linux/drivers/net/ethernet/broadcom/bnx2.c

8782 lines
214 KiB
C
Raw Normal View History

/* bnx2.c: Broadcom NX2 network driver.
*
* Copyright (c) 2004-2011 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Michael Chan (mchan@broadcom.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/stringify.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/time.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <net/ip.h>
#include <net/tcp.h>
#include <net/checksum.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <linux/prefetch.h>
#include <linux/cache.h>
#include <linux/firmware.h>
#include <linux/log2.h>
#include <linux/aer.h>
#if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
#define BCM_CNIC 1
#include "cnic_if.h"
#endif
#include "bnx2.h"
#include "bnx2_fw.h"
#define DRV_MODULE_NAME "bnx2"
#define DRV_MODULE_VERSION "2.2.3"
#define DRV_MODULE_RELDATE "June 27, 2012"
#define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
#define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
#define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
#define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
#define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
#define RUN_AT(x) (jiffies + (x))
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (5*HZ)
static char version[] =
"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
MODULE_FIRMWARE(FW_MIPS_FILE_06);
MODULE_FIRMWARE(FW_RV2P_FILE_06);
MODULE_FIRMWARE(FW_MIPS_FILE_09);
MODULE_FIRMWARE(FW_RV2P_FILE_09);
MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
typedef enum {
BCM5706 = 0,
NC370T,
NC370I,
BCM5706S,
NC370F,
BCM5708,
BCM5708S,
BCM5709,
BCM5709S,
BCM5716,
BCM5716S,
} board_t;
/* indexed by board_t, above */
static struct {
char *name;
} board_info[] = {
{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
{ "HP NC370T Multifunction Gigabit Server Adapter" },
{ "HP NC370i Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
{ "HP NC370F Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
{ "Broadcom NetXtreme II BCM5709 1000Base-T" },
{ "Broadcom NetXtreme II BCM5709 1000Base-SX" },
{ "Broadcom NetXtreme II BCM5716 1000Base-T" },
{ "Broadcom NetXtreme II BCM5716 1000Base-SX" },
};
static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
{ PCI_VENDOR_ID_BROADCOM, 0x163b,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
{ PCI_VENDOR_ID_BROADCOM, 0x163c,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
{ 0, }
};
static const struct flash_spec flash_table[] =
{
#define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
#define NONBUFFERED_FLAGS (BNX2_NV_WREN)
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
static const struct flash_spec flash_5709 = {
.flags = BNX2_NV_BUFFERED,
.page_bits = BCM5709_FLASH_PAGE_BITS,
.page_size = BCM5709_FLASH_PAGE_SIZE,
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
.total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
.name = "5709 Buffered flash (256kB)",
};
MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
static void bnx2_init_napi(struct bnx2 *bp);
static void bnx2_del_napi(struct bnx2 *bp);
static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
{
u32 diff;
/* Tell compiler to fetch tx_prod and tx_cons from memory. */
barrier();
/* The ring uses 256 indices for 255 entries, one of them
* needs to be skipped.
*/
diff = txr->tx_prod - txr->tx_cons;
if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
diff &= 0xffff;
if (diff == BNX2_TX_DESC_CNT)
diff = BNX2_MAX_TX_DESC_CNT;
}
return bp->tx_ring_size - diff;
}
static u32
bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
{
u32 val;
spin_lock_bh(&bp->indirect_lock);
BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
spin_unlock_bh(&bp->indirect_lock);
return val;
}
static void
bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
{
spin_lock_bh(&bp->indirect_lock);
BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
spin_unlock_bh(&bp->indirect_lock);
}
static void
bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
{
bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
}
static u32
bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
{
return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
}
static void
bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
{
offset += cid_addr;
spin_lock_bh(&bp->indirect_lock);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
int i;
BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
for (i = 0; i < 5; i++) {
val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
break;
udelay(5);
}
} else {
BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
BNX2_WR(bp, BNX2_CTX_DATA, val);
}
spin_unlock_bh(&bp->indirect_lock);
}
#ifdef BCM_CNIC
static int
bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
{
struct bnx2 *bp = netdev_priv(dev);
struct drv_ctl_io *io = &info->data.io;
switch (info->cmd) {
case DRV_CTL_IO_WR_CMD:
bnx2_reg_wr_ind(bp, io->offset, io->data);
break;
case DRV_CTL_IO_RD_CMD:
io->data = bnx2_reg_rd_ind(bp, io->offset);
break;
case DRV_CTL_CTX_WR_CMD:
bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
break;
default:
return -EINVAL;
}
return 0;
}
static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
{
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
int sb_id;
if (bp->flags & BNX2_FLAG_USING_MSIX) {
cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
bnapi->cnic_present = 0;
sb_id = bp->irq_nvecs;
cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
} else {
cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
bnapi->cnic_tag = bnapi->last_status_idx;
bnapi->cnic_present = 1;
sb_id = 0;
cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
}
cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
cp->irq_arr[0].status_blk = (void *)
((unsigned long) bnapi->status_blk.msi +
(BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
cp->irq_arr[0].status_blk_num = sb_id;
cp->num_irq = 1;
}
static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
void *data)
{
struct bnx2 *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
if (ops == NULL)
return -EINVAL;
if (cp->drv_state & CNIC_DRV_STATE_REGD)
return -EBUSY;
if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
return -ENODEV;
bp->cnic_data = data;
rcu_assign_pointer(bp->cnic_ops, ops);
cp->num_irq = 0;
cp->drv_state = CNIC_DRV_STATE_REGD;
bnx2_setup_cnic_irq_info(bp);
return 0;
}
static int bnx2_unregister_cnic(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
mutex_lock(&bp->cnic_lock);
cp->drv_state = 0;
bnapi->cnic_present = 0;
RCU_INIT_POINTER(bp->cnic_ops, NULL);
mutex_unlock(&bp->cnic_lock);
synchronize_rcu();
return 0;
}
static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
if (!cp->max_iscsi_conn)
return NULL;
cp->drv_owner = THIS_MODULE;
cp->chip_id = bp->chip_id;
cp->pdev = bp->pdev;
cp->io_base = bp->regview;
cp->drv_ctl = bnx2_drv_ctl;
cp->drv_register_cnic = bnx2_register_cnic;
cp->drv_unregister_cnic = bnx2_unregister_cnic;
return cp;
}
static void
bnx2_cnic_stop(struct bnx2 *bp)
{
struct cnic_ops *c_ops;
struct cnic_ctl_info info;
mutex_lock(&bp->cnic_lock);
c_ops = rcu_dereference_protected(bp->cnic_ops,
lockdep_is_held(&bp->cnic_lock));
if (c_ops) {
info.cmd = CNIC_CTL_STOP_CMD;
c_ops->cnic_ctl(bp->cnic_data, &info);
}
mutex_unlock(&bp->cnic_lock);
}
static void
bnx2_cnic_start(struct bnx2 *bp)
{
struct cnic_ops *c_ops;
struct cnic_ctl_info info;
mutex_lock(&bp->cnic_lock);
c_ops = rcu_dereference_protected(bp->cnic_ops,
lockdep_is_held(&bp->cnic_lock));
if (c_ops) {
if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
bnapi->cnic_tag = bnapi->last_status_idx;
}
info.cmd = CNIC_CTL_START_CMD;
c_ops->cnic_ctl(bp->cnic_data, &info);
}
mutex_unlock(&bp->cnic_lock);
}
#else
static void
bnx2_cnic_stop(struct bnx2 *bp)
{
}
static void
bnx2_cnic_start(struct bnx2 *bp)
{
}
#endif
static int
bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) |
BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
BNX2_EMAC_MDIO_COMM_START_BUSY;
BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
val1 &= BNX2_EMAC_MDIO_COMM_DATA;
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
*val = 0x0;
ret = -EBUSY;
}
else {
*val = val1;
ret = 0;
}
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static int
bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) | val |
BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
ret = -EBUSY;
else
ret = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static void
bnx2_disable_int(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi;
for (i = 0; i < bp->irq_nvecs; i++) {
bnapi = &bp->bnx2_napi[i];
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
}
BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
}
static void
bnx2_enable_int(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi;
for (i = 0; i < bp->irq_nvecs; i++) {
bnapi = &bp->bnx2_napi[i];
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
bnapi->last_status_idx);
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
}
BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
}
static void
bnx2_disable_int_sync(struct bnx2 *bp)
{
int i;
atomic_inc(&bp->intr_sem);
if (!netif_running(bp->dev))
return;
bnx2_disable_int(bp);
for (i = 0; i < bp->irq_nvecs; i++)
synchronize_irq(bp->irq_tbl[i].vector);
}
static void
bnx2_napi_disable(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++)
napi_disable(&bp->bnx2_napi[i].napi);
}
static void
bnx2_napi_enable(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++)
napi_enable(&bp->bnx2_napi[i].napi);
}
static void
bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
{
if (stop_cnic)
bnx2_cnic_stop(bp);
if (netif_running(bp->dev)) {
bnx2_napi_disable(bp);
netif_tx_disable(bp->dev);
}
bnx2_disable_int_sync(bp);
netif_carrier_off(bp->dev); /* prevent tx timeout */
}
static void
bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
{
if (atomic_dec_and_test(&bp->intr_sem)) {
if (netif_running(bp->dev)) {
netif_tx_wake_all_queues(bp->dev);
spin_lock_bh(&bp->phy_lock);
if (bp->link_up)
netif_carrier_on(bp->dev);
spin_unlock_bh(&bp->phy_lock);
bnx2_napi_enable(bp);
bnx2_enable_int(bp);
if (start_cnic)
bnx2_cnic_start(bp);
}
}
}
static void
bnx2_free_tx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
if (txr->tx_desc_ring) {
dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
txr->tx_desc_ring,
txr->tx_desc_mapping);
txr->tx_desc_ring = NULL;
}
kfree(txr->tx_buf_ring);
txr->tx_buf_ring = NULL;
}
}
static void
bnx2_free_rx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
for (j = 0; j < bp->rx_max_ring; j++) {
if (rxr->rx_desc_ring[j])
dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
rxr->rx_desc_ring[j],
rxr->rx_desc_mapping[j]);
rxr->rx_desc_ring[j] = NULL;
}
vfree(rxr->rx_buf_ring);
rxr->rx_buf_ring = NULL;
for (j = 0; j < bp->rx_max_pg_ring; j++) {
if (rxr->rx_pg_desc_ring[j])
dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
rxr->rx_pg_desc_ring[j],
rxr->rx_pg_desc_mapping[j]);
rxr->rx_pg_desc_ring[j] = NULL;
}
vfree(rxr->rx_pg_ring);
rxr->rx_pg_ring = NULL;
}
}
static int
bnx2_alloc_tx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
if (txr->tx_buf_ring == NULL)
return -ENOMEM;
txr->tx_desc_ring =
dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
&txr->tx_desc_mapping, GFP_KERNEL);
if (txr->tx_desc_ring == NULL)
return -ENOMEM;
}
return 0;
}
static int
bnx2_alloc_rx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
rxr->rx_buf_ring =
vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
if (rxr->rx_buf_ring == NULL)
return -ENOMEM;
for (j = 0; j < bp->rx_max_ring; j++) {
rxr->rx_desc_ring[j] =
dma_alloc_coherent(&bp->pdev->dev,
RXBD_RING_SIZE,
&rxr->rx_desc_mapping[j],
GFP_KERNEL);
if (rxr->rx_desc_ring[j] == NULL)
return -ENOMEM;
}
if (bp->rx_pg_ring_size) {
rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
bp->rx_max_pg_ring);
if (rxr->rx_pg_ring == NULL)
return -ENOMEM;
}
for (j = 0; j < bp->rx_max_pg_ring; j++) {
rxr->rx_pg_desc_ring[j] =
dma_alloc_coherent(&bp->pdev->dev,
RXBD_RING_SIZE,
&rxr->rx_pg_desc_mapping[j],
GFP_KERNEL);
if (rxr->rx_pg_desc_ring[j] == NULL)
return -ENOMEM;
}
}
return 0;
}
static void
bnx2_free_mem(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
bnx2_free_tx_mem(bp);
bnx2_free_rx_mem(bp);
for (i = 0; i < bp->ctx_pages; i++) {
if (bp->ctx_blk[i]) {
dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
bp->ctx_blk[i],
bp->ctx_blk_mapping[i]);
bp->ctx_blk[i] = NULL;
}
}
if (bnapi->status_blk.msi) {
dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
bnapi->status_blk.msi,
bp->status_blk_mapping);
bnapi->status_blk.msi = NULL;
bp->stats_blk = NULL;
}
}
static int
bnx2_alloc_mem(struct bnx2 *bp)
{
int i, status_blk_size, err;
struct bnx2_napi *bnapi;
void *status_blk;
/* Combine status and statistics blocks into one allocation. */
status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
if (bp->flags & BNX2_FLAG_MSIX_CAP)
status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
BNX2_SBLK_MSIX_ALIGN_SIZE);
bp->status_stats_size = status_blk_size +
sizeof(struct statistics_block);
status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
&bp->status_blk_mapping,
GFP_KERNEL | __GFP_ZERO);
if (status_blk == NULL)
goto alloc_mem_err;
bnapi = &bp->bnx2_napi[0];
bnapi->status_blk.msi = status_blk;
bnapi->hw_tx_cons_ptr =
&bnapi->status_blk.msi->status_tx_quick_consumer_index0;
bnapi->hw_rx_cons_ptr =
&bnapi->status_blk.msi->status_rx_quick_consumer_index0;
if (bp->flags & BNX2_FLAG_MSIX_CAP) {
for (i = 1; i < bp->irq_nvecs; i++) {
struct status_block_msix *sblk;
bnapi = &bp->bnx2_napi[i];
sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
bnapi->status_blk.msix = sblk;
bnapi->hw_tx_cons_ptr =
&sblk->status_tx_quick_consumer_index;
bnapi->hw_rx_cons_ptr =
&sblk->status_rx_quick_consumer_index;
bnapi->int_num = i << 24;
}
}
bp->stats_blk = status_blk + status_blk_size;
bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
if (bp->ctx_pages == 0)
bp->ctx_pages = 1;
for (i = 0; i < bp->ctx_pages; i++) {
bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
BNX2_PAGE_SIZE,
&bp->ctx_blk_mapping[i],
GFP_KERNEL);
if (bp->ctx_blk[i] == NULL)
goto alloc_mem_err;
}
}
err = bnx2_alloc_rx_mem(bp);
if (err)
goto alloc_mem_err;
err = bnx2_alloc_tx_mem(bp);
if (err)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnx2_free_mem(bp);
return -ENOMEM;
}
static void
bnx2_report_fw_link(struct bnx2 *bp)
{
u32 fw_link_status = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return;
if (bp->link_up) {
u32 bmsr;
switch (bp->line_speed) {
case SPEED_10:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_10HALF;
else
fw_link_status = BNX2_LINK_STATUS_10FULL;
break;
case SPEED_100:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_100HALF;
else
fw_link_status = BNX2_LINK_STATUS_100FULL;
break;
case SPEED_1000:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_1000HALF;
else
fw_link_status = BNX2_LINK_STATUS_1000FULL;
break;
case SPEED_2500:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_2500HALF;
else
fw_link_status = BNX2_LINK_STATUS_2500FULL;
break;
}
fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
if (bp->autoneg) {
fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
if (!(bmsr & BMSR_ANEGCOMPLETE) ||
bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
else
fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
}
}
else
fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
}
static char *
bnx2_xceiver_str(struct bnx2 *bp)
{
return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
"Copper");
}
static void
bnx2_report_link(struct bnx2 *bp)
{
if (bp->link_up) {
