linux/net/wireless/mlme.c

906 lines
24 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 MLME SAP interface
*
* Copyright (c) 2009, Jouni Malinen <j@w1.fi>
* Copyright (c) 2015 Intel Deutschland GmbH
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
#include <linux/nl80211.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/wireless.h>
#include <net/cfg80211.h>
#include <net/iw_handler.h>
#include "core.h"
#include "nl80211.h"
#include "rdev-ops.h"
void cfg80211_rx_assoc_resp(struct net_device *dev, struct cfg80211_bss *bss,
const u8 *buf, size_t len, int uapsd_queues)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf;
struct cfg80211_connect_resp_params cr;
memset(&cr, 0, sizeof(cr));
cr.status = (int)le16_to_cpu(mgmt->u.assoc_resp.status_code);
cr.bssid = mgmt->bssid;
cr.bss = bss;
cr.resp_ie = mgmt->u.assoc_resp.variable;
cr.resp_ie_len =
len - offsetof(struct ieee80211_mgmt, u.assoc_resp.variable);
cr.timeout_reason = NL80211_TIMEOUT_UNSPECIFIED;
trace_cfg80211_send_rx_assoc(dev, bss);
/*
* This is a bit of a hack, we don't notify userspace of
* a (re-)association reply if we tried to send a reassoc
* and got a reject -- we only try again with an assoc
* frame instead of reassoc.
*/
if (cfg80211_sme_rx_assoc_resp(wdev, cr.status)) {
cfg80211_unhold_bss(bss_from_pub(bss));
cfg80211_put_bss(wiphy, bss);
return;
}
nl80211_send_rx_assoc(rdev, dev, buf, len, GFP_KERNEL, uapsd_queues);
/* update current_bss etc., consumes the bss reference */
__cfg80211_connect_result(dev, &cr, cr.status == WLAN_STATUS_SUCCESS);
}
EXPORT_SYMBOL(cfg80211_rx_assoc_resp);
static void cfg80211_process_auth(struct wireless_dev *wdev,
const u8 *buf, size_t len)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
nl80211_send_rx_auth(rdev, wdev->netdev, buf, len, GFP_KERNEL);
cfg80211_sme_rx_auth(wdev, buf, len);
}
static void cfg80211_process_deauth(struct wireless_dev *wdev,
const u8 *buf, size_t len)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf;
const u8 *bssid = mgmt->bssid;
u16 reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr);
nl80211_send_deauth(rdev, wdev->netdev, buf, len, GFP_KERNEL);
if (!wdev->current_bss ||
!ether_addr_equal(wdev->current_bss->pub.bssid, bssid))
return;
__cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap);
cfg80211_sme_deauth(wdev);
}
static void cfg80211_process_disassoc(struct wireless_dev *wdev,
const u8 *buf, size_t len)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)buf;
const u8 *bssid = mgmt->bssid;
u16 reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
bool from_ap = !ether_addr_equal(mgmt->sa, wdev->netdev->dev_addr);
nl80211_send_disassoc(rdev, wdev->netdev, buf, len, GFP_KERNEL);
if (WARN_ON(!wdev->current_bss ||
!ether_addr_equal(wdev->current_bss->pub.bssid, bssid)))
return;
__cfg80211_disconnected(wdev->netdev, NULL, 0, reason_code, from_ap);
cfg80211_sme_disassoc(wdev);
}
void cfg80211_rx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct ieee80211_mgmt *mgmt = (void *)buf;
ASSERT_WDEV_LOCK(wdev);
trace_cfg80211_rx_mlme_mgmt(dev, buf, len);
if (WARN_ON(len < 2))
return;
if (ieee80211_is_auth(mgmt->frame_control))
