linux/drivers/acpi/asus_acpi.c

1257 lines
34 KiB
C
Raw Normal View History

/*
* asus_acpi.c - Asus Laptop ACPI Extras
*
*
* Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* The development page for this driver is located at
* http://sourceforge.net/projects/acpi4asus/
*
* Credits:
* Pontus Fuchs - Helper functions, cleanup
* Johann Wiesner - Small compile fixes
* John Belmonte - ACPI code for Toshiba laptop was a good starting point.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <acpi/acpi_drivers.h>
#include <acpi/acpi_bus.h>
#include <asm/uaccess.h>
#define ASUS_ACPI_VERSION "0.30"
#define PROC_ASUS "asus" //the directory
#define PROC_MLED "mled"
#define PROC_WLED "wled"
#define PROC_TLED "tled"
#define PROC_INFO "info"
#define PROC_LCD "lcd"
#define PROC_BRN "brn"
#define PROC_DISP "disp"
#define ACPI_HOTK_NAME "Asus Laptop ACPI Extras Driver"
#define ACPI_HOTK_CLASS "hotkey"
#define ACPI_HOTK_DEVICE_NAME "Hotkey"
#define ACPI_HOTK_HID "ATK0100"
/*
* Some events we use, same for all Asus
*/
#define BR_UP 0x10
#define BR_DOWN 0x20
/*
* Flags for hotk status
*/
#define MLED_ON 0x01 //is MLED ON ?
#define WLED_ON 0x02
#define TLED_ON 0x04
MODULE_AUTHOR("Julien Lerouge, Karol Kozimor");
MODULE_DESCRIPTION(ACPI_HOTK_NAME);
MODULE_LICENSE("GPL");
static uid_t asus_uid;
static gid_t asus_gid;
module_param(asus_uid, uint, 0);
MODULE_PARM_DESC(asus_uid, "UID for entries in /proc/acpi/asus.\n");
module_param(asus_gid, uint, 0);
MODULE_PARM_DESC(asus_gid, "GID for entries in /proc/acpi/asus.\n");
/* For each model, all features implemented,
* those marked with R are relative to HOTK, A for absolute */
struct model_data {
char *name; //name of the laptop________________A
char *mt_mled; //method to handle mled_____________R
char *mled_status; //node to handle mled reading_______A
char *mt_wled; //method to handle wled_____________R
char *wled_status; //node to handle wled reading_______A
char *mt_tled; //method to handle tled_____________R
char *tled_status; //node to handle tled reading_______A
char *mt_lcd_switch; //method to turn LCD ON/OFF_________A
char *lcd_status; //node to read LCD panel state______A
char *brightness_up; //method to set brightness up_______A
char *brightness_down; //guess what ?______________________A
char *brightness_set; //method to set absolute brightness_R
char *brightness_get; //method to get absolute brightness_R
char *brightness_status; //node to get brightness____________A
char *display_set; //method to set video output________R
char *display_get; //method to get video output________R
};
/*
* This is the main structure, we can use it to store anything interesting
* about the hotk device
*/
struct asus_hotk {
struct acpi_device *device; //the device we are in
acpi_handle handle; //the handle of the hotk device
char status; //status of the hotk, for LEDs, ...
struct model_data *methods; //methods available on the laptop
u8 brightness; //brightness level
enum {
A1x = 0, //A1340D, A1300F
A2x, //A2500H
D1x, //D1
L2D, //L2000D
L3C, //L3800C
L3D, //L3400D
L3H, //L3H, but also L2000E
L4R, //L4500R
L5x, //L5800C
L8L, //L8400L
M1A, //M1300A
M2E, //M2400E, L4400L
M6N, //M6800N
M6R, //M6700R, A3000G
P30, //Samsung P30
S1x, //S1300A, but also L1400B and M2400A (L84F)
S2x, //S200 (J1 reported), Victor MP-XP7210
xxN, //M2400N, M3700N, M5200N, S1300N, S5200N, W1OOON
//(Centrino)
END_MODEL
} model; //Models currently supported
u16 event_count[128]; //count for each event TODO make this better
};
/* Here we go */
#define A1x_PREFIX "\\_SB.PCI0.ISA.EC0."
#define L3C_PREFIX "\\_SB.PCI0.PX40.ECD0."
#define M1A_PREFIX "\\_SB.PCI0.PX40.EC0."
#define P30_PREFIX "\\_SB.PCI0.LPCB.EC0."
#define S1x_PREFIX "\\_SB.PCI0.PX40."