netif_carrier_on(bp->dev);
netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
bnx2_xceiver_str(bp),
bp->line_speed,
bp->duplex == DUPLEX_FULL ? "full" : "half");
if (bp->flow_ctrl) {
if (bp->flow_ctrl & FLOW_CTRL_RX) {
pr_cont(", receive ");
if (bp->flow_ctrl & FLOW_CTRL_TX)
pr_cont("& transmit ");
}
else {
pr_cont(", transmit ");
}
pr_cont("flow control ON");
}
pr_cont("\n");
} else {
netif_carrier_off(bp->dev);
netdev_err(bp->dev, "NIC %s Link is Down\n",
bnx2_xceiver_str(bp));
}
bnx2_report_fw_link(bp);
}
static void
bnx2_resolve_flow_ctrl(struct bnx2 *bp)
{
u32 local_adv, remote_adv;
bp->flow_ctrl = 0;
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
if (bp->duplex == DUPLEX_FULL) {
bp->flow_ctrl = bp->req_flow_ctrl;
}
return;
}
if (bp->duplex != DUPLEX_FULL) {
return;
}
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
u32 val;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_TX;
if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_RX;
return;
}
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
u32 new_local_adv = 0;
u32 new_remote_adv = 0;
if (local_adv & ADVERTISE_1000XPAUSE)
new_local_adv |= ADVERTISE_PAUSE_CAP;
if (local_adv & ADVERTISE_1000XPSE_ASYM)
new_local_adv |= ADVERTISE_PAUSE_ASYM;
if (remote_adv & ADVERTISE_1000XPAUSE)
new_remote_adv |= ADVERTISE_PAUSE_CAP;
if (remote_adv & ADVERTISE_1000XPSE_ASYM)
new_remote_adv |= ADVERTISE_PAUSE_ASYM;
local_adv = new_local_adv;
remote_adv = new_remote_adv;
}
/* See Table 28B-3 of 802.3ab-1999 spec. */
if (local_adv & ADVERTISE_PAUSE_CAP) {
if(local_adv & ADVERTISE_PAUSE_ASYM) {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
bp->flow_ctrl = FLOW_CTRL_RX;
}
}
else {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
}
}
else if (local_adv & ADVERTISE_PAUSE_ASYM) {
if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
(remote_adv & ADVERTISE_PAUSE_ASYM)) {
bp->flow_ctrl = FLOW_CTRL_TX;
}
}
}
static int
bnx2_5709s_linkup(struct bnx2 *bp)
{
u32 val, speed;
bp->link_up = 1;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
if ((bp->autoneg & AUTONEG_SPEED) == 0) {
bp->line_speed = bp->req_line_speed;
bp->duplex = bp->req_duplex;
return 0;
}
speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
switch (speed) {
case MII_BNX2_GP_TOP_AN_SPEED_10:
bp->line_speed = SPEED_10;
break;
case MII_BNX2_GP_TOP_AN_SPEED_100:
bp->line_speed = SPEED_100;
break;
case MII_BNX2_GP_TOP_AN_SPEED_1G:
case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
bp->line_speed = SPEED_1000;
break;
case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
bp->line_speed = SPEED_2500;
break;
}
if (val & MII_BNX2_GP_TOP_AN_FD)
bp->duplex = DUPLEX_FULL;
else
bp->duplex = DUPLEX_HALF;
return 0;
}
static int
bnx2_5708s_linkup(struct bnx2 *bp)
{
u32 val;
bp->link_up = 1;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
case BCM5708S_1000X_STAT1_SPEED_10:
bp->line_speed = SPEED_10;
break;
case BCM5708S_1000X_STAT1_SPEED_100:
bp->line_speed = SPEED_100;
break;
case BCM5708S_1000X_STAT1_SPEED_1G:
bp->line_speed = SPEED_1000;
break;
case BCM5708S_1000X_STAT1_SPEED_2G5:
bp->line_speed = SPEED_2500;
break;
}
if (val & BCM5708S_1000X_STAT1_FD)
bp->duplex = DUPLEX_FULL;
else
bp->duplex = DUPLEX_HALF;
return 0;
}
static int
bnx2_5706s_linkup(struct bnx2 *bp)
{
u32 bmcr, local_adv, remote_adv, common;
bp->link_up = 1;
bp->line_speed = SPEED_1000;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
if (!(bmcr & BMCR_ANENABLE)) {
return 0;
}
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
common = local_adv & remote_adv;
if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
if (common & ADVERTISE_1000XFULL) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static int
bnx2_copper_linkup(struct bnx2 *bp)
{
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 local_adv, remote_adv, common;
bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
common = local_adv & (remote_adv >> 2);
if (common & ADVERTISE_1000FULL) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_1000HALF) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_HALF;
}
else {
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
common = local_adv & remote_adv;
if (common & ADVERTISE_100FULL) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_100HALF) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_HALF;
}
else if (common & ADVERTISE_10FULL) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_10HALF) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_HALF;
}
else {
bp->line_speed = 0;
bp->link_up = 0;
}
}
}
else {
if (bmcr & BMCR_SPEED100) {
bp->line_speed = SPEED_100;
}
else {
bp->line_speed = SPEED_10;
}
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static void
bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
{
u32 val, rx_cid_addr = GET_CID_ADDR(cid);
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
val |= 0x02 << 8;
if (bp->flow_ctrl & FLOW_CTRL_TX)
val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
}
static void
bnx2_init_all_rx_contexts(struct bnx2 *bp)
{
int i;
u32 cid;
for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
if (i == 1)
cid = RX_RSS_CID;
bnx2_init_rx_context(bp, cid);
}
}
static void
bnx2_set_mac_link(struct bnx2 *bp)
{
u32 val;
BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
if (bp->link_up && (bp->line_speed == SPEED_1000) &&
(bp->duplex == DUPLEX_HALF)) {
BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
}
/* Configure the EMAC mode register. */
val = BNX2_RD(bp, BNX2_EMAC_MODE);
val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G_MODE);
if (bp->link_up) {
switch (bp->line_speed) {
case SPEED_10:
if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
val |= BNX2_EMAC_MODE_PORT_MII_10M;
break;
}
/* fall through */
case SPEED_100:
val |= BNX2_EMAC_MODE_PORT_MII;
break;
case SPEED_2500:
val |= BNX2_EMAC_MODE_25G_MODE;
/* fall through */
case SPEED_1000:
val |= BNX2_EMAC_MODE_PORT_GMII;
break;
}
}
else {
val |= BNX2_EMAC_MODE_PORT_GMII;
}
/* Set the MAC to operate in the appropriate duplex mode. */
if (bp->duplex == DUPLEX_HALF)
val |= BNX2_EMAC_MODE_HALF_DUPLEX;
BNX2_WR(bp, BNX2_EMAC_MODE, val);
/* Enable/disable rx PAUSE. */
bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_RX)
bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
/* Enable/disable tx PAUSE. */
val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_TX)
val |= BNX2_EMAC_TX_MODE_FLOW_EN;
BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
/* Acknowledge the interrupt. */
BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
bnx2_init_all_rx_contexts(bp);
}
static void
bnx2_enable_bmsr1(struct bnx2 *bp)
{
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(BNX2_CHIP(bp) == BNX2_CHIP_5709))
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_GP_STATUS);
}
static void
bnx2_disable_bmsr1(struct bnx2 *bp)
{
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(BNX2_CHIP(bp) == BNX2_CHIP_5709))
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
}
static int
bnx2_test_and_enable_2g5(struct bnx2 *bp)
{
u32 up1;
int ret = 1;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return 0;
if (bp->autoneg & AUTONEG_SPEED)
bp->advertising |= ADVERTISED_2500baseX_Full;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, bp->mii_up1, &up1);
if (!(up1 & BCM5708S_UP1_2G5)) {
up1 |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, bp->mii_up1, up1);
ret = 0;
}
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return ret;
}
static int
bnx2_test_and_disable_2g5(struct bnx2 *bp)
{
u32 up1;
int ret = 0;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return 0;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, bp->mii_up1, &up1);
if (up1 & BCM5708S_UP1_2G5) {
up1 &= ~BCM5708S_UP1_2G5;
bnx2_write_phy(bp, bp->mii_up1, up1);
ret = 1;
}
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return ret;
}
static void
bnx2_enable_forced_2g5(struct bnx2 *bp)
{
u32 uninitialized_var(bmcr);
int err;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_SERDES_DIG);
if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
val |= MII_BNX2_SD_MISC1_FORCE |
MII_BNX2_SD_MISC1_FORCE_2_5G;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
}
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
} else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (!err)
bmcr |= BCM5708S_BMCR_FORCE_2500;
} else {
return;
}
if (err)
return;
if (bp->autoneg & AUTONEG_SPEED) {
bmcr &= ~BMCR_ANENABLE;
if (bp->req_duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
}
static void
bnx2_disable_forced_2g5(struct bnx2 *bp)
{
u32 uninitialized_var(bmcr);
int err;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_SERDES_DIG);
if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
val &= ~MII_BNX2_SD_MISC1_FORCE;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
}
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
} else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (!err)
bmcr &= ~BCM5708S_BMCR_FORCE_2500;
} else {
return;
}
if (err)
return;
if (bp->autoneg & AUTONEG_SPEED)
bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
}
static void
bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
{
u32 val;
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
if (start)
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
else
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
}
static int
bnx2_set_link(struct bnx2 *bp)
{
u32 bmsr;
u8 link_up;
if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
bp->link_up = 1;
return 0;
}
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return 0;
link_up = bp->link_up;
bnx2_enable_bmsr1(bp);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_disable_bmsr1(bp);
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
u32 val, an_dbg;
if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
bnx2_5706s_force_link_dn(bp, 0);
bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
}
val = BNX2_RD(bp, BNX2_EMAC_STATUS);
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
if ((val & BNX2_EMAC_STATUS_LINK) &&
!(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
if (bmsr & BMSR_LSTATUS) {
bp->link_up = 1;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
bnx2_5706s_linkup(bp);
else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
bnx2_5708s_linkup(bp);
else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_5709s_linkup(bp);
}
else {
bnx2_copper_linkup(bp);
}
bnx2_resolve_flow_ctrl(bp);
}
else {
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(bp->autoneg & AUTONEG_SPEED))
bnx2_disable_forced_2g5(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr |= BMCR_ANENABLE;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
}
bp->link_up = 0;
}
if (bp->link_up != link_up) {
bnx2_report_link(bp);
}
bnx2_set_mac_link(bp);
return 0;
}
static int
bnx2_reset_phy(struct bnx2 *bp)
{
int i;
u32 reg;
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
#define PHY_RESET_MAX_WAIT 100
for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
udelay(10);
bnx2_read_phy(bp, bp->mii_bmcr, &reg);
if (!(reg & BMCR_RESET)) {
udelay(20);
break;
}
}
if (i == PHY_RESET_MAX_WAIT) {
return -EBUSY;
}
return 0;
}
static u32
bnx2_phy_get_pause_adv(struct bnx2 *bp)
{
u32 adv = 0;
if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPAUSE;
}
else {
adv = ADVERTISE_PAUSE_CAP;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_ASYM;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
}
}
return adv;
}
static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
static int
bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
__releases(&bp->phy_lock)
__acquires(&bp->phy_lock)
{
u32 speed_arg = 0, pause_adv;
pause_adv = bnx2_phy_get_pause_adv(bp);
if (bp->autoneg & AUTONEG_SPEED) {
speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
if (bp->advertising & ADVERTISED_10baseT_Half)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
if (bp->advertising & ADVERTISED_10baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
if (bp->advertising & ADVERTISED_100baseT_Half)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
if (bp->advertising & ADVERTISED_100baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
if (bp->advertising & ADVERTISED_1000baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
if (bp->advertising & ADVERTISED_2500baseX_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
} else {
if (bp->req_line_speed == SPEED_2500)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
else if (bp->req_line_speed == SPEED_1000)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
else if (bp->req_line_speed == SPEED_100) {
if (bp->req_duplex == DUPLEX_FULL)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
else
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
} else if (bp->req_line_speed == SPEED_10) {
if (bp->req_duplex == DUPLEX_FULL)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
else
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
}
}
if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
if (port == PORT_TP)
speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
spin_unlock_bh(&bp->phy_lock);
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
spin_lock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
__releases(&bp->phy_lock)
__acquires(&bp->phy_lock)
{
u32 adv, bmcr;
u32 new_adv = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return bnx2_setup_remote_phy(bp, port);
if (!(bp->autoneg & AUTONEG_SPEED)) {
u32 new_bmcr;
int force_link_down = 0;
if (bp->req_line_speed == SPEED_2500) {
if (!bnx2_test_and_enable_2g5(bp))
force_link_down = 1;
} else if (bp->req_line_speed == SPEED_1000) {
if (bnx2_test_and_disable_2g5(bp))
force_link_down = 1;
}
bnx2_read_phy(bp, bp->mii_adv, &adv);
adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
new_bmcr = bmcr & ~BMCR_ANENABLE;
new_bmcr |= BMCR_SPEED1000;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
if (bp->req_line_speed == SPEED_2500)
bnx2_enable_forced_2g5(bp);
else if (bp->req_line_speed == SPEED_1000) {
bnx2_disable_forced_2g5(bp);
new_bmcr &= ~0x2000;
}
} else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
if (bp->req_line_speed == SPEED_2500)
new_bmcr |= BCM5708S_BMCR_FORCE_2500;
else
new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
}
if (bp->req_duplex == DUPLEX_FULL) {
adv |= ADVERTISE_1000XFULL;
new_bmcr |= BMCR_FULLDPLX;
}
else {
adv |= ADVERTISE_1000XHALF;
new_bmcr &= ~BMCR_FULLDPLX;
}
if ((new_bmcr != bmcr) || (force_link_down)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
bnx2_write_phy(bp, bp->mii_adv, adv &
~(ADVERTISE_1000XFULL |
ADVERTISE_1000XHALF));
bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
BMCR_ANRESTART | BMCR_ANENABLE);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
bnx2_report_link(bp);
}
bnx2_write_phy(bp, bp->mii_adv, adv);
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
bnx2_test_and_enable_2g5(bp);
if (bp->advertising & ADVERTISED_1000baseT_Full)
new_adv |= ADVERTISE_1000XFULL;
new_adv |= bnx2_phy_get_pause_adv(bp);
bnx2_read_phy(bp, bp->mii_adv, &adv);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bp->serdes_an_pending = 0;
if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(20);
spin_lock_bh(&bp->phy_lock);
}
bnx2_write_phy(bp, bp->mii_adv, new_adv);
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
BMCR_ANENABLE);
/* Speed up link-up time when the link partner
* does not autonegotiate which is very common
* in blade servers. Some blade servers use
* IPMI for kerboard input and it's important
* to minimize link disruptions. Autoneg. involves
* exchanging base pages plus 3 next pages and
* normally completes in about 120 msec.