cfg80211_process_auth(wdev, buf, len);
else if (ieee80211_is_deauth(mgmt->frame_control))
cfg80211_process_deauth(wdev, buf, len);
else if (ieee80211_is_disassoc(mgmt->frame_control))
cfg80211_process_disassoc(wdev, buf, len);
}
EXPORT_SYMBOL(cfg80211_rx_mlme_mgmt);
void cfg80211_auth_timeout(struct net_device *dev, const u8 *addr)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
trace_cfg80211_send_auth_timeout(dev, addr);
nl80211_send_auth_timeout(rdev, dev, addr, GFP_KERNEL);
cfg80211_sme_auth_timeout(wdev);
}
EXPORT_SYMBOL(cfg80211_auth_timeout);
void cfg80211_assoc_timeout(struct net_device *dev, struct cfg80211_bss *bss)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
trace_cfg80211_send_assoc_timeout(dev, bss->bssid);
nl80211_send_assoc_timeout(rdev, dev, bss->bssid, GFP_KERNEL);
cfg80211_sme_assoc_timeout(wdev);
cfg80211_unhold_bss(bss_from_pub(bss));
cfg80211_put_bss(wiphy, bss);
}
EXPORT_SYMBOL(cfg80211_assoc_timeout);
void cfg80211_abandon_assoc(struct net_device *dev, struct cfg80211_bss *bss)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
cfg80211_sme_abandon_assoc(wdev);
cfg80211_unhold_bss(bss_from_pub(bss));
cfg80211_put_bss(wiphy, bss);
}
EXPORT_SYMBOL(cfg80211_abandon_assoc);
void cfg80211_tx_mlme_mgmt(struct net_device *dev, const u8 *buf, size_t len)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct ieee80211_mgmt *mgmt = (void *)buf;
ASSERT_WDEV_LOCK(wdev);
trace_cfg80211_tx_mlme_mgmt(dev, buf, len);
if (WARN_ON(len < 2))
return;
if (ieee80211_is_deauth(mgmt->frame_control))
cfg80211_process_deauth(wdev, buf, len);
else
cfg80211_process_disassoc(wdev, buf, len);
}
EXPORT_SYMBOL(cfg80211_tx_mlme_mgmt);
void cfg80211_michael_mic_failure(struct net_device *dev, const u8 *addr,
enum nl80211_key_type key_type, int key_id,
const u8 *tsc, gfp_t gfp)
{
struct wiphy *wiphy = dev->ieee80211_ptr->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
char *buf = kmalloc(128, gfp);
if (buf) {
sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
"keyid=%d %scast addr=%pM)", key_id,
key_type == NL80211_KEYTYPE_GROUP ? "broad" : "uni",
addr);
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = strlen(buf);
wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
}
#endif
trace_cfg80211_michael_mic_failure(dev, addr, key_type, key_id, tsc);
nl80211_michael_mic_failure(rdev, dev, addr, key_type, key_id, tsc, gfp);
}
EXPORT_SYMBOL(cfg80211_michael_mic_failure);
/* some MLME handling for userspace SME */
int cfg80211_mlme_auth(struct cfg80211_registered_device *rdev,
struct net_device *dev,
struct ieee80211_channel *chan,
enum nl80211_auth_type auth_type,
const u8 *bssid,
const u8 *ssid, int ssid_len,
const u8 *ie, int ie_len,
const u8 *key, int key_len, int key_idx,
const u8 *auth_data, int auth_data_len)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_auth_request req = {
.ie = ie,
.ie_len = ie_len,
.auth_data = auth_data,
.auth_data_len = auth_data_len,
.auth_type = auth_type,
.key = key,
.key_len = key_len,
.key_idx = key_idx,
};
int err;
ASSERT_WDEV_LOCK(wdev);
if (auth_type == NL80211_AUTHTYPE_SHARED_KEY)
if (!key || !key_len || key_idx < 0 || key_idx > 3)