#define S2x_PREFIX A1x_PREFIX
#define xxN_PREFIX "\\_SB.PCI0.SBRG.EC0."
static struct model_data model_conf[END_MODEL] = {
/*
* TODO I have seen a SWBX and AIBX method on some models, like L1400B,
* it seems to be a kind of switch, but what for ?
*/
{
.name = "A1x",
.mt_mled = "MLED",
.mled_status = "\\MAIL",
.mt_lcd_switch = A1x_PREFIX "_Q10",
.lcd_status = "\\BKLI",
.brightness_up = A1x_PREFIX "_Q0E",
.brightness_down = A1x_PREFIX "_Q0F"},
{
.name = "A2x",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\SG66",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\BAOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "D1x",
.mt_mled = "MLED",
.mt_lcd_switch = "\\Q0D",
.lcd_status = "\\GP11",
.brightness_up = "\\Q0C",
.brightness_down = "\\Q0B",
.brightness_status = "\\BLVL",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L2D",
.mt_mled = "MLED",
.mled_status = "\\SGP6",
.mt_wled = "WLED",
.wled_status = "\\RCP3",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\SGP0",
.brightness_up = "\\Q0E",
.brightness_down = "\\Q0F",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L3C",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = L3C_PREFIX "_Q10",
.lcd_status = "\\GL32",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.PCI1.VGAC.NMAP"},
{
.name = "L3D",
.mt_mled = "MLED",
.mled_status = "\\MALD",
.mt_wled = "WLED",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\BKLG",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L3H",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = "EHK",
.lcd_status = "\\_SB.PCI0.PM.PBC",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L4R",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\_SB.PCI0.SBRG.SG13",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.PCI0.SBSM.SEO4",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.P0P1.VGA.GETD"},
{
.name = "L5x",
.mt_mled = "MLED",
/* WLED present, but not controlled by ACPI */
.mt_tled = "TLED",
.mt_lcd_switch = "\\Q0D",
.lcd_status = "\\BAOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L8L"
/* No features, but at least support the hotkeys */
},
{
.name = "M1A",
.mt_mled = "MLED",
.mt_lcd_switch = M1A_PREFIX "Q10",
.lcd_status = "\\PNOF",
.brightness_up = M1A_PREFIX "Q0E",
.brightness_down = M1A_PREFIX "Q0F",
.brightness_status = "\\BRIT",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "M2E",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\GP06",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "M6N",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\_SB.PCI0.SBRG.SG13",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.P0P1.VGA.GETD"},
{
.name = "M6R",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.PCI0.SBSM.SEO4",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\SSTE"},
{
.name = "P30",
.mt_wled = "WLED",
.mt_lcd_switch = P30_PREFIX "_Q0E",
.lcd_status = "\\BKLT",
.brightness_up = P30_PREFIX "_Q68",
.brightness_down = P30_PREFIX "_Q69",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\DNXT"},
{
.name = "S1x",
.mt_mled = "MLED",
.mled_status = "\\EMLE",
.mt_wled = "WLED",
.mt_lcd_switch = S1x_PREFIX "Q10",
.lcd_status = "\\PNOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV"},
{
.name = "S2x",
.mt_mled = "MLED",
.mled_status = "\\MAIL",
.mt_lcd_switch = S2x_PREFIX "_Q10",
.lcd_status = "\\BKLI",
.brightness_up = S2x_PREFIX "_Q0B",
.brightness_down = S2x_PREFIX "_Q0A"},
{
.name = "xxN",
.mt_mled = "MLED",
/* WLED present, but not controlled by ACPI */
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\ADVG"}
};
/* procdir we use */
static struct proc_dir_entry *asus_proc_dir;
/*
* This header is made available to allow proper configuration given model,
* revision number , ... this info cannot go in struct asus_hotk because it is
* available before the hotk
*/
static struct acpi_table_header *asus_info;
/* The actual device the driver binds to */
static struct asus_hotk *hotk;
/*
* The hotkey driver declaration
*/
static int asus_hotk_add(struct acpi_device *device);
static int asus_hotk_remove(struct acpi_device *device, int type);
static struct acpi_driver asus_hotk_driver = {
.name = ACPI_HOTK_NAME,
.class = ACPI_HOTK_CLASS,
.ids = ACPI_HOTK_HID,
.ops = {
.add = asus_hotk_add,
.remove = asus_hotk_remove,
},
};
/*
* This function evaluates an ACPI method, given an int as parameter, the
* method is searched within the scope of the handle, can be NULL. The output
* of the method is written is output, which can also be NULL
*
* returns 1 if write is successful, 0 else.