*/
bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
#define ETHTOOL_ALL_FIBRE_SPEED \
(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
(ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
(ADVERTISED_1000baseT_Full)
#define ETHTOOL_ALL_COPPER_SPEED \
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
ADVERTISED_1000baseT_Full)
#define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
#define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
static void
bnx2_set_default_remote_link(struct bnx2 *bp)
{
u32 link;
if (bp->phy_port == PORT_TP)
link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
else
link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
bp->req_line_speed = 0;
bp->autoneg |= AUTONEG_SPEED;
bp->advertising = ADVERTISED_Autoneg;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
bp->advertising |= ADVERTISED_10baseT_Half;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
bp->advertising |= ADVERTISED_10baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
bp->advertising |= ADVERTISED_100baseT_Half;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
bp->advertising |= ADVERTISED_100baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
bp->advertising |= ADVERTISED_1000baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
bp->advertising |= ADVERTISED_2500baseX_Full;
} else {
bp->autoneg = 0;
bp->advertising = 0;
bp->req_duplex = DUPLEX_FULL;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
bp->req_line_speed = SPEED_10;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
bp->req_duplex = DUPLEX_HALF;
}
if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
bp->req_line_speed = SPEED_100;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
bp->req_duplex = DUPLEX_HALF;
}
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
bp->req_line_speed = SPEED_1000;
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
bp->req_line_speed = SPEED_2500;
}
}
static void
bnx2_set_default_link(struct bnx2 *bp)
{
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
bnx2_set_default_remote_link(bp);
return;
}
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
bp->req_line_speed = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
u32 reg;
bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
bp->autoneg = 0;
bp->req_line_speed = bp->line_speed = SPEED_1000;
bp->req_duplex = DUPLEX_FULL;
}
} else
bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
}
static void
bnx2_send_heart_beat(struct bnx2 *bp)
{
u32 msg;
u32 addr;
spin_lock(&bp->indirect_lock);
msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
spin_unlock(&bp->indirect_lock);
}
static void
bnx2_remote_phy_event(struct bnx2 *bp)
{
u32 msg;
u8 link_up = bp->link_up;
u8 old_port;
msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
bnx2_send_heart_beat(bp);
msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
bp->link_up = 0;
else {
u32 speed;
bp->link_up = 1;
speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
bp->duplex = DUPLEX_FULL;
switch (speed) {
case BNX2_LINK_STATUS_10HALF:
bp->duplex = DUPLEX_HALF;
/* fall through */
case BNX2_LINK_STATUS_10FULL:
bp->line_speed = SPEED_10;
break;
case BNX2_LINK_STATUS_100HALF:
bp->duplex = DUPLEX_HALF;
/* fall through */
case BNX2_LINK_STATUS_100BASE_T4:
case BNX2_LINK_STATUS_100FULL:
bp->line_speed = SPEED_100;
break;
case BNX2_LINK_STATUS_1000HALF:
bp->duplex = DUPLEX_HALF;
/* fall through */
case BNX2_LINK_STATUS_1000FULL:
bp->line_speed = SPEED_1000;
break;
case BNX2_LINK_STATUS_2500HALF:
bp->duplex = DUPLEX_HALF;
/* fall through */
case BNX2_LINK_STATUS_2500FULL:
bp->line_speed = SPEED_2500;
break;
default:
bp->line_speed = 0;
break;
}
bp->flow_ctrl = 0;
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
if (bp->duplex == DUPLEX_FULL)
bp->flow_ctrl = bp->req_flow_ctrl;
} else {
if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
bp->flow_ctrl |= FLOW_CTRL_TX;
if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
bp->flow_ctrl |= FLOW_CTRL_RX;
}
old_port = bp->phy_port;
if (msg & BNX2_LINK_STATUS_SERDES_LINK)
bp->phy_port = PORT_FIBRE;
else
bp->phy_port = PORT_TP;
if (old_port != bp->phy_port)
bnx2_set_default_link(bp);
}
if (bp->link_up != link_up)
bnx2_report_link(bp);
bnx2_set_mac_link(bp);
}
static int
bnx2_set_remote_link(struct bnx2 *bp)
{
u32 evt_code;
evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
switch (evt_code) {
case BNX2_FW_EVT_CODE_LINK_EVENT:
bnx2_remote_phy_event(bp);
break;
case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
default:
bnx2_send_heart_beat(bp);
break;
}
return 0;
}
static int
bnx2_setup_copper_phy(struct bnx2 *bp)
__releases(&bp->phy_lock)
__acquires(&bp->phy_lock)
{
u32 bmcr;
u32 new_bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bp->autoneg & AUTONEG_SPEED) {
u32 adv_reg, adv1000_reg;
u32 new_adv = 0;
u32 new_adv1000 = 0;
bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
adv1000_reg &= PHY_ALL_1000_SPEED;
new_adv = ethtool_adv_to_mii_adv_t(bp->advertising);
new_adv |= ADVERTISE_CSMA;
new_adv |= bnx2_phy_get_pause_adv(bp);
new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
if ((adv1000_reg != new_adv1000) ||
(adv_reg != new_adv) ||
((bmcr & BMCR_ANENABLE) == 0)) {
bnx2_write_phy(bp, bp->mii_adv, new_adv);
bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
BMCR_ANENABLE);
}
else if (bp->link_up) {
/* Flow ctrl may have changed from auto to forced */
/* or vice-versa. */
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
new_bmcr = 0;
if (bp->req_line_speed == SPEED_100) {
new_bmcr |= BMCR_SPEED100;
}
if (bp->req_duplex == DUPLEX_FULL) {
new_bmcr |= BMCR_FULLDPLX;
}
if (new_bmcr != bmcr) {
u32 bmsr;
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
if (bmsr & BMSR_LSTATUS) {
/* Force link down */
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(50);
spin_lock_bh(&bp->phy_lock);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
}
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
/* Normally, the new speed is setup after the link has
* gone down and up again. In some cases, link will not go
* down so we need to set up the new speed here.
*/
if (bmsr & BMSR_LSTATUS) {
bp->line_speed = bp->req_line_speed;
bp->duplex = bp->req_duplex;
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
static int
bnx2_setup_phy(struct bnx2 *bp, u8 port)
__releases(&bp->phy_lock)
__acquires(&bp->phy_lock)
{
if (bp->loopback == MAC_LOOPBACK)
return 0;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
return bnx2_setup_serdes_phy(bp, port);
}
else {
return bnx2_setup_copper_phy(bp);
}
}
static int
bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
bp->mii_bmcr = MII_BMCR + 0x10;
bp->mii_bmsr = MII_BMSR + 0x10;
bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
bp->mii_adv = MII_ADVERTISE + 0x10;
bp->mii_lpa = MII_LPA + 0x10;
bp->mii_up1 = MII_BNX2_OVER1G_UP1;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
if (reset_phy)
bnx2_reset_phy(bp);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
val |= MII_BNX2_SD_1000XCTL1_FIBER;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
val |= BCM5708S_UP1_2G5;
else
val &= ~BCM5708S_UP1_2G5;
bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return 0;
}
static int
bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
if (reset_phy)
bnx2_reset_phy(bp);
bp->mii_up1 = BCM5708S_UP1;
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
bnx2_read_phy(bp, BCM5708S_UP1, &val);
val |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, BCM5708S_UP1, val);
}
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
/* increase tx signal amplitude */
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
}
val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
if (val) {
u32 is_backplane;
is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_DIG);
}
}
return 0;
}
static int
bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
{
if (reset_phy)
bnx2_reset_phy(bp);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
if (bp->dev->mtu > 1500) {
u32 val;
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
}
else {
u32 val;
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
}
return 0;
}
static int
bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
if (reset_phy)
bnx2_reset_phy(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
bnx2_write_phy(bp, 0x18, 0x0c00);
bnx2_write_phy(bp, 0x17, 0x000a);
bnx2_write_phy(bp, 0x15, 0x310b);
bnx2_write_phy(bp, 0x17, 0x201f);
bnx2_write_phy(bp, 0x15, 0x9506);
bnx2_write_phy(bp, 0x17, 0x401f);
bnx2_write_phy(bp, 0x15, 0x14e2);
bnx2_write_phy(bp, 0x18, 0x0400);
}
if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
MII_BNX2_DSP_EXPAND_REG | 0x8);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
val &= ~(1 << 8);
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
}
if (bp->dev->mtu > 1500) {
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | 0x4000);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val | 0x1);
}
else {
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val & ~0x1);
}
/* ethernet@wirespeed */
bnx2_write_phy(bp, 0x18, 0x7007);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
return 0;
}
static int
bnx2_init_phy(struct bnx2 *bp, int reset_phy)
__releases(&bp->phy_lock)
__acquires(&bp->phy_lock)
{
u32 val;
int rc = 0;
bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
bp->mii_bmcr = MII_BMCR;
bp->mii_bmsr = MII_BMSR;
bp->mii_bmsr1 = MII_BMSR;
bp->mii_adv = MII_ADVERTISE;
bp->mii_lpa = MII_LPA;
BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
goto setup_phy;
bnx2_read_phy(bp, MII_PHYSID1, &val);
bp->phy_id = val << 16;
bnx2_read_phy(bp, MII_PHYSID2, &val);
bp->phy_id |= val & 0xffff;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
rc = bnx2_init_5706s_phy(bp, reset_phy);
else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
rc = bnx2_init_5708s_phy(bp, reset_phy);
else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
rc = bnx2_init_5709s_phy(bp, reset_phy);
}
else {
rc = bnx2_init_copper_phy(bp, reset_phy);
}
setup_phy:
if (!rc)
rc = bnx2_setup_phy(bp, bp->phy_port);
return rc;
}
static int
bnx2_set_mac_loopback(struct bnx2 *bp)
{
u32 mac_mode;
mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~BNX2_EMAC_MODE_PORT;
mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static int bnx2_test_link(struct bnx2 *);
static int
bnx2_set_phy_loopback(struct bnx2 *bp)
{
u32 mac_mode;
int rc, i;
spin_lock_bh(&bp->phy_lock);
rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
BMCR_SPEED1000);
spin_unlock_bh(&bp->phy_lock);
if (rc)
return rc;
for (i = 0; i < 10; i++) {
if (bnx2_test_link(bp) == 0)
break;
msleep(100);
}
mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G_MODE);
mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static void
bnx2_dump_mcp_state(struct bnx2 *bp)
{
struct net_device *dev = bp->dev;
u32 mcp_p0, mcp_p1;
netdev_err(dev, "<--- start MCP states dump --->\n");
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
mcp_p0 = BNX2_MCP_STATE_P0;
mcp_p1 = BNX2_MCP_STATE_P1;
} else {
mcp_p0 = BNX2_MCP_STATE_P0_5708;
mcp_p1 = BNX2_MCP_STATE_P1_5708;
}
netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
netdev_err(dev, "DEBUG: shmem states:\n");
netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
bnx2_shmem_rd(bp, BNX2_DRV_MB),
bnx2_shmem_rd(bp, BNX2_FW_MB),
bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
pr_cont(" condition[%08x]\n",
bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
DP_SHMEM_LINE(bp, 0x3cc);
DP_SHMEM_LINE(bp, 0x3dc);
DP_SHMEM_LINE(bp, 0x3ec);
netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
netdev_err(dev, "<--- end MCP states dump --->\n");
}
static int
bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
{
int i;
u32 val;
bp->fw_wr_seq++;
msg_data |= bp->fw_wr_seq;
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
if (!ack)
return 0;
/* wait for an acknowledgement. */
for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
msleep(10);
val = bnx2_shmem_rd(bp, BNX2_FW_MB);
if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
break;
}
if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
return 0;
/* If we timed out, inform the firmware that this is the case. */
if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
msg_data &= ~BNX2_DRV_MSG_CODE;
msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
if (!silent) {
pr_err("fw sync timeout, reset code = %x\n", msg_data);
bnx2_dump_mcp_state(bp);
}
return -EBUSY;
}
if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
return -EIO;
return 0;
}
static int
bnx2_init_5709_context(struct bnx2 *bp)
{
int i, ret = 0;
u32 val;
val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
val |= (BNX2_PAGE_BITS - 8) << 16;
BNX2_WR(bp, BNX2_CTX_COMMAND, val);
for (i = 0; i < 10; i++) {
val = BNX2_RD(bp, BNX2_CTX_COMMAND);
if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
break;
udelay(2);
}
if (val & BNX2_CTX_COMMAND_MEM_INIT)
return -EBUSY;
for (i = 0; i < bp->ctx_pages; i++) {
int j;
if (bp->ctx_blk[i])
memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
else
return -ENOMEM;
BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
(bp->ctx_blk_mapping[i] & 0xffffffff) |
BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
(u64) bp->ctx_blk_mapping[i] >> 32);
BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
for (j = 0; j < 10; j++) {
val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
break;
udelay(5);
}
if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
ret = -EBUSY;
break;
}
}
return ret;
}
static void
bnx2_init_context(struct bnx2 *bp)
{
u32 vcid;
vcid = 96;
while (vcid) {
u32 vcid_addr, pcid_addr, offset;
int i;
vcid--;
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
u32 new_vcid;
vcid_addr = GET_PCID_ADDR(vcid);
if (vcid & 0x8) {
new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
}
else {
new_vcid = vcid;
}
pcid_addr = GET_PCID_ADDR(new_vcid);
}
else {
vcid_addr = GET_CID_ADDR(vcid);
pcid_addr = vcid_addr;
}
for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
vcid_addr += (i << PHY_CTX_SHIFT);
pcid_addr += (i << PHY_CTX_SHIFT);
BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
/* Zero out the context. */
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
bnx2_ctx_wr(bp, vcid_addr, offset, 0);
}
}
}
static int
bnx2_alloc_bad_rbuf(struct bnx2 *bp)
{
u16 *good_mbuf;
u32 good_mbuf_cnt;
u32 val;
good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
if (good_mbuf == NULL)
return -ENOMEM;
BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
good_mbuf_cnt = 0;
/* Allocate a bunch of mbufs and save the good ones in an array. */
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
BNX2_RBUF_COMMAND_ALLOC_REQ);
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
/* The addresses with Bit 9 set are bad memory blocks. */
if (!(val & (1 << 9))) {
good_mbuf[good_mbuf_cnt] = (u16) val;
good_mbuf_cnt++;
}
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
}
/* Free the good ones back to the mbuf pool thus discarding
* all the bad ones. */
while (good_mbuf_cnt) {
good_mbuf_cnt--;
val = good_mbuf[good_mbuf_cnt];
val = (val << 9) | val | 1;
bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
}
kfree(good_mbuf);
return 0;
}
static void
bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
{
u32 val;
val = (mac_addr[0] << 8) | mac_addr[1];
BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
}
static inline int
bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
{
dma_addr_t mapping;
struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
struct bnx2_rx_bd *rxbd =
&rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
struct page *page = alloc_page(gfp);
if (!page)
return -ENOMEM;
mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping)) {
__free_page(page);
return -EIO;
}
rx_pg->page = page;
dma_unmap_addr_set(rx_pg, mapping, mapping);
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
return 0;
}
static void
bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
{
struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
struct page *page = rx_pg->page;
if (!page)
return;
dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
PAGE_SIZE, PCI_DMA_FROMDEVICE);
__free_page(page);
rx_pg->page = NULL;
}
static inline int
bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
{
u8 *data;
struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
dma_addr_t mapping;
struct bnx2_rx_bd *rxbd =
&rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
data = kmalloc(bp->rx_buf_size, gfp);
if (!data)
return -ENOMEM;
mapping = dma_map_single(&bp->pdev->dev,
get_l2_fhdr(data),
bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping)) {
kfree(data);
return -EIO;
}
rx_buf->data = data;
dma_unmap_addr_set(rx_buf, mapping, mapping);
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
rxr->rx_prod_bseq += bp->rx_buf_use_size;
return 0;
}
static int
bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
{
struct status_block *sblk = bnapi->status_blk.msi;
u32 new_link_state, old_link_state;
int is_set = 1;
new_link_state = sblk->status_attn_bits & event;
old_link_state = sblk->status_attn_bits_ack & event;
if (new_link_state != old_link_state) {
if (new_link_state)
BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
else
BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
} else
is_set = 0;
return is_set;
}
static void
bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
{
spin_lock(&bp->phy_lock);
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
bnx2_set_link(bp);
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
bnx2_set_remote_link(bp);
spin_unlock(&bp->phy_lock);
}
static inline u16
bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
{
u16 cons;
/* Tell compiler that status block fields can change. */
barrier();
cons = *bnapi->hw_tx_cons_ptr;
barrier();
if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
cons++;
return cons;
}
static int
bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
u16 hw_cons, sw_cons, sw_ring_cons;
int tx_pkt = 0, index;
unsigned int tx_bytes = 0;
struct netdev_queue *txq;
index = (bnapi - bp->bnx2_napi);
txq = netdev_get_tx_queue(bp->dev, index);
hw_cons = bnx2_get_hw_tx_cons(bnapi);
sw_cons = txr->tx_cons;
while (sw_cons != hw_cons) {
struct bnx2_sw_tx_bd *tx_buf;
struct sk_buff *skb;
int i, last;
sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
tx_buf = &txr->tx_buf_ring[sw_ring_cons];
skb = tx_buf->skb;
/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
prefetch(&skb->end);
/* partial BD completions possible with TSO packets */
if (tx_buf->is_gso) {
u16 last_idx, last_ring_idx;
last_idx = sw_cons + tx_buf->nr_frags + 1;
last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
last_idx++;
}
if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
break;
}
}
dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = tx_buf->nr_frags;
for (i = 0; i < last; i++) {
struct bnx2_sw_tx_bd *tx_buf;
sw_cons = BNX2_NEXT_TX_BD(sw_cons);
tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
dma_unmap_page(&bp->pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_TODEVICE);
}
sw_cons = BNX2_NEXT_TX_BD(sw_cons);
tx_bytes += skb->len;
dev_kfree_skb(skb);
tx_pkt++;
if (tx_pkt == budget)
break;
if (hw_cons == sw_cons)
hw_cons = bnx2_get_hw_tx_cons(bnapi);
}
netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
txr->hw_tx_cons = hw_cons;
txr->tx_cons = sw_cons;
/* Need to make the tx_cons update visible to bnx2_start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that bnx2_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(txq)) &&
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
__netif_tx_lock(txq, smp_processor_id());
if ((netif_tx_queue_stopped(txq)) &&
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
netif_tx_wake_queue(txq);
__netif_tx_unlock(txq);
}
return tx_pkt;
}
static void
bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
struct sk_buff *skb, int count)
{
struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
struct bnx2_rx_bd *cons_bd, *prod_bd;
int i;
u16 hw_prod, prod;
u16 cons = rxr->rx_pg_cons;
cons_rx_pg = &rxr->rx_pg_ring[cons];
/* The caller was unable to allocate a new page to replace the
* last one in the frags array, so we need to recycle that page
* and then free the skb.