return -EINVAL;
if (wdev->current_bss &&
ether_addr_equal(bssid, wdev->current_bss->pub.bssid))
return -EALREADY;
req.bss = cfg80211_get_bss(&rdev->wiphy, chan, bssid, ssid, ssid_len,
IEEE80211_BSS_TYPE_ESS,
IEEE80211_PRIVACY_ANY);
if (!req.bss)
return -ENOENT;
err = rdev_auth(rdev, dev, &req);
cfg80211_put_bss(&rdev->wiphy, req.bss);
return err;
}
/* Do a logical ht_capa &= ht_capa_mask. */
void cfg80211_oper_and_ht_capa(struct ieee80211_ht_cap *ht_capa,
const struct ieee80211_ht_cap *ht_capa_mask)
{
int i;
u8 *p1, *p2;
if (!ht_capa_mask) {
memset(ht_capa, 0, sizeof(*ht_capa));
return;
}
p1 = (u8*)(ht_capa);
p2 = (u8*)(ht_capa_mask);
for (i = 0; i < sizeof(*ht_capa); i++)
p1[i] &= p2[i];
}
/* Do a logical vht_capa &= vht_capa_mask. */
void cfg80211_oper_and_vht_capa(struct ieee80211_vht_cap *vht_capa,
const struct ieee80211_vht_cap *vht_capa_mask)
{
int i;
u8 *p1, *p2;
if (!vht_capa_mask) {
memset(vht_capa, 0, sizeof(*vht_capa));
return;
}
p1 = (u8*)(vht_capa);
p2 = (u8*)(vht_capa_mask);
for (i = 0; i < sizeof(*vht_capa); i++)
p1[i] &= p2[i];
}
int cfg80211_mlme_assoc(struct cfg80211_registered_device *rdev,
struct net_device *dev,
struct ieee80211_channel *chan,
const u8 *bssid,
const u8 *ssid, int ssid_len,
struct cfg80211_assoc_request *req)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
int err;
ASSERT_WDEV_LOCK(wdev);
if (wdev->current_bss &&
(!req->prev_bssid || !ether_addr_equal(wdev->current_bss->pub.bssid,
req->prev_bssid)))
return -EALREADY;
cfg80211_oper_and_ht_capa(&req->ht_capa_mask,
rdev->wiphy.ht_capa_mod_mask);
cfg80211_oper_and_vht_capa(&req->vht_capa_mask,
rdev->wiphy.vht_capa_mod_mask);
req->bss = cfg80211_get_bss(&rdev->wiphy, chan, bssid, ssid, ssid_len,
IEEE80211_BSS_TYPE_ESS,
IEEE80211_PRIVACY_ANY);
if (!req->bss)
return -ENOENT;
err = rdev_assoc(rdev, dev, req);
if (!err)
cfg80211_hold_bss(bss_from_pub(req->bss));
else
cfg80211_put_bss(&rdev->wiphy, req->bss);
return err;
}
int cfg80211_mlme_deauth(struct cfg80211_registered_device *rdev,
struct net_device *dev, const u8 *bssid,
const u8 *ie, int ie_len, u16 reason,
bool local_state_change)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_deauth_request req = {
.bssid = bssid,
.reason_code = reason,
.ie = ie,
.ie_len = ie_len,
.local_state_change = local_state_change,
};
ASSERT_WDEV_LOCK(wdev);
if (local_state_change &&
(!wdev->current_bss ||
!ether_addr_equal(wdev->current_bss->pub.bssid, bssid)))
return 0;
if (ether_addr_equal(wdev->disconnect_bssid, bssid) ||
(wdev->current_bss &&
ether_addr_equal(wdev->current_bss->pub.bssid, bssid)))
wdev->conn_owner_nlportid = 0;
return rdev_deauth(rdev, dev, &req);
}
int cfg80211_mlme_disassoc(struct cfg80211_registered_device *rdev,
struct net_device *dev, const u8 *bssid,
const u8 *ie, int ie_len, u16 reason,
bool local_state_change)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
struct cfg80211_disassoc_request req = {
.reason_code = reason,
.local_state_change = local_state_change,
.ie = ie,
.ie_len = ie_len,
};
int err;
ASSERT_WDEV_LOCK(wdev);
if (!wdev->current_bss)
return -ENOTCONN;
if (ether_addr_equal(wdev->current_bss->pub.bssid, bssid))