*/
static int write_acpi_int(acpi_handle handle, const char *method, int val,
struct acpi_buffer *output)
{
struct acpi_object_list params; //list of input parameters (an int here)
union acpi_object in_obj; //the only param we use
acpi_status status;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = val;
status = acpi_evaluate_object(handle, (char *)method, &params, output);
return (status == AE_OK);
}
static int read_acpi_int(acpi_handle handle, const char *method, int *val)
{
struct acpi_buffer output;
union acpi_object out_obj;
acpi_status status;
output.length = sizeof(out_obj);
output.pointer = &out_obj;
status = acpi_evaluate_object(handle, (char *)method, NULL, &output);
*val = out_obj.integer.value;
return (status == AE_OK) && (out_obj.type == ACPI_TYPE_INTEGER);
}
/*
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
static int
proc_read_info(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
int len = 0;
int temp;
char buf[16]; //enough for all info
/*
* We use the easy way, we don't care of off and count, so we don't set eof
* to 1
*/
len += sprintf(page, ACPI_HOTK_NAME " " ASUS_ACPI_VERSION "\n");
len += sprintf(page + len, "Model reference : %s\n",
hotk->methods->name);
/*
* The SFUN method probably allows the original driver to get the list
* of features supported by a given model. For now, 0x0100 or 0x0800
* bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
* The significance of others is yet to be found.
*/
if (read_acpi_int(hotk->handle, "SFUN", &temp))
len +=
sprintf(page + len, "SFUN value : 0x%04x\n", temp);
/*
* Another value for userspace: the ASYM method returns 0x02 for
* battery low and 0x04 for battery critical, its readings tend to be
* more accurate than those provided by _BST.
* Note: since not all the laptops provide this method, errors are
* silently ignored.
*/
if (read_acpi_int(hotk->handle, "ASYM", &temp))
len +=
sprintf(page + len, "ASYM value : 0x%04x\n", temp);
if (asus_info) {
snprintf(buf, 16, "%d", asus_info->length);
len += sprintf(page + len, "DSDT length : %s\n", buf);
snprintf(buf, 16, "%d", asus_info->checksum);
len += sprintf(page + len, "DSDT checksum : %s\n", buf);
snprintf(buf, 16, "%d", asus_info->revision);
len += sprintf(page + len, "DSDT revision : %s\n", buf);
snprintf(buf, 7, "%s", asus_info->oem_id);
len += sprintf(page + len, "OEM id : %s\n", buf);
snprintf(buf, 9, "%s", asus_info->oem_table_id);
len += sprintf(page + len, "OEM table id : %s\n", buf);
snprintf(buf, 16, "%x", asus_info->oem_revision);
len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
snprintf(buf, 5, "%s", asus_info->asl_compiler_id);
len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
snprintf(buf, 16, "%x", asus_info->asl_compiler_revision);
len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
}
return len;
}
/*
* /proc handlers
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
/* Generic LED functions */
static int read_led(const char *ledname, int ledmask)
{
if (ledname) {
int led_status;
if (read_acpi_int(NULL, ledname, &led_status))
return led_status;
else
printk(KERN_WARNING "Asus ACPI: Error reading LED "
"status\n");
}
return (hotk->status & ledmask) ? 1 : 0;
}
static int parse_arg(const char __user * buf, unsigned long count, int *val)
{
char s[32];
if (!count)
return 0;
if (count > 31)
return -EINVAL;
if (copy_from_user(s, buf, count))
return -EFAULT;
s[count] = 0;
if (sscanf(s, "%i", val) != 1)
return -EINVAL;
return count;
}
/* FIXME: kill extraneous args so it can be called independently */
static int
write_led(const char __user * buffer, unsigned long count,
char *ledname, int ledmask, int invert)
{
int value;
int led_out = 0;
count = parse_arg(buffer, count, &value);
if (count > 0)
led_out = value ? 1 : 0;
hotk->status =
(led_out) ? (hotk->status | ledmask) : (hotk->status & ~ledmask);