*/
if (skb) {
struct page *page;
struct skb_shared_info *shinfo;
shinfo = skb_shinfo(skb);
shinfo->nr_frags--;
page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
__skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
cons_rx_pg->page = page;
dev_kfree_skb(skb);
}
hw_prod = rxr->rx_pg_prod;
for (i = 0; i < count; i++) {
prod = BNX2_RX_PG_RING_IDX(hw_prod);
prod_rx_pg = &rxr->rx_pg_ring[prod];
cons_rx_pg = &rxr->rx_pg_ring[cons];
cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
[BNX2_RX_IDX(cons)];
prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
[BNX2_RX_IDX(prod)];
if (prod != cons) {
prod_rx_pg->page = cons_rx_pg->page;
cons_rx_pg->page = NULL;
dma_unmap_addr_set(prod_rx_pg, mapping,
dma_unmap_addr(cons_rx_pg, mapping));
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
}
cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
hw_prod = BNX2_NEXT_RX_BD(hw_prod);
}
rxr->rx_pg_prod = hw_prod;
rxr->rx_pg_cons = cons;
}
static inline void
bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
u8 *data, u16 cons, u16 prod)
{
struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
struct bnx2_rx_bd *cons_bd, *prod_bd;
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf = &rxr->rx_buf_ring[prod];
dma_sync_single_for_device(&bp->pdev->dev,
dma_unmap_addr(cons_rx_buf, mapping),
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
rxr->rx_prod_bseq += bp->rx_buf_use_size;
prod_rx_buf->data = data;
if (cons == prod)
return;
dma_unmap_addr_set(prod_rx_buf, mapping,
dma_unmap_addr(cons_rx_buf, mapping));
cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
}
static struct sk_buff *
bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
u32 ring_idx)
{
int err;
u16 prod = ring_idx & 0xffff;
struct sk_buff *skb;
err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
if (unlikely(err)) {
bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
error:
if (hdr_len) {
unsigned int raw_len = len + 4;
int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
}
return NULL;
}
dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
net: allow skb->head to be a page fragment skb->head is currently allocated from kmalloc(). This is convenient but has the drawback the data cannot be converted to a page fragment if needed. We have three spots were it hurts : 1) GRO aggregation When a linear skb must be appended to another skb, GRO uses the frag_list fallback, very inefficient since we keep all struct sk_buff around. So drivers enabling GRO but delivering linear skbs to network stack aren't enabling full GRO power. 2) splice(socket -> pipe). We must copy the linear part to a page fragment. This kind of defeats splice() purpose (zero copy claim) 3) TCP coalescing. Recently introduced, this permits to group several contiguous segments into a single skb. This shortens queue lengths and save kernel memory, and greatly reduce probabilities of TCP collapses. This coalescing doesnt work on linear skbs (or we would need to copy data, this would be too slow) Given all these issues, the following patch introduces the possibility of having skb->head be a fragment in itself. We use a new skb flag, skb->head_frag to carry this information. build_skb() is changed to accept a frag_size argument. Drivers willing to provide a page fragment instead of kmalloc() data will set a non zero value, set to the fragment size. Then, on situations we need to convert the skb head to a frag in itself, we can check if skb->head_frag is set and avoid the copies or various fallbacks we have. This means drivers currently using frags could be updated to avoid the current skb->head allocation and reduce their memory footprint (aka skb truesize). (thats 512 or 1024 bytes saved per skb). This also makes bpf/netfilter faster since the 'first frag' will be part of skb linear part, no need to copy data. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Maciej Żenczykowski <maze@google.com> Cc: Neal Cardwell <ncardwell@google.com> Cc: Tom Herbert <therbert@google.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Matt Carlson <mcarlson@broadcom.com> Cc: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-04-27 08:33:38 +08:00
skb = build_skb(data, 0);
if (!skb) {
kfree(data);
goto error;
}
skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
if (hdr_len == 0) {
skb_put(skb, len);
return skb;
} else {
unsigned int i, frag_len, frag_size, pages;
struct bnx2_sw_pg *rx_pg;
u16 pg_cons = rxr->rx_pg_cons;
u16 pg_prod = rxr->rx_pg_prod;
frag_size = len + 4 - hdr_len;
pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
skb_put(skb, hdr_len);
for (i = 0; i < pages; i++) {
dma_addr_t mapping_old;
frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
if (unlikely(frag_len <= 4)) {
unsigned int tail = 4 - frag_len;
rxr->rx_pg_cons = pg_cons;
rxr->rx_pg_prod = pg_prod;
bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
pages - i);
skb->len -= tail;
if (i == 0) {
skb->tail -= tail;
} else {
skb_frag_t *frag =
&skb_shinfo(skb)->frags[i - 1];
skb_frag_size_sub(frag, tail);
skb->data_len -= tail;
}
return skb;
}
rx_pg = &rxr->rx_pg_ring[pg_cons];
/* Don't unmap yet. If we're unable to allocate a new
* page, we need to recycle the page and the DMA addr.
*/
mapping_old = dma_unmap_addr(rx_pg, mapping);
if (i == pages - 1)
frag_len -= 4;
skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
rx_pg->page = NULL;
err = bnx2_alloc_rx_page(bp, rxr,
BNX2_RX_PG_RING_IDX(pg_prod),
GFP_ATOMIC);
if (unlikely(err)) {
rxr->rx_pg_cons = pg_cons;
rxr->rx_pg_prod = pg_prod;
bnx2_reuse_rx_skb_pages(bp, rxr, skb,
pages - i);
return NULL;
}
dma_unmap_page(&bp->pdev->dev, mapping_old,
PAGE_SIZE, PCI_DMA_FROMDEVICE);
frag_size -= frag_len;
skb->data_len += frag_len;
skb->truesize += PAGE_SIZE;
skb->len += frag_len;
pg_prod = BNX2_NEXT_RX_BD(pg_prod);
pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
}
rxr->rx_pg_prod = pg_prod;
rxr->rx_pg_cons = pg_cons;
}
return skb;
}
static inline u16
bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
{
u16 cons;
/* Tell compiler that status block fields can change. */
barrier();
cons = *bnapi->hw_rx_cons_ptr;
barrier();
if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
cons++;
return cons;
}
static int
bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
{
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
struct l2_fhdr *rx_hdr;
int rx_pkt = 0, pg_ring_used = 0;
hw_cons = bnx2_get_hw_rx_cons(bnapi);
sw_cons = rxr->rx_cons;
sw_prod = rxr->rx_prod;
/* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
while (sw_cons != hw_cons) {
unsigned int len, hdr_len;
u32 status;
struct bnx2_sw_bd *rx_buf, *next_rx_buf;
struct sk_buff *skb;
dma_addr_t dma_addr;
u8 *data;
u16 next_ring_idx;
sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
data = rx_buf->data;
rx_buf->data = NULL;
rx_hdr = get_l2_fhdr(data);
prefetch(rx_hdr);
dma_addr = dma_unmap_addr(rx_buf, mapping);
dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
PCI_DMA_FROMDEVICE);
next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
prefetch(get_l2_fhdr(next_rx_buf->data));
len = rx_hdr->l2_fhdr_pkt_len;
status = rx_hdr->l2_fhdr_status;
hdr_len = 0;
if (status & L2_FHDR_STATUS_SPLIT) {
hdr_len = rx_hdr->l2_fhdr_ip_xsum;
pg_ring_used = 1;
} else if (len > bp->rx_jumbo_thresh) {
hdr_len = bp->rx_jumbo_thresh;
pg_ring_used = 1;
}
if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME))) {
bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
sw_ring_prod);
if (pg_ring_used) {
int pages;
pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
}
goto next_rx;
}
len -= 4;
if (len <= bp->rx_copy_thresh) {
skb = netdev_alloc_skb(bp->dev, len + 6);
if (skb == NULL) {
bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
sw_ring_prod);
goto next_rx;
}
/* aligned copy */
memcpy(skb->data,
(u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
len + 6);
skb_reserve(skb, 6);
skb_put(skb, len);
bnx2_reuse_rx_data(bp, rxr, data,
sw_ring_cons, sw_ring_prod);
} else {
skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
(sw_ring_cons << 16) | sw_ring_prod);
if (!skb)
goto next_rx;
}
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
skb->protocol = eth_type_trans(skb, bp->dev);
if ((len > (bp->dev->mtu + ETH_HLEN)) &&
(ntohs(skb->protocol) != 0x8100)) {
dev_kfree_skb(skb);
goto next_rx;
}
skb_checksum_none_assert(skb);
if ((bp->dev->features & NETIF_F_RXCSUM) &&
(status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM))) {
if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
if ((bp->dev->features & NETIF_F_RXHASH) &&
((status & L2_FHDR_STATUS_USE_RXHASH) ==
L2_FHDR_STATUS_USE_RXHASH))
skb->rxhash = rx_hdr->l2_fhdr_hash;
skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
napi_gro_receive(&bnapi->napi, skb);
rx_pkt++;
next_rx:
sw_cons = BNX2_NEXT_RX_BD(sw_cons);
sw_prod = BNX2_NEXT_RX_BD(sw_prod);
if ((rx_pkt == budget))
break;
/* Refresh hw_cons to see if there is new work */
if (sw_cons == hw_cons) {
hw_cons = bnx2_get_hw_rx_cons(bnapi);
rmb();
}
}
rxr->rx_cons = sw_cons;
rxr->rx_prod = sw_prod;
if (pg_ring_used)
BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
mmiowb();
return rx_pkt;
}
/* MSI ISR - The only difference between this and the INTx ISR
* is that the MSI interrupt is always serviced.
*/
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
bnx2_msi(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
prefetch(bnapi->status_blk.msi);
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Return here if interrupt is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static irqreturn_t
bnx2_msi_1shot(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
prefetch(bnapi->status_blk.msi);
/* Return here if interrupt is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
napi_schedule(&bnapi->napi);
return IRQ_HANDLED;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
bnx2_interrupt(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
struct status_block *sblk = bnapi->status_blk.msi;
/* When using INTx, it is possible for the interrupt to arrive
* at the CPU before the status block posted prior to the
* interrupt. Reading a register will flush the status block.
* When using MSI, the MSI message will always complete after
* the status block write.
*/
if ((sblk->status_idx == bnapi->last_status_idx) &&
(BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
return IRQ_NONE;
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Read back to deassert IRQ immediately to avoid too many
* spurious interrupts.