req.bss = &wdev->current_bss->pub;
else
return -ENOTCONN;
err = rdev_disassoc(rdev, dev, &req);
if (err)
return err;
/* driver should have reported the disassoc */
WARN_ON(wdev->current_bss);
return 0;
}
void cfg80211_mlme_down(struct cfg80211_registered_device *rdev,
struct net_device *dev)
{
struct wireless_dev *wdev = dev->ieee80211_ptr;
u8 bssid[ETH_ALEN];
ASSERT_WDEV_LOCK(wdev);
if (!rdev->ops->deauth)
return;
if (!wdev->current_bss)
return;
memcpy(bssid, wdev->current_bss->pub.bssid, ETH_ALEN);
cfg80211_mlme_deauth(rdev, dev, bssid, NULL, 0,
WLAN_REASON_DEAUTH_LEAVING, false);
}
struct cfg80211_mgmt_registration {
struct list_head list;
struct wireless_dev *wdev;
u32 nlportid;
int match_len;
__le16 frame_type;
u8 match[];
};
static void
cfg80211_process_mlme_unregistrations(struct cfg80211_registered_device *rdev)
{
struct cfg80211_mgmt_registration *reg;
ASSERT_RTNL();
spin_lock_bh(&rdev->mlme_unreg_lock);
while ((reg = list_first_entry_or_null(&rdev->mlme_unreg,
struct cfg80211_mgmt_registration,
list))) {
list_del(&reg->list);
spin_unlock_bh(&rdev->mlme_unreg_lock);
if (rdev->ops->mgmt_frame_register) {
u16 frame_type = le16_to_cpu(reg->frame_type);
rdev_mgmt_frame_register(rdev, reg->wdev,
frame_type, false);
}
kfree(reg);
spin_lock_bh(&rdev->mlme_unreg_lock);
}
spin_unlock_bh(&rdev->mlme_unreg_lock);
}
void cfg80211_mlme_unreg_wk(struct work_struct *wk)
{
struct cfg80211_registered_device *rdev;
rdev = container_of(wk, struct cfg80211_registered_device,
mlme_unreg_wk);
rtnl_lock();
cfg80211_process_mlme_unregistrations(rdev);
rtnl_unlock();
}
int cfg80211_mlme_register_mgmt(struct wireless_dev *wdev, u32 snd_portid,
u16 frame_type, const u8 *match_data,
int match_len)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_mgmt_registration *reg, *nreg;
int err = 0;
u16 mgmt_type;
if (!wdev->wiphy->mgmt_stypes)
return -EOPNOTSUPP;
if ((frame_type & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT)
return -EINVAL;
if (frame_type & ~(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE))
return -EINVAL;
mgmt_type = (frame_type & IEEE80211_FCTL_STYPE) >> 4;
if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].rx & BIT(mgmt_type)))
return -EINVAL;
nreg = kzalloc(sizeof(*reg) + match_len, GFP_KERNEL);
if (!nreg)
return -ENOMEM;
spin_lock_bh(&wdev->mgmt_registrations_lock);
list_for_each_entry(reg, &wdev->mgmt_registrations, list) {
int mlen = min(match_len, reg->match_len);
if (frame_type != le16_to_cpu(reg->frame_type))
continue;
if (memcmp(reg->match, match_data, mlen) == 0) {
err = -EALREADY;
break;
}
}
if (err) {
kfree(nreg);
goto out;
}
memcpy(nreg->match, match_data, match_len);
nreg->match_len = match_len;
nreg->nlportid = snd_portid;
nreg->frame_type = cpu_to_le16(frame_type);
nreg->wdev = wdev;
list_add(&nreg->list, &wdev->mgmt_registrations);
spin_unlock_bh(&wdev->mgmt_registrations_lock);
/* process all unregistrations to avoid driver confusion */
cfg80211_process_mlme_unregistrations(rdev);
if (rdev->ops->mgmt_frame_register)
rdev_mgmt_frame_register(rdev, wdev, frame_type, true);
return 0;
out:
spin_unlock_bh(&wdev->mgmt_registrations_lock);
return err;
}