if (invert) /* invert target value */
led_out = !led_out & 0x1;
if (!write_acpi_int(hotk->handle, ledname, led_out, NULL))
printk(KERN_WARNING "Asus ACPI: LED (%s) write failed\n",
ledname);
return count;
}
/*
* Proc handlers for MLED
*/
static int
proc_read_mled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->mled_status, MLED_ON));
}
static int
proc_write_mled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_mled, MLED_ON, 1);
}
/*
* Proc handlers for WLED
*/
static int
proc_read_wled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->wled_status, WLED_ON));
}
static int
proc_write_wled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_wled, WLED_ON, 0);
}
/*
* Proc handlers for TLED
*/
static int
proc_read_tled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->tled_status, TLED_ON));
}
static int
proc_write_tled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_tled, TLED_ON, 0);
}
static int get_lcd_state(void)
{
int lcd = 0;
if (hotk->model != L3H) {
/* We don't have to check anything if we are here */
if (!read_acpi_int(NULL, hotk->methods->lcd_status, &lcd))
printk(KERN_WARNING
"Asus ACPI: Error reading LCD status\n");
if (hotk->model == L2D)
lcd = ~lcd;
} else { /* L3H and the like have to be handled differently */
acpi_status status = 0;
struct acpi_object_list input;
union acpi_object mt_params[2];
struct acpi_buffer output;
union acpi_object out_obj;
input.count = 2;
input.pointer = mt_params;
/* Note: the following values are partly guessed up, but
otherwise they seem to work */
mt_params[0].type = ACPI_TYPE_INTEGER;
mt_params[0].integer.value = 0x02;
mt_params[1].type = ACPI_TYPE_INTEGER;
mt_params[1].integer.value = 0x02;
output.length = sizeof(out_obj);
output.pointer = &out_obj;
status =
acpi_evaluate_object(NULL, hotk->methods->lcd_status,
&input, &output);
if (status != AE_OK)
return -1;
if (out_obj.type == ACPI_TYPE_INTEGER)
/* That's what the AML code does */
lcd = out_obj.integer.value >> 8;
}
return (lcd & 1);
}
static int set_lcd_state(int value)
{
int lcd = 0;
acpi_status status = 0;
lcd = value ? 1 : 0;
if (lcd != get_lcd_state()) {
/* switch */
if (hotk->model != L3H) {
status =
acpi_evaluate_object(NULL,
hotk->methods->mt_lcd_switch,
NULL, NULL);
} else { /* L3H and the like have to be handled differently */
if (!write_acpi_int
(hotk->handle, hotk->methods->mt_lcd_switch, 0x07,
NULL))
status = AE_ERROR;
/* L3H's AML executes EHK (0x07) upon Fn+F7 keypress,
the exact behaviour is simulated here */
}
if (ACPI_FAILURE(status))
printk(KERN_WARNING "Asus ACPI: Error switching LCD\n");
}
return 0;
}
static int
proc_read_lcd(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n", get_lcd_state());
}
static int
proc_write_lcd(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int value;
count = parse_arg(buffer, count, &value);
if (count > 0)
set_lcd_state(value);
return count;
}
static int read_brightness(void)
{
int value;
if (hotk->methods->brightness_get) { /* SPLV/GPLV laptop */
if (!read_acpi_int(hotk->handle, hotk->methods->brightness_get,
&value))
printk(KERN_WARNING
"Asus ACPI: Error reading brightness\n");
} else if (hotk->methods->brightness_status) { /* For D1 for example */
if (!read_acpi_int(NULL, hotk->methods->brightness_status,
&value))
printk(KERN_WARNING
"Asus ACPI: Error reading brightness\n");
} else /* No GPLV method */
value = hotk->brightness;
return value;
}
/*
* Change the brightness level
*/
static void set_brightness(int value)
{
acpi_status status = 0;
/* SPLV laptop */
if (hotk->methods->brightness_set) {
if (!write_acpi_int(hotk->handle, hotk->methods->brightness_set,
value, NULL))
printk(KERN_WARNING
"Asus ACPI: Error changing brightness\n");
return;
}
/* No SPLV method if we are here, act as appropriate */
value -= read_brightness();
while (value != 0) {
status = acpi_evaluate_object(NULL, (value > 0) ?