*/
BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
/* Return here if interrupt is shared and is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
if (napi_schedule_prep(&bnapi->napi)) {
bnapi->last_status_idx = sblk->status_idx;
__napi_schedule(&bnapi->napi);
}
return IRQ_HANDLED;
}
static inline int
bnx2_has_fast_work(struct bnx2_napi *bnapi)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
(bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
return 1;
return 0;
}
#define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
STATUS_ATTN_BITS_TIMER_ABORT)
static inline int
bnx2_has_work(struct bnx2_napi *bnapi)
{
struct status_block *sblk = bnapi->status_blk.msi;
if (bnx2_has_fast_work(bnapi))
return 1;
#ifdef BCM_CNIC
if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
return 1;
#endif
if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
(sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
return 1;
return 0;
}
static void
bnx2_chk_missed_msi(struct bnx2 *bp)
{
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
u32 msi_ctrl;
if (bnx2_has_work(bnapi)) {
msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
return;
if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
~BNX2_PCICFG_MSI_CONTROL_ENABLE);
BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
bnx2_msi(bp->irq_tbl[0].vector, bnapi);
}
}
bp->idle_chk_status_idx = bnapi->last_status_idx;
}
#ifdef BCM_CNIC
static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
{
struct cnic_ops *c_ops;
if (!bnapi->cnic_present)
return;
rcu_read_lock();
c_ops = rcu_dereference(bp->cnic_ops);
if (c_ops)
bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
bnapi->status_blk.msi);
rcu_read_unlock();
}
#endif
static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
{
struct status_block *sblk = bnapi->status_blk.msi;
u32 status_attn_bits = sblk->status_attn_bits;
u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
(status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
bnx2_phy_int(bp, bnapi);
/* This is needed to take care of transient status
* during link changes.
*/
BNX2_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
BNX2_RD(bp, BNX2_HC_COMMAND);
}
}
static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
int work_done, int budget)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
bnx2_tx_int(bp, bnapi, 0);
if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
return work_done;
}
static int bnx2_poll_msix(struct napi_struct *napi, int budget)
{
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
struct bnx2 *bp = bnapi->bp;
int work_done = 0;
struct status_block_msix *sblk = bnapi->status_blk.msix;
while (1) {
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
if (unlikely(work_done >= budget))
break;
bnapi->last_status_idx = sblk->status_idx;
/* status idx must be read before checking for more work. */
rmb();
if (likely(!bnx2_has_fast_work(bnapi))) {
napi_complete(napi);
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
}
return work_done;
}
static int bnx2_poll(struct napi_struct *napi, int budget)
{
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
struct bnx2 *bp = bnapi->bp;
int work_done = 0;
struct status_block *sblk = bnapi->status_blk.msi;
while (1) {
bnx2_poll_link(bp, bnapi);
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
#ifdef BCM_CNIC
bnx2_poll_cnic(bp, bnapi);
#endif
/* bnapi->last_status_idx is used below to tell the hw how
* much work has been processed, so we must read it before
* checking for more work.
*/
bnapi->last_status_idx = sblk->status_idx;
if (unlikely(work_done >= budget))
break;
rmb();
if (likely(!bnx2_has_work(bnapi))) {
napi_complete(napi);
if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
bnapi->last_status_idx);
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
}
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
return work_done;
}
[NET]: Add netif_tx_lock Various drivers use xmit_lock internally to synchronise with their transmission routines. They do so without setting xmit_lock_owner. This is fine as long as netpoll is not in use. With netpoll it is possible for deadlocks to occur if xmit_lock_owner isn't set. This is because if a printk occurs while xmit_lock is held and xmit_lock_owner is not set can cause netpoll to attempt to take xmit_lock recursively. While it is possible to resolve this by getting netpoll to use trylock, it is suboptimal because netpoll's sole objective is to maximise the chance of getting the printk out on the wire. So delaying or dropping the message is to be avoided as much as possible. So the only alternative is to always set xmit_lock_owner. The following patch does this by introducing the netif_tx_lock family of functions that take care of setting/unsetting xmit_lock_owner. I renamed xmit_lock to _xmit_lock to indicate that it should not be used directly. I didn't provide irq versions of the netif_tx_lock functions since xmit_lock is meant to be a BH-disabling lock. This is pretty much a straight text substitution except for a small bug fix in winbond. It currently uses netif_stop_queue/spin_unlock_wait to stop transmission. This is unsafe as an IRQ can potentially wake up the queue. So it is safer to use netif_tx_disable. The hamradio bits used spin_lock_irq but it is unnecessary as xmit_lock must never be taken in an IRQ handler. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-10 03:20:56 +08:00
/* Called with rtnl_lock from vlan functions and also netif_tx_lock
* from set_multicast.
*/
static void
bnx2_set_rx_mode(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 rx_mode, sort_mode;
struct netdev_hw_addr *ha;
int i;
if (!netif_running(dev))
return;
spin_lock_bh(&bp->phy_lock);
rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
if (dev->flags & IFF_PROMISC) {
/* Promiscuous mode. */
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
BNX2_RPM_SORT_USER0_PROM_VLAN;
}
else if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
}
else {
/* Accept one or more multicast(s). */
u32 mc_filter[NUM_MC_HASH_REGISTERS];
u32 regidx;
u32 bit;
u32 crc;
memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
netdev_for_each_mc_addr(ha, dev) {
crc = ether_crc_le(ETH_ALEN, ha->addr);
bit = crc & 0xff;
regidx = (bit & 0xe0) >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
mc_filter[i]);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
}
if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
BNX2_RPM_SORT_USER0_PROM_VLAN;
} else if (!(dev->flags & IFF_PROMISC)) {
/* Add all entries into to the match filter list */
i = 0;
netdev_for_each_uc_addr(ha, dev) {
bnx2_set_mac_addr(bp, ha->addr,
i + BNX2_START_UNICAST_ADDRESS_INDEX);
sort_mode |= (1 <<
(i + BNX2_START_UNICAST_ADDRESS_INDEX));
i++;
}
}
if (rx_mode != bp->rx_mode) {
bp->rx_mode = rx_mode;
BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
}
BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
spin_unlock_bh(&bp->phy_lock);
}
static int
check_fw_section(const struct firmware *fw,
const struct bnx2_fw_file_section *section,
u32 alignment, bool non_empty)
{
u32 offset = be32_to_cpu(section->offset);
u32 len = be32_to_cpu(section->len);
if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
return -EINVAL;
if ((non_empty && len == 0) || len > fw->size - offset ||
len & (alignment - 1))
return -EINVAL;
return 0;
}
static int
check_mips_fw_entry(const struct firmware *fw,
const struct bnx2_mips_fw_file_entry *entry)
{
if (check_fw_section(fw, &entry->text, 4, true) ||
check_fw_section(fw, &entry->data, 4, false) ||
check_fw_section(fw, &entry->rodata, 4, false))
return -EINVAL;
return 0;
}
static void bnx2_release_firmware(struct bnx2 *bp)
{
if (bp->rv2p_firmware) {
release_firmware(bp->mips_firmware);
release_firmware(bp->rv2p_firmware);
bp->rv2p_firmware = NULL;
}
}
static int bnx2_request_uncached_firmware(struct bnx2 *bp)
{
const char *mips_fw_file, *rv2p_fw_file;
const struct bnx2_mips_fw_file *mips_fw;
const struct bnx2_rv2p_fw_file *rv2p_fw;
int rc;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
mips_fw_file = FW_MIPS_FILE_09;
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
rv2p_fw_file = FW_RV2P_FILE_09_Ax;
else
rv2p_fw_file = FW_RV2P_FILE_09;
} else {
mips_fw_file = FW_MIPS_FILE_06;
rv2p_fw_file = FW_RV2P_FILE_06;
}
rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
if (rc) {
pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
goto out;
}
rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
if (rc) {
pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
goto err_release_mips_firmware;
}
mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
if (bp->mips_firmware->size < sizeof(*mips_fw) ||
check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
rc = -EINVAL;
goto err_release_firmware;
}
if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
rc = -EINVAL;
goto err_release_firmware;
}
out:
return rc;
err_release_firmware:
release_firmware(bp->rv2p_firmware);
bp->rv2p_firmware = NULL;
err_release_mips_firmware:
release_firmware(bp->mips_firmware);
goto out;
}
static int bnx2_request_firmware(struct bnx2 *bp)
{
return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
}
static u32
rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
{
switch (idx) {
case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
rv2p_code |= RV2P_BD_PAGE_SIZE;
break;
}
return rv2p_code;
}
static int
load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
const struct bnx2_rv2p_fw_file_entry *fw_entry)
{
u32 rv2p_code_len, file_offset;
__be32 *rv2p_code;
int i;
u32 val, cmd, addr;
rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
file_offset = be32_to_cpu(fw_entry->rv2p.offset);
rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
if (rv2p_proc == RV2P_PROC1) {
cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
addr = BNX2_RV2P_PROC1_ADDR_CMD;
} else {
cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
addr = BNX2_RV2P_PROC2_ADDR_CMD;
}
for (i = 0; i < rv2p_code_len; i += 8) {
BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
rv2p_code++;
BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
rv2p_code++;
val = (i / 8) | cmd;
BNX2_WR(bp, addr, val);
}
rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
for (i = 0; i < 8; i++) {
u32 loc, code;
loc = be32_to_cpu(fw_entry->fixup[i]);
if (loc && ((loc * 4) < rv2p_code_len)) {
code = be32_to_cpu(*(rv2p_code + loc - 1));
BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
code = be32_to_cpu(*(rv2p_code + loc));
code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
val = (loc / 2) | cmd;
BNX2_WR(bp, addr, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1) {
BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
}
else {
BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
}
return 0;
}
static int
load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
const struct bnx2_mips_fw_file_entry *fw_entry)
{
u32 addr, len, file_offset;
__be32 *data;
u32 offset;
u32 val;
/* Halt the CPU. */
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
/* Load the Text area. */
addr = be32_to_cpu(fw_entry->text.addr);
len = be32_to_cpu(fw_entry->text.len);
file_offset = be32_to_cpu(fw_entry->text.offset);
data = (__be32 *)(bp->mips_firmware->data + file_offset);
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
if (len) {
int j;
for (j = 0; j < (len / 4); j++, offset += 4)
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
}
/* Load the Data area. */
addr = be32_to_cpu(fw_entry->data.addr);
len = be32_to_cpu(fw_entry->data.len);
file_offset = be32_to_cpu(fw_entry->data.offset);
data = (__be32 *)(bp->mips_firmware->data + file_offset);
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
if (len) {
int j;
for (j = 0; j < (len / 4); j++, offset += 4)
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
}
/* Load the Read-Only area. */
addr = be32_to_cpu(fw_entry->rodata.addr);
len = be32_to_cpu(fw_entry->rodata.len);
file_offset = be32_to_cpu(fw_entry->rodata.offset);
data = (__be32 *)(bp->mips_firmware->data + file_offset);
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
if (len) {
int j;
for (j = 0; j < (len / 4); j++, offset += 4)
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
}
/* Clear the pre-fetch instruction. */
bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
val = be32_to_cpu(fw_entry->start_addr);
bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
/* Start the CPU. */
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
return 0;
}
static int
bnx2_init_cpus(struct bnx2 *bp)
{
const struct bnx2_mips_fw_file *mips_fw =
(const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
const struct bnx2_rv2p_fw_file *rv2p_fw =
(const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
int rc;
/* Initialize the RV2P processor. */
load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
/* Initialize the RX Processor. */
rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
if (rc)
goto init_cpu_err;
/* Initialize the TX Processor. */
rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
if (rc)
goto init_cpu_err;
/* Initialize the TX Patch-up Processor. */
rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
if (rc)
goto init_cpu_err;
/* Initialize the Completion Processor. */
rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
if (rc)
goto init_cpu_err;
/* Initialize the Command Processor. */
rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
init_cpu_err:
return rc;
}
static int
bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
{
u16 pmcsr;
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
switch (state) {
case PCI_D0: {
u32 val;
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
PCI_PM_CTRL_PME_STATUS);
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
/* delay required during transition out of D3hot */
msleep(20);
val = BNX2_RD(bp, BNX2_EMAC_MODE);
val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
val &= ~BNX2_EMAC_MODE_MPKT;
BNX2_WR(bp, BNX2_EMAC_MODE, val);
val = BNX2_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
BNX2_WR(bp, BNX2_RPM_CONFIG, val);
break;
}
case PCI_D3hot: {
int i;
u32 val, wol_msg;
if (bp->wol) {
u32 advertising;
u8 autoneg;
autoneg = bp->autoneg;
advertising = bp->advertising;
if (bp->phy_port == PORT_TP) {
bp->autoneg = AUTONEG_SPEED;
bp->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_Autoneg;
}
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
bp->autoneg = autoneg;
bp->advertising = advertising;
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
val = BNX2_RD(bp, BNX2_EMAC_MODE);
/* Enable port mode. */
val &= ~BNX2_EMAC_MODE_PORT;
val |= BNX2_EMAC_MODE_MPKT_RCVD |
BNX2_EMAC_MODE_ACPI_RCVD |
BNX2_EMAC_MODE_MPKT;
if (bp->phy_port == PORT_TP)
val |= BNX2_EMAC_MODE_PORT_MII;
else {
val |= BNX2_EMAC_MODE_PORT_GMII;
if (bp->line_speed == SPEED_2500)
val |= BNX2_EMAC_MODE_25G_MODE;
}
BNX2_WR(bp, BNX2_EMAC_MODE, val);
/* receive all multicast */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
BNX2_WR(bp, BNX2_EMAC_RX_MODE,
BNX2_EMAC_RX_MODE_SORT_MODE);
val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
BNX2_RPM_SORT_USER0_MC_EN;
BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
BNX2_WR(bp, BNX2_RPM_SORT_USER0, val |
BNX2_RPM_SORT_USER0_ENA);
/* Need to enable EMAC and RPM for WOL. */
BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
val = BNX2_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
BNX2_WR(bp, BNX2_RPM_CONFIG, val);
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
}
else {
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
}
if (!(bp->flags & BNX2_FLAG_NO_WOL))
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
1, 0);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
if (bp->wol)
pmcsr |= 3;
}
else {
pmcsr |= 3;
}
if (bp->wol) {
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
}
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
pmcsr);
/* No more memory access after this point until
* device is brought back to D0.