void cfg80211_mlme_unregister_socket(struct wireless_dev *wdev, u32 nlportid)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_mgmt_registration *reg, *tmp;
spin_lock_bh(&wdev->mgmt_registrations_lock);
list_for_each_entry_safe(reg, tmp, &wdev->mgmt_registrations, list) {
if (reg->nlportid != nlportid)
continue;
list_del(&reg->list);
spin_lock(&rdev->mlme_unreg_lock);
list_add_tail(&reg->list, &rdev->mlme_unreg);
spin_unlock(&rdev->mlme_unreg_lock);
schedule_work(&rdev->mlme_unreg_wk);
}
spin_unlock_bh(&wdev->mgmt_registrations_lock);
if (nlportid && rdev->crit_proto_nlportid == nlportid) {
rdev->crit_proto_nlportid = 0;
rdev_crit_proto_stop(rdev, wdev);
}
if (nlportid == wdev->ap_unexpected_nlportid)
wdev->ap_unexpected_nlportid = 0;
}
void cfg80211_mlme_purge_registrations(struct wireless_dev *wdev)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
spin_lock_bh(&wdev->mgmt_registrations_lock);
spin_lock(&rdev->mlme_unreg_lock);
list_splice_tail_init(&wdev->mgmt_registrations, &rdev->mlme_unreg);
spin_unlock(&rdev->mlme_unreg_lock);
spin_unlock_bh(&wdev->mgmt_registrations_lock);
cfg80211_process_mlme_unregistrations(rdev);
}
int cfg80211_mlme_mgmt_tx(struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
struct cfg80211_mgmt_tx_params *params, u64 *cookie)
{
const struct ieee80211_mgmt *mgmt;
u16 stype;
if (!wdev->wiphy->mgmt_stypes)
return -EOPNOTSUPP;
if (!rdev->ops->mgmt_tx)
return -EOPNOTSUPP;
if (params->len < 24 + 1)
return -EINVAL;
mgmt = (const struct ieee80211_mgmt *)params->buf;
if (!ieee80211_is_mgmt(mgmt->frame_control))
return -EINVAL;
stype = le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE;
if (!(wdev->wiphy->mgmt_stypes[wdev->iftype].tx & BIT(stype >> 4)))
return -EINVAL;
if (ieee80211_is_action(mgmt->frame_control) &&
mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) {
int err = 0;
wdev_lock(wdev);
switch (wdev->iftype) {
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (!wdev->current_bss) {
err = -ENOTCONN;
break;
}
if (!ether_addr_equal(wdev->current_bss->pub.bssid,
mgmt->bssid)) {
err = -ENOTCONN;
break;
}
/*
* check for IBSS DA must be done by driver as
* cfg80211 doesn't track the stations
*/
if (wdev->iftype == NL80211_IFTYPE_ADHOC)
break;
/* for station, check that DA is the AP */
if (!ether_addr_equal(wdev->current_bss->pub.bssid,
mgmt->da)) {
err = -ENOTCONN;
break;
}
break;
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_P2P_GO:
case NL80211_IFTYPE_AP_VLAN:
if (!ether_addr_equal(mgmt->bssid, wdev_address(wdev)))
err = -EINVAL;
break;
case NL80211_IFTYPE_MESH_POINT:
if (!ether_addr_equal(mgmt->sa, mgmt->bssid)) {
err = -EINVAL;
break;
}
/*
* check for mesh DA must be done by driver as
* cfg80211 doesn't track the stations
*/
break;
case NL80211_IFTYPE_P2P_DEVICE:
/*
* fall through, P2P device only supports
* public action frames
*/
case NL80211_IFTYPE_NAN:
default:
err = -EOPNOTSUPP;
break;
}
wdev_unlock(wdev);
if (err)
return err;
}
if (!ether_addr_equal(mgmt->sa, wdev_address(wdev))) {
/* Allow random TA to be used with Public Action frames if the
* driver has indicated support for this. Otherwise, only allow
* the local address to be used.