hotk->methods->brightness_up :
hotk->methods->brightness_down,
NULL, NULL);
(value > 0) ? value-- : value++;
if (ACPI_FAILURE(status))
printk(KERN_WARNING
"Asus ACPI: Error changing brightness\n");
}
return;
}
static int
proc_read_brn(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n", read_brightness());
}
static int
proc_write_brn(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int value;
count = parse_arg(buffer, count, &value);
if (count > 0) {
value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
/* 0 <= value <= 15 */
set_brightness(value);
} else if (count < 0) {
printk(KERN_WARNING "Asus ACPI: Error reading user input\n");
}
return count;
}
static void set_display(int value)
{
/* no sanity check needed for now */
if (!write_acpi_int(hotk->handle, hotk->methods->display_set,
value, NULL))
printk(KERN_WARNING "Asus ACPI: Error setting display\n");
return;
}
/*
* Now, *this* one could be more user-friendly, but so far, no-one has
* complained. The significance of bits is the same as in proc_write_disp()
*/
static int
proc_read_disp(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
int value = 0;
if (!read_acpi_int(hotk->handle, hotk->methods->display_get, &value))
printk(KERN_WARNING
"Asus ACPI: Error reading display status\n");
value &= 0x07; /* needed for some models, shouldn't hurt others */
return sprintf(page, "%d\n", value);
}
/*
* Experimental support for display switching. As of now: 1 should activate
* the LCD output, 2 should do for CRT, and 4 for TV-Out. Any combination
* (bitwise) of these will suffice. I never actually tested 3 displays hooked up
* simultaneously, so be warned. See the acpi4asus README for more info.
*/
static int
proc_write_disp(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int value;
count = parse_arg(buffer, count, &value);
if (count > 0)
set_display(value);
else if (count < 0)
printk(KERN_WARNING "Asus ACPI: Error reading user input\n");
return count;
}
typedef int (proc_readfunc) (char *page, char **start, off_t off, int count,
int *eof, void *data);
typedef int (proc_writefunc) (struct file * file, const char __user * buffer,
unsigned long count, void *data);
static int
asus_proc_add(char *name, proc_writefunc * writefunc,
proc_readfunc * readfunc, mode_t mode,
struct acpi_device *device)
{
struct proc_dir_entry *proc =
create_proc_entry(name, mode, acpi_device_dir(device));
if (!proc) {
printk(KERN_WARNING " Unable to create %s fs entry\n", name);
return -1;
}
proc->write_proc = writefunc;
proc->read_proc = readfunc;
proc->data = acpi_driver_data(device);
proc->owner = THIS_MODULE;
proc->uid = asus_uid;
proc->gid = asus_gid;
return 0;
}
static int asus_hotk_add_fs(struct acpi_device *device)
{
struct proc_dir_entry *proc;
mode_t mode;
/*
* If parameter uid or gid is not changed, keep the default setting for
* our proc entries (-rw-rw-rw-) else, it means we care about security,
* and then set to -rw-rw----
*/
if ((asus_uid == 0) && (asus_gid == 0)) {
mode = S_IFREG | S_IRUGO | S_IWUGO;
} else {
mode = S_IFREG | S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP;
printk(KERN_WARNING " asus_uid and asus_gid parameters are "
"deprecated, use chown and chmod instead!\n");
}
acpi_device_dir(device) = asus_proc_dir;
if (!acpi_device_dir(device))
return -ENODEV;
proc = create_proc_entry(PROC_INFO, mode, acpi_device_dir(device));
if (proc) {
proc->read_proc = proc_read_info;
proc->data = acpi_driver_data(device);
proc->owner = THIS_MODULE;
proc->uid = asus_uid;
proc->gid = asus_gid;
} else {
printk(KERN_WARNING " Unable to create " PROC_INFO
" fs entry\n");
}
if (hotk->methods->mt_wled) {
asus_proc_add(PROC_WLED, &proc_write_wled, &proc_read_wled,
mode, device);
}
if (hotk->methods->mt_mled) {
asus_proc_add(PROC_MLED, &proc_write_mled, &proc_read_mled,
mode, device);
}
if (hotk->methods->mt_tled) {
asus_proc_add(PROC_TLED, &proc_write_tled, &proc_read_tled,
mode, device);
}
/*
* We need both read node and write method as LCD switch is also accessible
* from keyboard
*/
if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) {
asus_proc_add(PROC_LCD, &proc_write_lcd, &proc_read_lcd, mode,
device);
}
if ((hotk->methods->brightness_up && hotk->methods->brightness_down) ||
(hotk->methods->brightness_get && hotk->methods->brightness_set)) {
asus_proc_add(PROC_BRN, &proc_write_brn, &proc_read_brn, mode,
device);
}
if (hotk->methods->display_set) {
asus_proc_add(PROC_DISP, &proc_write_disp, &proc_read_disp,
mode, device);
}
return 0;
}
static int asus_hotk_remove_fs(struct acpi_device *device)
{
if (acpi_device_dir(device)) {
remove_proc_entry(PROC_INFO, acpi_device_dir(device));
if (hotk->methods->mt_wled)
remove_proc_entry(PROC_WLED, acpi_device_dir(device));
if (hotk->methods->mt_mled)
remove_proc_entry(PROC_MLED, acpi_device_dir(device));
if (hotk->methods->mt_tled)
remove_proc_entry(PROC_TLED, acpi_device_dir(device));
if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status)
remove_proc_entry(PROC_LCD, acpi_device_dir(device));
if ((hotk->methods->brightness_up
&& hotk->methods->brightness_down)
|| (hotk->methods->brightness_get