*/
udelay(50);
break;
}
default:
return -EINVAL;
}
return 0;
}
static int
bnx2_acquire_nvram_lock(struct bnx2 *bp)
{
u32 val;
int j;
/* Request access to the flash interface. */
BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_release_nvram_lock(struct bnx2 *bp)
{
int j;
u32 val;
/* Relinquish nvram interface. */
BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_enable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = BNX2_RD(bp, BNX2_MISC_CFG);
BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
if (bp->flash_info->flags & BNX2_NV_WREN) {
int j;
BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
BNX2_WR(bp, BNX2_NVM_COMMAND,
BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
val = BNX2_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
}
return 0;
}
static void
bnx2_disable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = BNX2_RD(bp, BNX2_MISC_CFG);
BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
}
static void
bnx2_enable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
}
static void
bnx2_disable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
BNX2_NVM_ACCESS_ENABLE_WR_EN));
}
static int
bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
{
u32 cmd;
int j;
if (bp->flash_info->flags & BNX2_NV_BUFFERED)
/* Buffered flash, no erase needed */
return 0;
/* Build an erase command */
cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
BNX2_NVM_COMMAND_DOIT;
/* Need to clear DONE bit separately. */
BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue an erase command. */
BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = BNX2_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
{
u32 cmd;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate an offset of a buffered flash, not needed for 5709. */
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue a read command. */
BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = BNX2_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE) {
__be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
memcpy(ret_val, &v, 4);
break;
}
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
{
u32 cmd;
__be32 val32;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
/* Calculate an offset of a buffered flash, not needed for 5709. */
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
/* Write the data. */
BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
/* Address of the NVRAM to write to. */
BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue the write command. */
BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_init_nvram(struct bnx2 *bp)
{
u32 val;
int j, entry_count, rc = 0;
const struct flash_spec *flash;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
bp->flash_info = &flash_5709;
goto get_flash_size;
}
/* Determine the selected interface. */
val = BNX2_RD(bp, BNX2_NVM_CFG1);
entry_count = ARRAY_SIZE(flash_table);
if (val & 0x40000000) {
/* Flash interface has been reconfigured */
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
bp->flash_info = flash;
break;
}
}
}
else {
u32 mask;
/* Not yet been reconfigured */
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & mask) == (flash->strapping & mask)) {
bp->flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
/* Reconfigure the flash interface */
BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
break;
}
}
} /* if (val & 0x40000000) */
if (j == entry_count) {
bp->flash_info = NULL;
pr_alert("Unknown flash/EEPROM type\n");
return -ENODEV;
}
get_flash_size:
val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
bp->flash_size = val;
else
bp->flash_size = bp->flash_info->total_size;
return rc;
}
static int
bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc = 0;
u32 cmd_flags, offset32, len32, extra;
if (buf_size == 0)
return 0;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
u8 buf[4];
u32 pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
}
else {
cmd_flags = BNX2_NVM_COMMAND_FIRST;
}
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
u8 buf[4];
if (cmd_flags)
cmd_flags = BNX2_NVM_COMMAND_LAST;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
else if (len32 > 0) {
u8 buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST;
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
return rc;
cmd_flags = BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
return rc;
}
static int
bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
int buf_size)
{
u32 written, offset32, len32;
u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
int rc = 0;
int align_start, align_end;
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if (len32 < 4)
len32 = 4;
if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
return rc;
}
if (len32 & 3) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
return rc;
}
if (align_start || align_end) {
align_buf = kmalloc(len32, GFP_KERNEL);
if (align_buf == NULL)
return -ENOMEM;
if (align_start) {
memcpy(align_buf, start, 4);
}
if (align_end) {
memcpy(align_buf + len32 - 4, end, 4);
}
memcpy(align_buf + align_start, data_buf, buf_size);
buf = align_buf;
}
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
flash_buffer = kmalloc(264, GFP_KERNEL);
if (flash_buffer == NULL) {
rc = -ENOMEM;
goto nvram_write_end;
}
}
written = 0;
while ((written < len32) && (rc == 0)) {
u32 page_start, page_end, data_start, data_end;
u32 addr, cmd_flags;
int i;
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % bp->flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + bp->flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
goto nvram_write_end;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
cmd_flags = BNX2_NVM_COMMAND_FIRST;
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < bp->flash_info->page_size; j += 4) {
if (j == (bp->flash_info->page_size - 4)) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_read_dword(bp,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bnx2_enable_nvram_write(bp)) != 0)
goto nvram_write_end;
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
/* Erase the page */
if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
goto nvram_write_end;
/* Re-enable the write again for the actual write */
bnx2_enable_nvram_write(bp);
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i += 4) {
if ((addr == page_end - 4) ||
((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
(addr == data_end - 4))) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr, buf,
cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4) {
cmd_flags = BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bnx2_disable_nvram_write(bp);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
/* Increment written */
written += data_end - data_start;
}
nvram_write_end:
kfree(flash_buffer);
kfree(align_buf);
return rc;
}
static void
bnx2_init_fw_cap(struct bnx2 *bp)
{
u32 val, sig = 0;
bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
return;
if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
}
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
u32 link;
bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
if (link & BNX2_LINK_STATUS_SERDES_LINK)
bp->phy_port = PORT_FIBRE;
else
bp->phy_port = PORT_TP;
sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
}
if (netif_running(bp->dev) && sig)
bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
}
static void
bnx2_setup_msix_tbl(struct bnx2 *bp)
{
BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
}
static int
bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
{
u32 val;
int i, rc = 0;
u8 old_port;
/* Wait for the current PCI transaction to complete before
* issuing a reset. */
if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
(BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
udelay(5);
} else { /* 5709 */
val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
for (i = 0; i < 100; i++) {
msleep(1);
val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
break;
}
}
/* Wait for the firmware to tell us it is ok to issue a reset. */
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
/* Deposit a driver reset signature so the firmware knows that
* this is a soft reset. */
bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
BNX2_DRV_RESET_SIGNATURE_MAGIC);
/* Do a dummy read to force the chip to complete all current transaction
* before we issue a reset. */
val = BNX2_RD(bp, BNX2_MISC_ID);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
BNX2_RD(bp, BNX2_MISC_COMMAND);
udelay(5);
val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
} else {
val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
/* Chip reset. */
BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
/* Reading back any register after chip reset will hang the
* bus on 5706 A0 and A1. The msleep below provides plenty
* of margin for write posting.
*/
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
msleep(20);
/* Reset takes approximate 30 usec */
for (i = 0; i < 10; i++) {
val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
break;
udelay(10);
}
if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
pr_err("Chip reset did not complete\n");
return -EBUSY;
}
}
/* Make sure byte swapping is properly configured. */
val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
pr_err("Chip not in correct endian mode\n");
return -ENODEV;
}
/* Wait for the firmware to finish its initialization. */
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
if (rc)
return rc;
spin_lock_bh(&bp->phy_lock);
old_port = bp->phy_port;
bnx2_init_fw_cap(bp);
if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
old_port != bp->phy_port)
bnx2_set_default_remote_link(bp);
spin_unlock_bh(&bp->phy_lock);
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
/* Adjust the voltage regular to two steps lower. The default
* of this register is 0x0000000e. */
BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
/* Remove bad rbuf memory from the free pool. */
rc = bnx2_alloc_bad_rbuf(bp);
}
if (bp->flags & BNX2_FLAG_USING_MSIX) {
bnx2_setup_msix_tbl(bp);
/* Prevent MSIX table reads and write from timing out */
BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
}
return rc;
}
static int
bnx2_init_chip(struct bnx2 *bp)
{
u32 val, mtu;
int rc, i;
/* Make sure the interrupt is not active. */
BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
BNX2_DMA_CONFIG_DATA_WORD_SWAP |
#ifdef __BIG_ENDIAN
BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | (1 << 11);
if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
val |= (1 << 23);
if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
(BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
!(bp->flags & BNX2_FLAG_PCIX))
val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
BNX2_WR(bp, BNX2_DMA_CONFIG, val);
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
val |= BNX2_TDMA_CONFIG_ONE_DMA;
BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
}
if (bp->flags & BNX2_FLAG_PCIX) {
u16 val16;
pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
&val16);
pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
val16 & ~PCI_X_CMD_ERO);
}
BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. The
* context block must have already been enabled. */
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
rc = bnx2_init_5709_context(bp);
if (rc)
return rc;
} else
bnx2_init_context(bp);
if ((rc = bnx2_init_cpus(bp)) != 0)
return rc;
bnx2_init_nvram(bp);
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
val = BNX2_RD(bp, BNX2_MQ_CONFIG);
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
val |= BNX2_MQ_CONFIG_HALT_DIS;
}
BNX2_WR(bp, BNX2_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
val = (BNX2_PAGE_BITS - 8) << 24;
BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
/* Configure page size. */
val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
val = bp->mac_addr[0] +
(bp->mac_addr[1] << 8) +
(bp->mac_addr[2] << 16) +
bp->mac_addr[3] +
(bp->mac_addr[4] << 8) +
(bp->mac_addr[5] << 16);
BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
/* Program the MTU. Also include 4 bytes for CRC32. */
mtu = bp->dev->mtu;
val = mtu + ETH_HLEN + ETH_FCS_LEN;
if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
if (mtu < 1500)
mtu = 1500;
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
bp->bnx2_napi[i].last_status_idx = 0;
bp->idle_chk_status_idx = 0xffff;
bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
/* Set up how to generate a link change interrupt. */
BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
(u64) bp->status_blk_mapping & 0xffffffff);
BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
(u64) bp->stats_blk_mapping & 0xffffffff);
BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
(u64) bp->stats_blk_mapping >> 32);
BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
(bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
(bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
(bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
BNX2_WR(bp, BNX2_HC_COM_TICKS,
(bp->com_ticks_int << 16) | bp->com_ticks);
BNX2_WR(bp, BNX2_HC_CMD_TICKS,
(bp->cmd_ticks_int << 16) | bp->cmd_ticks);
if (bp->flags & BNX2_FLAG_BROKEN_STATS)
BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
else
BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
val = BNX2_HC_CONFIG_COLLECT_STATS;
else {
val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
BNX2_HC_CONFIG_COLLECT_STATS;
}
if (bp->flags & BNX2_FLAG_USING_MSIX) {
BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
BNX2_HC_MSIX_BIT_VECTOR_VAL);
val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
}
if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
BNX2_WR(bp, BNX2_HC_CONFIG, val);
if (bp->rx_ticks < 25)
bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
else
bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
for (i = 1; i < bp->irq_nvecs; i++) {
u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
BNX2_HC_SB_CONFIG_1;
BNX2_WR(bp, base,
BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
BNX2_HC_SB_CONFIG_1_ONE_SHOT);
BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
(bp->tx_quick_cons_trip_int << 16) |
bp->tx_quick_cons_trip);
BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
(bp->tx_ticks_int << 16) | bp->tx_ticks);
BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
(bp->rx_quick_cons_trip_int << 16) |
bp->rx_quick_cons_trip);
BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
(bp->rx_ticks_int << 16) | bp->rx_ticks);
}
/* Clear internal stats counters. */
BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
/* Initialize the receive filter. */
bnx2_set_rx_mode(bp->dev);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
}
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
1, 0);
BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
udelay(20);
bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
return rc;
}
static void
bnx2_clear_ring_states(struct bnx2 *bp)
{
struct bnx2_napi *bnapi;
struct bnx2_tx_ring_info *txr;
struct bnx2_rx_ring_info *rxr;
int i;
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
bnapi = &bp->bnx2_napi[i];
txr = &bnapi->tx_ring;
rxr = &bnapi->rx_ring;
txr->tx_cons = 0;
txr->hw_tx_cons = 0;
rxr->rx_prod_bseq = 0;
rxr->rx_prod = 0;
rxr->rx_cons = 0;
rxr->rx_pg_prod = 0;
rxr->rx_pg_cons = 0;
}
}
static void
bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
{
u32 val, offset0, offset1, offset2, offset3;
u32 cid_addr = GET_CID_ADDR(cid);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
offset0 = BNX2_L2CTX_TYPE_XI;
offset1 = BNX2_L2CTX_CMD_TYPE_XI;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
} else {
offset0 = BNX2_L2CTX_TYPE;
offset1 = BNX2_L2CTX_CMD_TYPE;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
}
val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
bnx2_ctx_wr(bp, cid_addr, offset0, val);
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
bnx2_ctx_wr(bp, cid_addr, offset1, val);
