_ptr->dmi_addr);
idx++;
} else
gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
}
}
return;
}
/* Clears each of the exact match registers to zero, so they
* don't interfere with normal reception */
static void gfar_clear_exact_match(struct net_device *dev)
{
int idx;
u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
}
/* Set the appropriate hash bit for the given addr */
/* The algorithm works like so:
* 1) Take the Destination Address (ie the multicast address), and
* do a CRC on it (little endian), and reverse the bits of the
* result.
* 2) Use the 8 most significant bits as a hash into a 256-entry
* table. The table is controlled through 8 32-bit registers:
* gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
* gaddr7. This means that the 3 most significant bits in the
* hash index which gaddr register to use, and the 5 other bits
* indicate which bit (assuming an IBM numbering scheme, which
* for PowerPC (tm) is usually the case) in the register holds
* the entry. */
static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
{
u32 tempval;
struct gfar_private *priv = netdev_priv(dev);
u32 result = ether_crc(MAC_ADDR_LEN, addr);
int width = priv->hash_width;
u8 whichbit = (result >> (32 - width)) & 0x1f;
u8 whichreg = result >> (32 - width + 5);
u32 value = (1 << (31-whichbit));
tempval = gfar_read(priv->hash_regs[whichreg]);
tempval |= value;
gfar_write(priv->hash_regs[whichreg], tempval);
return;
}
/* There are multiple MAC Address register pairs on some controllers
* This function sets the numth pair to a given address
*/
static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
{
struct gfar_private *priv = netdev_priv(dev);
int idx;
char tmpbuf[MAC_ADDR_LEN];
u32 tempval;
u32 __iomem *macptr = &priv->regs->macstnaddr1;
macptr += num*2;
/* Now copy it into the mac registers backwards, cuz */
/* little endian is silly */
for (idx = 0; idx < MAC_ADDR_LEN; idx++)
tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
gfar_write(macptr, *((u32 *) (tmpbuf)));
tempval = *((u32 *) (tmpbuf + 4));
gfar_write(macptr+1, tempval);
}
/* GFAR error interrupt handler */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t gfar_error(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct gfar_private *priv = netdev_priv(dev);
/* Save ievent for future reference */
u32 events = gfar_read(&priv->regs->ievent);
/* Clear IEVENT */
gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
/* Magic Packet is not an error. */
if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
(events & IEVENT_MAG))
events &= ~IEVENT_MAG;
/* Hmm... */
if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
dev->name, events, gfar_read(&priv->regs->imask));
/* Update the error counters */
if (events & IEVENT_TXE) {
dev->stats.tx_errors++;
if (events & IEVENT_LC)
dev->stats.tx_window_errors++;
if (events & IEVENT_CRL)
dev->stats.tx_aborted_errors++;
if (events & IEVENT_XFUN) {
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: TX FIFO underrun, "
"packet dropped.\n", dev->name);
dev->stats.tx_dropped++;
priv->extra_stats.tx_underrun++;
/* Reactivate the Tx Queues */
gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
}
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
}
if (events & IEVENT_BSY) {
dev->stats.rx_errors++;
priv->extra_stats.rx_bsy++;
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
gfar_receive(irq, dev_id);
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
dev->name, gfar_read(&priv->regs->rstat));
}
if (events & IEVENT_BABR) {
dev->stats.rx_errors++;
priv->extra_stats.rx_babr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
}
if (events & IEVENT_EBERR) {
priv->extra_stats.eberr++;
if (netif_msg_rx_err(priv))
printk(KERN_DEBUG "%s: bus error\n", dev->name);
}
if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
printk(KERN_DEBUG "%s: control frame\n", dev->name);
if (events & IEVENT_BABT) {
priv->extra_stats.tx_babt++;
if (netif_msg_tx_err(priv))
printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
}
return IRQ_HANDLED;
}
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:fsl-gianfar");
static struct of_device_id gfar_match[] =
{
{
.type = "network",
.compatible = "gianfar",
},
{},
};
/* Structure for a device driver */
static struct of_platform_driver gfar_driver = {
.name = "fsl-gianfar",
.match_table = gfar_match,
.probe = gfar_probe,
.remove = gfar_remove,
.suspend = gfar_suspend,
.resume = gfar_resume,
};
static int __init gfar_init(void)
{
return of_register_platform_driver(&gfar_driver);
}
static void __exit gfar_exit(void)
{
of_unregister_platform_driver(&gfar_driver);
}
module_init(gfar_init);
module_exit(gfar_exit);