&& hotk->methods->brightness_set))
remove_proc_entry(PROC_BRN, acpi_device_dir(device));
if (hotk->methods->display_set)
remove_proc_entry(PROC_DISP, acpi_device_dir(device));
}
return 0;
}
static void asus_hotk_notify(acpi_handle handle, u32 event, void *data)
{
/* TODO Find a better way to handle events count. */
if (!hotk)
return;
if ((event & ~((u32) BR_UP)) < 16) {
hotk->brightness = (event & ~((u32) BR_UP));
} else if ((event & ~((u32) BR_DOWN)) < 16) {
hotk->brightness = (event & ~((u32) BR_DOWN));
}
acpi_bus_generate_event(hotk->device, event,
hotk->event_count[event % 128]++);
return;
}
/*
* This function is used to initialize the hotk with right values. In this
* method, we can make all the detection we want, and modify the hotk struct
*/
static int asus_hotk_get_info(void)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
struct acpi_buffer dsdt = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *model = NULL;
int bsts_result;
acpi_status status;
/*
* Get DSDT headers early enough to allow for differentiating between
* models, but late enough to allow acpi_bus_register_driver() to fail
* before doing anything ACPI-specific. Should we encounter a machine,
* which needs special handling (i.e. its hotkey device has a different
* HID), this bit will be moved. A global variable asus_info contains
* the DSDT header.
*/
ACPI: ACPICA 20060421 Removed a device initialization optimization introduced in 20051216 where the _STA method was not run unless an _INI was also present for the same device. This optimization could cause problems because it could allow _INI methods to be run within a not-present device subtree (If a not-present device had no _INI, _STA would not be run, the not-present status would not be discovered, and the children of the device would be incorrectly traversed.) Implemented a new _STA optimization where namespace subtrees that do not contain _INI are identified and ignored during device initialization. Selectively running _STA can significantly improve boot time on large machines (with assistance from Len Brown.) Implemented support for the device initialization case where the returned _STA flags indicate a device not-present but functioning. In this case, _INI is not run, but the device children are examined for presence, as per the ACPI specification. Implemented an additional change to the IndexField support in order to conform to MS behavior. The value written to the Index Register is not simply a byte offset, it is a byte offset in units of the access width of the parent Index Field. (Fiodor Suietov) Defined and deployed a new OSL interface, acpi_os_validate_address(). This interface is called during the creation of all AML operation regions, and allows the host OS to exert control over what addresses it will allow the AML code to access. Operation Regions whose addresses are disallowed will cause a runtime exception when they are actually accessed (will not affect or abort table loading.) Defined and deployed a new OSL interface, acpi_os_validate_interface(). This interface allows the host OS to match the various "optional" interface/behavior strings for the _OSI predefined control method as appropriate (with assistance from Bjorn Helgaas.) Restructured and corrected various problems in the exception handling code paths within DsCallControlMethod and DsTerminateControlMethod in dsmethod (with assistance from Takayoshi Kochi.) Modified the Linux source converter to ignore quoted string literals while converting identifiers from mixed to lower case. This will correct problems with the disassembler and other areas where such strings must not be modified. The ACPI_FUNCTION_* macros no longer require quotes around the function name. This allows the Linux source converter to convert the names, now that the converter ignores quoted strings. Signed-off-by: Bob Moore <robert.moore@intel.com> Signed-off-by: Len Brown <len.brown@intel.com>
2006-04-22 05:15:00 +08:00
status = acpi_get_table(ACPI_TABLE_ID_DSDT, 1, &dsdt);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Couldn't get the DSDT table header\n");
else
asus_info = (struct acpi_table_header *)dsdt.pointer;
/* We have to write 0 on init this far for all ASUS models */
if (!write_acpi_int(hotk->handle, "INIT", 0, &buffer)) {
printk(KERN_ERR " Hotkey initialization failed\n");
return -ENODEV;
}
/* This needs to be called for some laptops to init properly */
if (!read_acpi_int(hotk->handle, "BSTS", &bsts_result))
printk(KERN_WARNING " Error calling BSTS\n");
else if (bsts_result)
printk(KERN_NOTICE " BSTS called, 0x%02x returned\n",
bsts_result);
/* This is unlikely with implicit return */
if (buffer.pointer == NULL)
return -EINVAL;
model = (union acpi_object *)buffer.pointer;
/*
* Samsung P30 has a device with a valid _HID whose INIT does not
* return anything. It used to be possible to catch this exception,
* but the implicit return code will now happily confuse the
* driver. We assume that every ACPI_TYPE_STRING is a valid model
* identifier but it's still possible to get completely bogus data.