val = (u64) txr->tx_desc_mapping >> 32;
bnx2_ctx_wr(bp, cid_addr, offset2, val);
val = (u64) txr->tx_desc_mapping & 0xffffffff;
bnx2_ctx_wr(bp, cid_addr, offset3, val);
}
static void
bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
{
struct bnx2_tx_bd *txbd;
u32 cid = TX_CID;
struct bnx2_napi *bnapi;
struct bnx2_tx_ring_info *txr;
bnapi = &bp->bnx2_napi[ring_num];
txr = &bnapi->tx_ring;
if (ring_num == 0)
cid = TX_CID;
else
cid = TX_TSS_CID + ring_num - 1;
bp->tx_wake_thresh = bp->tx_ring_size / 2;
txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
txr->tx_prod = 0;
txr->tx_prod_bseq = 0;
txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
bnx2_init_tx_context(bp, cid, txr);
}
static void
bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
u32 buf_size, int num_rings)
{
int i;
struct bnx2_rx_bd *rxbd;
for (i = 0; i < num_rings; i++) {
int j;
rxbd = &rx_ring[i][0];
for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
rxbd->rx_bd_len = buf_size;
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
}
if (i == (num_rings - 1))
j = 0;
else
j = i + 1;
rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
}
}
static void
bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
{
int i;
u16 prod, ring_prod;
u32 cid, rx_cid_addr, val;
struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if (ring_num == 0)
cid = RX_CID;
else
cid = RX_RSS_CID + ring_num - 1;
rx_cid_addr = GET_CID_ADDR(cid);
bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
bp->rx_buf_use_size, bp->rx_max_ring);
bnx2_init_rx_context(bp, cid);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
}
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
if (bp->rx_pg_ring_size) {
bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
rxr->rx_pg_desc_mapping,
PAGE_SIZE, bp->rx_max_pg_ring);
val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
}
val = (u64) rxr->rx_desc_mapping[0] >> 32;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
ring_prod = prod = rxr->rx_pg_prod;
for (i = 0; i < bp->rx_pg_ring_size; i++) {
if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
ring_num, i, bp->rx_pg_ring_size);
break;
}
prod = BNX2_NEXT_RX_BD(prod);
ring_prod = BNX2_RX_PG_RING_IDX(prod);
}
rxr->rx_pg_prod = prod;
ring_prod = prod = rxr->rx_prod;
for (i = 0; i < bp->rx_ring_size; i++) {
if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
ring_num, i, bp->rx_ring_size);
break;
}
prod = BNX2_NEXT_RX_BD(prod);
ring_prod = BNX2_RX_RING_IDX(prod);
}
rxr->rx_prod = prod;
rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
}
static void
bnx2_init_all_rings(struct bnx2 *bp)
{
int i;
u32 val;
bnx2_clear_ring_states(bp);
BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
for (i = 0; i < bp->num_tx_rings; i++)
bnx2_init_tx_ring(bp, i);
if (bp->num_tx_rings > 1)
BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
(TX_TSS_CID << 7));
BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
for (i = 0; i < bp->num_rx_rings; i++)
bnx2_init_rx_ring(bp, i);
if (bp->num_rx_rings > 1) {
u32 tbl_32 = 0;
for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
int shift = (i % 8) << 2;
tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
if ((i % 8) == 7) {
BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
BNX2_RLUP_RSS_COMMAND_WRITE |
BNX2_RLUP_RSS_COMMAND_HASH_MASK);
tbl_32 = 0;
}
}
val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
}
}
static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
{
u32 max, num_rings = 1;
while (ring_size > BNX2_MAX_RX_DESC_CNT) {
ring_size -= BNX2_MAX_RX_DESC_CNT;
num_rings++;
}
/* round to next power of 2 */
max = max_size;
while ((max & num_rings) == 0)
max >>= 1;
if (num_rings != max)
max <<= 1;
return max;
}
static void
bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
{
u32 rx_size, rx_space, jumbo_size;
/* 8 for CRC and VLAN */
rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
bp->rx_pg_ring_size = 0;
bp->rx_max_pg_ring = 0;
bp->rx_max_pg_ring_idx = 0;
if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
jumbo_size = size * pages;
if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
bp->rx_pg_ring_size = jumbo_size;
bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
BNX2_MAX_RX_PG_RINGS);
bp->rx_max_pg_ring_idx =
(bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
bp->rx_copy_thresh = 0;
}
bp->rx_buf_use_size = rx_size;
/* hw alignment + build_skb() overhead*/
bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
bp->rx_ring_size = size;
bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
}
static void
bnx2_free_tx_skbs(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
int j;
if (txr->tx_buf_ring == NULL)
continue;
for (j = 0; j < BNX2_TX_DESC_CNT; ) {
struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
struct sk_buff *skb = tx_buf->skb;
int k, last;
if (skb == NULL) {
j = BNX2_NEXT_TX_BD(j);
continue;
}
dma_unmap_single(&bp->pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb),
PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = tx_buf->nr_frags;
j = BNX2_NEXT_TX_BD(j);
for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
dma_unmap_page(&bp->pdev->dev,
dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[k]),
PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
}
}
static void
bnx2_free_rx_skbs(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
if (rxr->rx_buf_ring == NULL)
return;
for (j = 0; j < bp->rx_max_ring_idx; j++) {
struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
u8 *data = rx_buf->data;
if (data == NULL)
continue;
dma_unmap_single(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
rx_buf->data = NULL;
kfree(data);
}
for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
bnx2_free_rx_page(bp, rxr, j);
}
}
static void
bnx2_free_skbs(struct bnx2 *bp)
{
bnx2_free_tx_skbs(bp);
bnx2_free_rx_skbs(bp);
}
static int
bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
{
int rc;
rc = bnx2_reset_chip(bp, reset_code);
bnx2_free_skbs(bp);
if (rc)
return rc;
if ((rc = bnx2_init_chip(bp)) != 0)
return rc;
bnx2_init_all_rings(bp);
return 0;
}
static int
bnx2_init_nic(struct bnx2 *bp, int reset_phy)
{
int rc;
if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
return rc;
spin_lock_bh(&bp->phy_lock);
bnx2_init_phy(bp, reset_phy);
bnx2_set_link(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
bnx2_remote_phy_event(bp);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_shutdown_chip(struct bnx2 *bp)
{
u32 reset_code;
if (bp->flags & BNX2_FLAG_NO_WOL)
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
else if (bp->wol)
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
else
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
return bnx2_reset_chip(bp, reset_code);
}
static int
bnx2_test_registers(struct bnx2 *bp)
{
int ret;
int i, is_5709;
2006-03-04 10:33:57 +08:00
static const struct {
u16 offset;
u16 flags;
#define BNX2_FL_NOT_5709 1
u32 rw_mask;
u32 ro_mask;
} reg_tbl[] = {
{ 0x006c, 0, 0x00000000, 0x0000003f },
{ 0x0090, 0, 0xffffffff, 0x00000000 },
{ 0x0094, 0, 0x00000000, 0x00000000 },
{ 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
{ 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
{ 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
{ 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
{ 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
{ 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
{ 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
{ 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
{ 0x1000, 0, 0x00000000, 0x00000001 },
{ 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
{ 0x1408, 0, 0x01c00800, 0x00000000 },
{ 0x149c, 0, 0x8000ffff, 0x00000000 },
{ 0x14a8, 0, 0x00000000, 0x000001ff },
{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
{ 0x14b0, 0, 0x00000002, 0x00000001 },
{ 0x14b8, 0, 0x00000000, 0x00000000 },
{ 0x14c0, 0, 0x00000000, 0x00000009 },
{ 0x14c4, 0, 0x00003fff, 0x00000000 },
{ 0x14cc, 0, 0x00000000, 0x00000001 },
{ 0x14d0, 0, 0xffffffff, 0x00000000 },
{ 0x1800, 0, 0x00000000, 0x00000001 },
{ 0x1804, 0, 0x00000000, 0x00000003 },
{ 0x2800, 0, 0x00000000, 0x00000001 },
{ 0x2804, 0, 0x00000000, 0x00003f01 },
{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
{ 0x2810, 0, 0xffff0000, 0x00000000 },
{ 0x2814, 0, 0xffff0000, 0x00000000 },
{ 0x2818, 0, 0xffff0000, 0x00000000 },
{ 0x281c, 0, 0xffff0000, 0x00000000 },
{ 0x2834, 0, 0xffffffff, 0x00000000 },
{ 0x2840, 0, 0x00000000, 0xffffffff },
{ 0x2844, 0, 0x00000000, 0xffffffff },
{ 0x2848, 0, 0xffffffff, 0x00000000 },
{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
{ 0x2c00, 0, 0x00000000, 0x00000011 },
{ 0x2c04, 0, 0x00000000, 0x00030007 },
{ 0x3c00, 0, 0x00000000, 0x00000001 },
{ 0x3c04, 0, 0x00000000, 0x00070000 },
{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
{ 0x3c10, 0, 0xffffffff, 0x00000000 },
{ 0x3c14, 0, 0x00000000, 0xffffffff },
{ 0x3c18, 0, 0x00000000, 0xffffffff },
{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
{ 0x3c20, 0, 0xffffff00, 0x00000000 },
{ 0x5004, 0, 0x00000000, 0x0000007f },
{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
{ 0x5c00, 0, 0x00000000, 0x00000001 },
{ 0x5c04, 0, 0x00000000, 0x0003000f },
{ 0x5c08, 0, 0x00000003, 0x00000000 },
{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
{ 0x5c10, 0, 0x00000000, 0xffffffff },
{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
{ 0x5c84, 0, 0x00000000, 0x0000f333 },
{ 0x5c88, 0, 0x00000000, 0x00077373 },
{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
{ 0x680c, 0, 0xffffffff, 0x00000000 },
{ 0x6810, 0, 0xffffffff, 0x00000000 },
{ 0x6814, 0, 0xffffffff, 0x00000000 },
{ 0x6818, 0, 0xffffffff, 0x00000000 },
{ 0x681c, 0, 0xffffffff, 0x00000000 },
{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
{ 0x683c, 0, 0x0000ffff, 0x00000000 },
{ 0x6840, 0, 0x00000ff0, 0x00000000 },
{ 0x6844, 0, 0x00ffff00, 0x00000000 },
{ 0x684c, 0, 0xffffffff, 0x00000000 },
{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6908, 0, 0x00000000, 0x0001ff0f },
{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
{ 0xffff, 0, 0x00000000, 0x00000000 },
};
ret = 0;
is_5709 = 0;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
is_5709 = 1;
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
u32 offset, rw_mask, ro_mask, save_val, val;
u16 flags = reg_tbl[i].flags;
if (is_5709 && (flags & BNX2_FL_NOT_5709))
continue;
offset = (u32) reg_tbl[i].offset;
rw_mask = reg_tbl[i].rw_mask;
ro_mask = reg_tbl[i].ro_mask;
save_val = readl(bp->regview + offset);
writel(0, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != 0) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(0xffffffff, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != rw_mask) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(save_val, bp->regview + offset);
continue;
reg_test_err:
writel(save_val, bp->regview + offset);
ret = -ENODEV;
break;
}
return ret;
}
static int
bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
{
2006-03-04 10:33:57 +08:00
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
int i;
for (i = 0; i < sizeof(test_pattern) / 4; i++) {
u32 offset;
for (offset = 0; offset < size; offset += 4) {
bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
if (bnx2_reg_rd_ind(bp, start + offset) !=
test_pattern[i]) {
return -ENODEV;
}
}
}
return 0;
}
static int
bnx2_test_memory(struct bnx2 *bp)
{
int ret = 0;
int i;
static struct mem_entry {
u32 offset;
u32 len;
} mem_tbl_5706[] = {
{ 0x60000, 0x4000 },
{ 0xa0000, 0x3000 },
{ 0xe0000, 0x4000 },
{ 0x120000, 0x4000 },
{ 0x1a0000, 0x4000 },
{ 0x160000, 0x4000 },
{ 0xffffffff, 0 },
},
mem_tbl_5709[] = {
{ 0x60000, 0x4000 },
{ 0xa0000, 0x3000 },
{ 0xe0000, 0x4000 },
{ 0x120000, 0x4000 },
{ 0x1a0000, 0x4000 },
{ 0xffffffff, 0 },
};
struct mem_entry *mem_tbl;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
mem_tbl = mem_tbl_5709;
else
mem_tbl = mem_tbl_5706;
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
mem_tbl[i].len)) != 0) {
return ret;
}
}
return ret;
}
#define BNX2_MAC_LOOPBACK 0
#define BNX2_PHY_LOOPBACK 1
static int
bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb;
u8 *data;
unsigned char *packet;
u16 rx_start_idx, rx_idx;
dma_addr_t map;
struct bnx2_tx_bd *txbd;
struct bnx2_sw_bd *rx_buf;
struct l2_fhdr *rx_hdr;
int ret = -ENODEV;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
tx_napi = bnapi;
txr = &tx_napi->tx_ring;
rxr = &bnapi->rx_ring;
if (loopback_mode == BNX2_MAC_LOOPBACK) {
bp->loopback = MAC_LOOPBACK;
bnx2_set_mac_loopback(bp);
}
else if (loopback_mode == BNX2_PHY_LOOPBACK) {
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return 0;
bp->loopback = PHY_LOOPBACK;
bnx2_set_phy_loopback(bp);
}
else
return -EINVAL;
pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
skb = netdev_alloc_skb(bp->dev, pkt_size);
if (!skb)
return -ENOMEM;
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->dev->dev_addr, 6);
memset(packet + 6, 0x0, 8);
for (i = 14; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
PCI_DMA_TODEVICE);
if (dma_mapping_error(&bp->pdev->dev, map)) {
dev_kfree_skb(skb);
return -EIO;
}
BNX2_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
BNX2_RD(bp, BNX2_HC_COMMAND);
udelay(5);
rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
num_pkts = 0;
txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
txbd->tx_bd_haddr_hi = (u64) map >> 32;
txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
txbd->tx_bd_mss_nbytes = pkt_size;
txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
num_pkts++;
txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
txr->tx_prod_bseq += pkt_size;
BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
udelay(100);
BNX2_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
BNX2_RD(bp, BNX2_HC_COMMAND);
udelay(5);
dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
goto loopback_test_done;
rx_idx = bnx2_get_hw_rx_cons(bnapi);
if (rx_idx != rx_start_idx + num_pkts) {
goto loopback_test_done;
}
rx_buf = &rxr->rx_buf_ring[rx_start_idx];
data = rx_buf->data;
rx_hdr = get_l2_fhdr(data);
data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
dma_sync_single_for_cpu(&bp->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
if (rx_hdr->l2_fhdr_status &
(L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) {
goto loopback_test_done;
}
if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
goto loopback_test_done;
}
for (i = 14; i < pkt_size; i++) {
if (*(data + i) != (unsigned char) (i & 0xff)) {
goto loopback_test_done;
}
}
ret = 0;
loopback_test_done:
bp->loopback = 0;
return ret;
}
#define BNX2_MAC_LOOPBACK_FAILED 1
#define BNX2_PHY_LOOPBACK_FAILED 2
#define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
BNX2_PHY_LOOPBACK_FAILED)
static int
bnx2_test_loopback(struct bnx2 *bp)
{
int rc = 0;
if (!netif_running(bp->dev))
return BNX2_LOOPBACK_FAILED;
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
spin_lock_bh(&bp->phy_lock);
bnx2_init_phy(bp, 1);
spin_unlock_bh(&bp->phy_lock);
if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
rc |= BNX2_MAC_LOOPBACK_FAILED;
if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
rc |= BNX2_PHY_LOOPBACK_FAILED;
return rc;
}
#define NVRAM_SIZE 0x200
#define CRC32_RESIDUAL 0xdebb20e3
static int
bnx2_test_nvram(struct bnx2 *bp)
{
__be32 buf[NVRAM_SIZE / 4];
u8 *data = (u8 *) buf;
int rc = 0;
u32 magic, csum;
if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
goto test_nvram_done;
magic = be32_to_cpu(buf[0]);
if (magic != 0x669955aa) {
rc = -ENODEV;
goto test_nvram_done;
}
if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
goto test_nvram_done;
csum = ether_crc_le(0x100, data);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
goto test_nvram_done;
}
csum = ether_crc_le(0x100, data + 0x100);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
}
test_nvram_done:
return rc;
}
static int
bnx2_test_link(struct bnx2 *bp)
{
u32 bmsr;
if (!netif_running(bp->dev))
return -ENODEV;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
if (bp->link_up)