*/
if (!ieee80211_is_action(mgmt->frame_control) ||
mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
return -EINVAL;
if (!wdev->current_bss &&
!wiphy_ext_feature_isset(
&rdev->wiphy,
NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA))
return -EINVAL;
if (wdev->current_bss &&
!wiphy_ext_feature_isset(
&rdev->wiphy,
NL80211_EXT_FEATURE_MGMT_TX_RANDOM_TA_CONNECTED))
return -EINVAL;
}
/* Transmit the Action frame as requested by user space */
return rdev_mgmt_tx(rdev, wdev, params, cookie);
}
bool cfg80211_rx_mgmt(struct wireless_dev *wdev, int freq, int sig_dbm,
const u8 *buf, size_t len, u32 flags)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_mgmt_registration *reg;
const struct ieee80211_txrx_stypes *stypes =
&wiphy->mgmt_stypes[wdev->iftype];
struct ieee80211_mgmt *mgmt = (void *)buf;
const u8 *data;
int data_len;
bool result = false;
__le16 ftype = mgmt->frame_control &
cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE);
u16 stype;
trace_cfg80211_rx_mgmt(wdev, freq, sig_dbm);
stype = (le16_to_cpu(mgmt->frame_control) & IEEE80211_FCTL_STYPE) >> 4;
if (!(stypes->rx & BIT(stype))) {
trace_cfg80211_return_bool(false);
return false;
}
data = buf + ieee80211_hdrlen(mgmt->frame_control);
data_len = len - ieee80211_hdrlen(mgmt->frame_control);
spin_lock_bh(&wdev->mgmt_registrations_lock);
list_for_each_entry(reg, &wdev->mgmt_registrations, list) {
if (reg->frame_type != ftype)
continue;
if (reg->match_len > data_len)
continue;
if (memcmp(reg->match, data, reg->match_len))
continue;
/* found match! */
/* Indicate the received Action frame to user space */
if (nl80211_send_mgmt(rdev, wdev, reg->nlportid,
freq, sig_dbm,
buf, len, flags, GFP_ATOMIC))
continue;
result = true;
break;
}
spin_unlock_bh(&wdev->mgmt_registrations_lock);
trace_cfg80211_return_bool(result);
return result;
}
EXPORT_SYMBOL(cfg80211_rx_mgmt);
void cfg80211_sched_dfs_chan_update(struct cfg80211_registered_device *rdev)
{
cancel_delayed_work(&rdev->dfs_update_channels_wk);
queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk, 0);
}
void cfg80211_dfs_channels_update_work(struct work_struct *work)
{
struct delayed_work *delayed_work = to_delayed_work(work);
struct cfg80211_registered_device *rdev;
struct cfg80211_chan_def chandef;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *c;
struct wiphy *wiphy;
bool check_again = false;
unsigned long timeout, next_time = 0;
unsigned long time_dfs_update;
enum nl80211_radar_event radar_event;
int bandid, i;
rdev = container_of(delayed_work, struct cfg80211_registered_device,
dfs_update_channels_wk);
wiphy = &rdev->wiphy;
rtnl_lock();
for (bandid = 0; bandid < NUM_NL80211_BANDS; bandid++) {
sband = wiphy->bands[bandid];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
c = &sband->channels[i];
if (!(c->flags & IEEE80211_CHAN_RADAR))
continue;