*/
if (model->type == ACPI_TYPE_STRING) {
printk(KERN_NOTICE " %s model detected, ",
model->string.pointer);
} else {
if (asus_info && /* Samsung P30 */
strncmp(asus_info->oem_table_id, "ODEM", 4) == 0) {
hotk->model = P30;
printk(KERN_NOTICE
" Samsung P30 detected, supported\n");
} else {
hotk->model = M2E;
printk(KERN_WARNING " no string returned by INIT\n");
printk(KERN_WARNING " trying default values, supply "
"the developers with your DSDT\n");
}
hotk->methods = &model_conf[hotk->model];
kfree(model);
return AE_OK;
}
hotk->model = END_MODEL;
if (strncmp(model->string.pointer, "L3D", 3) == 0)
hotk->model = L3D;
else if (strncmp(model->string.pointer, "L3H", 3) == 0 ||
strncmp(model->string.pointer, "L2E", 3) == 0)
hotk->model = L3H;
else if (strncmp(model->string.pointer, "L3", 2) == 0 ||
strncmp(model->string.pointer, "L2B", 3) == 0)
hotk->model = L3C;
else if (strncmp(model->string.pointer, "L8L", 3) == 0)
hotk->model = L8L;
else if (strncmp(model->string.pointer, "L4R", 3) == 0)
hotk->model = L4R;
else if (strncmp(model->string.pointer, "M6N", 3) == 0)
hotk->model = M6N;
else if (strncmp(model->string.pointer, "M6R", 3) == 0 ||
strncmp(model->string.pointer, "A3G", 3) == 0)
hotk->model = M6R;
else if (strncmp(model->string.pointer, "M2N", 3) == 0 ||
strncmp(model->string.pointer, "M3N", 3) == 0 ||
strncmp(model->string.pointer, "M5N", 3) == 0 ||
strncmp(model->string.pointer, "M6N", 3) == 0 ||
strncmp(model->string.pointer, "S1N", 3) == 0 ||
strncmp(model->string.pointer, "S5N", 3) == 0 ||
strncmp(model->string.pointer, "W1N", 3) == 0)
hotk->model = xxN;
else if (strncmp(model->string.pointer, "M1", 2) == 0)
hotk->model = M1A;
else if (strncmp(model->string.pointer, "M2", 2) == 0 ||
strncmp(model->string.pointer, "L4E", 3) == 0)
hotk->model = M2E;
else if (strncmp(model->string.pointer, "L2", 2) == 0)
hotk->model = L2D;
else if (strncmp(model->string.pointer, "L8", 2) == 0)
hotk->model = S1x;
else if (strncmp(model->string.pointer, "D1", 2) == 0)
hotk->model = D1x;
else if (strncmp(model->string.pointer, "A1", 2) == 0)
hotk->model = A1x;
else if (strncmp(model->string.pointer, "A2", 2) == 0)
hotk->model = A2x;
else if (strncmp(model->string.pointer, "J1", 2) == 0)
hotk->model = S2x;
else if (strncmp(model->string.pointer, "L5", 2) == 0)
hotk->model = L5x;
if (hotk->model == END_MODEL) {
printk("unsupported, trying default values, supply the "
"developers with your DSDT\n");
hotk->model = M2E;
} else {
printk("supported\n");
}
hotk->methods = &model_conf[hotk->model];
/* Sort of per-model blacklist */
if (strncmp(model->string.pointer, "L2B", 3) == 0)
hotk->methods->lcd_status = NULL;
/* L2B is similar enough to L3C to use its settings, with this only
exception */
else if (strncmp(model->string.pointer, "A3G", 3) == 0)
hotk->methods->lcd_status = "\\BLFG";
/* A3G is like M6R */
else if (strncmp(model->string.pointer, "S5N", 3) == 0 ||
strncmp(model->string.pointer, "M5N", 3) == 0)
hotk->methods->mt_mled = NULL;
/* S5N and M5N have no MLED */
else if (strncmp(model->string.pointer, "M2N", 3) == 0 ||
strncmp(model->string.pointer, "W1N", 3) == 0)
hotk->methods->mt_wled = "WLED";
/* M2N and W1N have a usable WLED */
else if (asus_info) {
if (strncmp(asus_info->oem_table_id, "L1", 2) == 0)
hotk->methods->mled_status = NULL;
/* S1300A reports L84F, but L1400B too, account for that */
}
kfree(model);
return AE_OK;
}
static int asus_hotk_check(void)
{
int result = 0;
result = acpi_bus_get_status(hotk->device);
if (result)
return result;
if (hotk->device->status.present) {
result = asus_hotk_get_info();
} else {
printk(KERN_ERR " Hotkey device not present, aborting\n");
return -EINVAL;
}
return result;
}
static int asus_hotk_found;
static int asus_hotk_add(struct acpi_device *device)
{
acpi_status status = AE_OK;
int result;
if (!device)
return -EINVAL;
printk(KERN_NOTICE "Asus Laptop ACPI Extras version %s\n",
ASUS_ACPI_VERSION);
hotk =
(struct asus_hotk *)kmalloc(sizeof(struct asus_hotk), GFP_KERNEL);
if (!hotk)
return -ENOMEM;
memset(hotk, 0, sizeof(struct asus_hotk));
hotk->handle = device->handle;
strcpy(acpi_device_name(device), ACPI_HOTK_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_HOTK_CLASS);
acpi_driver_data(device) = hotk;
hotk->device = device;
result = asus_hotk_check();
if (result)
goto end;
result = asus_hotk_add_fs(device);
if (result)
goto end;
/*
* We install the handler, it will receive the hotk in parameter, so, we
* could add other data to the hotk struct
*/
status = acpi_install_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY,
asus_hotk_notify, hotk);
if (ACPI_FAILURE(status))
printk(KERN_ERR " Error installing notify handler\n");
/* For laptops without GPLV: init the hotk->brightness value */
if ((!hotk->methods->brightness_get)
&& (!hotk->methods->brightness_status)
&& (hotk->methods->brightness_up && hotk->methods->brightness_down)) {
status =
acpi_evaluate_object(NULL, hotk->methods->brightness_down,
NULL, NULL);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Error changing brightness\n");
else {
status =
acpi_evaluate_object(NULL,
hotk->methods->brightness_up,
NULL, NULL);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Strange, error changing"
" brightness\n");
}
}
asus_hotk_found = 1;
end:
if (result) {
kfree(hotk);
}
return result;
}
static int asus_hotk_remove(struct acpi_device *device, int type)
{
acpi_status status = 0;
if (!device || !acpi_driver_data(device))
return -EINVAL;
status = acpi_remove_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY,
asus_hotk_notify);
if (ACPI_FAILURE(status))
printk(KERN_ERR "Asus ACPI: Error removing notify handler\n");
asus_hotk_remove_fs(device);
kfree(hotk);
return 0;
}
static int __init asus_acpi_init(void)
{
int result;
if (acpi_disabled)
return -ENODEV;
if (!acpi_specific_hotkey_enabled) {
printk(KERN_ERR "Using generic hotkey driver\n");
return -ENODEV;
}
asus_proc_dir = proc_mkdir(PROC_ASUS, acpi_root_dir);
if (!asus_proc_dir) {
printk(KERN_ERR "Asus ACPI: Unable to create /proc entry\n");
return -ENODEV;
}
asus_proc_dir->owner = THIS_MODULE;
result = acpi_bus_register_driver(&asus_hotk_driver);
if (result < 0) {
remove_proc_entry(PROC_ASUS, acpi_root_dir);
return result;
}
/*
* This is a bit of a kludge. We only want this module loaded
* for ASUS systems, but there's currently no way to probe the
* ACPI namespace for ASUS HIDs. So we just return failure if
* we didn't find one, which will cause the module to be
* unloaded.
*/
if (!asus_hotk_found) {
acpi_bus_unregister_driver(&asus_hotk_driver);
remove_proc_entry(PROC_ASUS, acpi_root_dir);
return result;
}
return 0;
}
static void __exit asus_acpi_exit(void)
{
acpi_bus_unregister_driver(&asus_hotk_driver);
remove_proc_entry(PROC_ASUS, acpi_root_dir);
kfree(asus_info);
return;
}
module_init(asus_acpi_init);
module_exit(asus_acpi_exit);