if (c->dfs_state != NL80211_DFS_UNAVAILABLE &&
c->dfs_state != NL80211_DFS_AVAILABLE)
continue;
if (c->dfs_state == NL80211_DFS_UNAVAILABLE) {
time_dfs_update = IEEE80211_DFS_MIN_NOP_TIME_MS;
radar_event = NL80211_RADAR_NOP_FINISHED;
} else {
if (regulatory_pre_cac_allowed(wiphy) ||
cfg80211_any_wiphy_oper_chan(wiphy, c))
continue;
time_dfs_update = REG_PRE_CAC_EXPIRY_GRACE_MS;
radar_event = NL80211_RADAR_PRE_CAC_EXPIRED;
}
timeout = c->dfs_state_entered +
msecs_to_jiffies(time_dfs_update);
if (time_after_eq(jiffies, timeout)) {
c->dfs_state = NL80211_DFS_USABLE;
c->dfs_state_entered = jiffies;
cfg80211_chandef_create(&chandef, c,
NL80211_CHAN_NO_HT);
nl80211_radar_notify(rdev, &chandef,
radar_event, NULL,
GFP_ATOMIC);
regulatory_propagate_dfs_state(wiphy, &chandef,
c->dfs_state,
radar_event);
continue;
}
if (!check_again)
next_time = timeout - jiffies;
else
next_time = min(next_time, timeout - jiffies);
check_again = true;
}
}
rtnl_unlock();
/* reschedule if there are other channels waiting to be cleared again */
if (check_again)
queue_delayed_work(cfg80211_wq, &rdev->dfs_update_channels_wk,
next_time);
}
void cfg80211_radar_event(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
trace_cfg80211_radar_event(wiphy, chandef);
/* only set the chandef supplied channel to unavailable, in
* case the radar is detected on only one of multiple channels
* spanned by the chandef.
*/
cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_UNAVAILABLE);
cfg80211_sched_dfs_chan_update(rdev);
nl80211_radar_notify(rdev, chandef, NL80211_RADAR_DETECTED, NULL, gfp);
memcpy(&rdev->radar_chandef, chandef, sizeof(struct cfg80211_chan_def));
queue_work(cfg80211_wq, &rdev->propagate_radar_detect_wk);
}
EXPORT_SYMBOL(cfg80211_radar_event);
void cfg80211_cac_event(struct net_device *netdev,
const struct cfg80211_chan_def *chandef,
enum nl80211_radar_event event, gfp_t gfp)
{
struct wireless_dev *wdev = netdev->ieee80211_ptr;
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
unsigned long timeout;
trace_cfg80211_cac_event(netdev, event);
if (WARN_ON(!wdev->cac_started && event != NL80211_RADAR_CAC_STARTED))
return;
if (WARN_ON(!wdev->chandef.chan))
return;
switch (event) {
case NL80211_RADAR_CAC_FINISHED:
timeout = wdev->cac_start_time +
msecs_to_jiffies(wdev->cac_time_ms);
WARN_ON(!time_after_eq(jiffies, timeout));
cfg80211_set_dfs_state(wiphy, chandef, NL80211_DFS_AVAILABLE);
memcpy(&rdev->cac_done_chandef, chandef,
sizeof(struct cfg80211_chan_def));
queue_work(cfg80211_wq, &rdev->propagate_cac_done_wk);
cfg80211_sched_dfs_chan_update(rdev);
/* fall through */
case NL80211_RADAR_CAC_ABORTED:
wdev->cac_started = false;
break;
case NL80211_RADAR_CAC_STARTED:
wdev->cac_started = true;
break;
default:
WARN_ON(1);
return;
}
nl80211_radar_notify(rdev, chandef, event, netdev, gfp);
}
EXPORT_SYMBOL(cfg80211_cac_event);