return 0;
return -ENODEV;
}
spin_lock_bh(&bp->phy_lock);
bnx2_enable_bmsr1(bp);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_disable_bmsr1(bp);
spin_unlock_bh(&bp->phy_lock);
if (bmsr & BMSR_LSTATUS) {
return 0;
}
return -ENODEV;
}
static int
bnx2_test_intr(struct bnx2 *bp)
{
int i;
u16 status_idx;
if (!netif_running(bp->dev))
return -ENODEV;
status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
/* This register is not touched during run-time. */
BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
BNX2_RD(bp, BNX2_HC_COMMAND);
for (i = 0; i < 10; i++) {
if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
status_idx) {
break;
}
msleep_interruptible(10);
}
if (i < 10)
return 0;
return -ENODEV;
}
/* Determining link for parallel detection. */
static int
bnx2_5706_serdes_has_link(struct bnx2 *bp)
{
u32 mode_ctl, an_dbg, exp;
if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
return 0;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
return 0;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
return 0;
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
return 0;
return 1;
}
static void
bnx2_5706_serdes_timer(struct bnx2 *bp)
{
int check_link = 1;
spin_lock(&bp->phy_lock);
if (bp->serdes_an_pending) {
bp->serdes_an_pending--;
check_link = 0;
} else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bp->current_interval = BNX2_TIMER_INTERVAL;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
if (bnx2_5706_serdes_has_link(bp)) {
bmcr &= ~BMCR_ANENABLE;
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
}
}
}
else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
(bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
u32 phy2;
bnx2_write_phy(bp, 0x17, 0x0f01);
bnx2_read_phy(bp, 0x15, &phy2);
if (phy2 & 0x20) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr |= BMCR_ANENABLE;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
}
} else
bp->current_interval = BNX2_TIMER_INTERVAL;
if (check_link) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
bnx2_5706s_force_link_dn(bp, 1);
bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
} else
bnx2_set_link(bp);
} else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
bnx2_set_link(bp);
}
spin_unlock(&bp->phy_lock);
}
static void
bnx2_5708_serdes_timer(struct bnx2 *bp)
{
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return;
if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
bp->serdes_an_pending = 0;
return;
}
spin_lock(&bp->phy_lock);
if (bp->serdes_an_pending)
bp->serdes_an_pending--;
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
bnx2_enable_forced_2g5(bp);
bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
} else {
bnx2_disable_forced_2g5(bp);
bp->serdes_an_pending = 2;
bp->current_interval = BNX2_TIMER_INTERVAL;
}
} else
bp->current_interval = BNX2_TIMER_INTERVAL;
spin_unlock(&bp->phy_lock);
}
static void
bnx2_timer(unsigned long data)
{
struct bnx2 *bp = (struct bnx2 *) data;
if (!netif_running(bp->dev))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto bnx2_restart_timer;
if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
BNX2_FLAG_USING_MSI)
bnx2_chk_missed_msi(bp);
bnx2_send_heart_beat(bp);
bp->stats_blk->stat_FwRxDrop =
bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
/* workaround occasional corrupted counters */
if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
BNX2_HC_COMMAND_STATS_NOW);
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
bnx2_5706_serdes_timer(bp);
else
bnx2_5708_serdes_timer(bp);
}
bnx2_restart_timer:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
static int
bnx2_request_irq(struct bnx2 *bp)
{
unsigned long flags;
struct bnx2_irq *irq;
int rc = 0, i;
if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
flags = 0;
else
flags = IRQF_SHARED;
for (i = 0; i < bp->irq_nvecs; i++) {
irq = &bp->irq_tbl[i];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
&bp->bnx2_napi[i]);
if (rc)
break;
irq->requested = 1;
}
return rc;
}
static void
__bnx2_free_irq(struct bnx2 *bp)
{
struct bnx2_irq *irq;
int i;
for (i = 0; i < bp->irq_nvecs; i++) {
irq = &bp->irq_tbl[i];
if (irq->requested)
free_irq(irq->vector, &bp->bnx2_napi[i]);
irq->requested = 0;
}
}
static void
bnx2_free_irq(struct bnx2 *bp)
{
__bnx2_free_irq(bp);
if (bp->flags & BNX2_FLAG_USING_MSI)
pci_disable_msi(bp->pdev);
else if (bp->flags & BNX2_FLAG_USING_MSIX)
pci_disable_msix(bp->pdev);
bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
}
static void
bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
{
int i, total_vecs, rc;
struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
struct net_device *dev = bp->dev;
const int len = sizeof(bp->irq_tbl[0].name);
bnx2_setup_msix_tbl(bp);
BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
/* Need to flush the previous three writes to ensure MSI-X
* is setup properly */
BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
}
total_vecs = msix_vecs;
#ifdef BCM_CNIC
total_vecs++;
#endif
rc = -ENOSPC;
while (total_vecs >= BNX2_MIN_MSIX_VEC) {
rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
if (rc <= 0)
break;
if (rc > 0)
total_vecs = rc;
}
if (rc != 0)
return;
msix_vecs = total_vecs;
#ifdef BCM_CNIC
msix_vecs--;
#endif
bp->irq_nvecs = msix_vecs;
bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
for (i = 0; i < total_vecs; i++) {
bp->irq_tbl[i].vector = msix_ent[i].vector;
snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
bp->irq_tbl[i].handler = bnx2_msi_1shot;
}
}
static int
bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
{
int cpus = netif_get_num_default_rss_queues();
int msix_vecs;
if (!bp->num_req_rx_rings)
msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
else if (!bp->num_req_tx_rings)
msix_vecs = max(cpus, bp->num_req_rx_rings);
else
msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
msix_vecs = min(msix_vecs, RX_MAX_RINGS);
bp->irq_tbl[0].handler = bnx2_interrupt;
strcpy(bp->irq_tbl[0].name, bp->dev->name);
bp->irq_nvecs = 1;
bp->irq_tbl[0].vector = bp->pdev->irq;
if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
bnx2_enable_msix(bp, msix_vecs);
if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
!(bp->flags & BNX2_FLAG_USING_MSIX)) {
if (pci_enable_msi(bp->pdev) == 0) {
bp->flags |= BNX2_FLAG_USING_MSI;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
bp->irq_tbl[0].handler = bnx2_msi_1shot;
} else
bp->irq_tbl[0].handler = bnx2_msi;
bp->irq_tbl[0].vector = bp->pdev->irq;
}
}
if (!bp->num_req_tx_rings)
bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
else
bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
if (!bp->num_req_rx_rings)
bp->num_rx_rings = bp->irq_nvecs;
else
bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
}
/* Called with rtnl_lock */
static int
bnx2_open(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
rc = bnx2_request_firmware(bp);
if (rc < 0)
goto out;
netif_carrier_off(dev);
bnx2_set_power_state(bp, PCI_D0);
bnx2_disable_int(bp);
rc = bnx2_setup_int_mode(bp, disable_msi);
if (rc)
goto open_err;
bnx2_init_napi(bp);
bnx2_napi_enable(bp);
rc = bnx2_alloc_mem(bp);
if (rc)
goto open_err;
rc = bnx2_request_irq(bp);
if (rc)
goto open_err;
rc = bnx2_init_nic(bp, 1);
if (rc)
goto open_err;
mod_timer(&bp->timer, jiffies + bp->current_interval);
atomic_set(&bp->intr_sem, 0);
memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
bnx2_enable_int(bp);
if (bp->flags & BNX2_FLAG_USING_MSI) {
/* Test MSI to make sure it is working
* If MSI test fails, go back to INTx mode
*/
if (bnx2_test_intr(bp) != 0) {
netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
bnx2_disable_int(bp);
bnx2_free_irq(bp);
bnx2_setup_int_mode(bp, 1);
rc = bnx2_init_nic(bp, 0);
if (!rc)
rc = bnx2_request_irq(bp);
if (rc) {
del_timer_sync(&bp->timer);
goto open_err;
}
bnx2_enable_int(bp);
}
}
if (bp->flags & BNX2_FLAG_USING_MSI)
netdev_info(dev, "using MSI\n");
else if (bp->flags & BNX2_FLAG_USING_MSIX)
netdev_info(dev, "using MSIX\n");
netif_tx_start_all_queues(dev);
out:
return rc;
open_err:
bnx2_napi_disable(bp);
bnx2_free_skbs(bp);
bnx2_free_irq(bp);
bnx2_free_mem(bp);
bnx2_del_napi(bp);
bnx2_release_firmware(bp);
goto out;
}
static void
bnx2_reset_task(struct work_struct *work)
{
struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
2011-07-15 14:53:58 +08:00
int rc;
u16 pcicmd;
rtnl_lock();
if (!netif_running(bp->dev)) {
rtnl_unlock();
return;
}
bnx2_netif_stop(bp, true);
pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
if (!(pcicmd & PCI_COMMAND_MEMORY)) {
/* in case PCI block has reset */
pci_restore_state(bp->pdev);
pci_save_state(bp->pdev);
}
2011-07-15 14:53:58 +08:00
rc = bnx2_init_nic(bp, 1);
if (rc) {
netdev_err(bp->dev, "failed to reset NIC, closing\n");
bnx2_napi_enable(bp);
dev_close(bp->dev);
rtnl_unlock();
return;
}
atomic_set(&bp->intr_sem, 1);
bnx2_netif_start(bp, true);
rtnl_unlock();
}
#define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
static void
bnx2_dump_ftq(struct bnx2 *bp)
{
int i;
u32 reg, bdidx, cid, valid;
struct net_device *dev = bp->dev;
static const struct ftq_reg {
char *name;
u32 off;
} ftq_arr[] = {
BNX2_FTQ_ENTRY(RV2P_P),
BNX2_FTQ_ENTRY(RV2P_T),
BNX2_FTQ_ENTRY(RV2P_M),
BNX2_FTQ_ENTRY(TBDR_),
BNX2_FTQ_ENTRY(TDMA_),
BNX2_FTQ_ENTRY(TXP_),
BNX2_FTQ_ENTRY(TXP_),
BNX2_FTQ_ENTRY(TPAT_),
BNX2_FTQ_ENTRY(RXP_C),
BNX2_FTQ_ENTRY(RXP_),
BNX2_FTQ_ENTRY(COM_COMXQ_),
BNX2_FTQ_ENTRY(COM_COMTQ_),
BNX2_FTQ_ENTRY(COM_COMQ_),
BNX2_FTQ_ENTRY(CP_CPQ_),
};
netdev_err(dev, "<--- start FTQ dump --->\n");
for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
bnx2_reg_rd_ind(bp, ftq_arr[i].off));
netdev_err(dev, "CPU states:\n");
for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
reg, bnx2_reg_rd_ind(bp, reg),
bnx2_reg_rd_ind(bp, reg + 4),
bnx2_reg_rd_ind(bp, reg + 8),
bnx2_reg_rd_ind(bp, reg + 0x1c),
bnx2_reg_rd_ind(bp, reg + 0x1c),
bnx2_reg_rd_ind(bp, reg + 0x20));
netdev_err(dev, "<--- end FTQ dump --->\n");
netdev_err(dev, "<--- start TBDC dump --->\n");
netdev_err(dev, "TBDC free cnt: %ld\n",
BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
for (i = 0; i < 0x20; i++) {
int j = 0;
BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
j++;
cid = BNX2_RD(bp, BNX2_TBDC_CID);
bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
bdidx >> 24, (valid >> 8) & 0x0ff);
}
netdev_err(dev, "<--- end TBDC dump --->\n");
}
static void
bnx2_dump_state(struct bnx2 *bp)
{
struct net_device *dev = bp->dev;
u32 val1, val2;
pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
atomic_read(&bp->intr_sem), val1);
pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
if (bp->flags & BNX2_FLAG_USING_MSIX)
netdev_err(dev, "DEBUG: PBA[%08x]\n",
BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
}
static void
bnx2_tx_timeout(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
bnx2_dump_ftq(bp);
bnx2_dump_state(bp);
bnx2_dump_mcp_state(bp);
/* This allows the netif to be shutdown gracefully before resetting */
schedule_work(&bp->reset_task);
}
[NET]: Add netif_tx_lock Various drivers use xmit_lock internally to synchronise with their transmission routines. They do so without setting xmit_lock_owner. This is fine as long as netpoll is not in use. With netpoll it is possible for deadlocks to occur if xmit_lock_owner isn't set. This is because if a printk occurs while xmit_lock is held and xmit_lock_owner is not set can cause netpoll to attempt to take xmit_lock recursively. While it is possible to resolve this by getting netpoll to use trylock, it is suboptimal because netpoll's sole objective is to maximise the chance of getting the printk out on the wire. So delaying or dropping the message is to be avoided as much as possible. So the only alternative is to always set xmit_lock_owner. The following patch does this by introducing the netif_tx_lock family of functions that take care of setting/unsetting xmit_lock_owner. I renamed xmit_lock to _xmit_lock to indicate that it should not be used directly. I didn't provide irq versions of the netif_tx_lock functions since xmit_lock is meant to be a BH-disabling lock. This is pretty much a straight text substitution except for a small bug fix in winbond. It currently uses netif_stop_queue/spin_unlock_wait to stop transmission. This is unsafe as an IRQ can potentially wake up the queue. So it is safer to use netif_tx_disable. The hamradio bits used spin_lock_irq but it is unnecessary as xmit_lock must never be taken in an IRQ handler. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2006-06-10 03:20:56 +08:00
/* Called with netif_tx_lock.
* bnx2_tx_int() runs without netif_tx_lock unless it needs to call
* netif_wake_queue().
*/
static netdev_tx_t
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
dma_addr_t mapping;
struct bnx2_tx_bd *txbd;
struct bnx2_sw_tx_bd *tx_buf;
u32 len, vlan_tag_flags, last_frag, mss;
u16 prod, ring_prod;
int i;
struct bnx2_napi *bnapi;
struct bnx2_tx_ring_info *txr;
struct netdev_queue *txq;
/* Determine which tx ring we will be placed on */
i = skb_get_queue_mapping(skb);
bnapi = &bp->bnx2_napi[i];
txr = &bnapi->tx_ring;
txq = netdev_get_tx_queue(dev, i);
if (unlikely(bnx2_tx_avail(bp, txr) <
(skb_shinfo(skb)->nr_frags + 1))) {
netif_tx_stop_queue(txq);
netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
len = skb_headlen(skb);
prod = txr->tx_prod;
ring_prod = BNX2_TX_RING_IDX(prod);
vlan_tag_flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
if (vlan_tx_tag_present(skb)) {
vlan_tag_flags |=
(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
}
if ((mss = skb_shinfo(skb)->gso_size)) {
u32 tcp_opt_len;
struct iphdr *iph;
vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
tcp_opt_len = tcp_optlen(skb);
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
u32 tcp_off = skb_transport_offset(skb) -
sizeof(struct ipv6hdr) - ETH_HLEN;
vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
TX_BD_FLAGS_SW_FLAGS;
if (likely(tcp_off == 0))
vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
else {
tcp_off >>= 3;
vlan_tag_flags |= ((tcp_off & 0x3) <<
TX_BD_FLAGS_TCP6_OFF0_SHL) |
((tcp_off & 0x10) <<
TX_BD_FLAGS_TCP6_OFF4_SHL);
mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
}
} else {
iph = ip_hdr(skb);
if (tcp_opt_len || (iph->ihl > 5)) {
vlan_tag_flags |= ((iph->ihl - 5) +
(tcp_opt_len >> 2)) << 8;
}
}
} else
mss = 0;
mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
tx_buf = &txr->tx_buf_ring[ring_prod];
tx_buf->skb = skb;
dma_unmap_addr_set(tx_buf, mapping, mapping);
txbd = &txr->tx_desc_ring[ring_prod];
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
last_frag = skb_shinfo(skb)->nr_frags;
tx_buf->nr_frags = last_frag;
tx_buf->is_gso = skb_is_gso(skb);
for (i = 0; i < last_frag; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
prod = BNX2_NEXT_TX_BD(prod);
ring_prod = BNX2_TX_RING_IDX(prod);
txbd = &txr->tx_desc_ring[ring_prod];
len = skb_frag_size(frag);
mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(&bp->pdev->dev, mapping))
goto dma_error;
dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
mapping);
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
}
txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
/* Sync BD data before updating TX mailbox */
wmb();
netdev_tx_sent_queue(txq, skb->len);
prod = BNX2_NEXT_TX_BD(prod);
txr->tx_prod_bseq += skb->len;
BNX2_WR16(bp, txr->tx_bidx_addr, prod);
BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
mmiowb();
txr->tx_prod = prod;
if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
netif_tx_stop_queue(txq);
/* netif_tx_stop_queue() must be done before checking
* tx index in bnx2_tx_avail() below, because in
* bnx2_tx_int(), we update tx index before checking for
* netif_tx_queue_stopped().
*/
smp_mb();
if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
netif_tx_wake_queue(txq);
}
return NETDEV_TX_OK;
dma_error:
/* save value of frag that failed */
last_frag = i;
/* start back at beginning and unmap skb */
prod = txr->tx_prod;
ring_prod = BNX2_TX_RING_IDX(prod);
tx_buf = &txr->tx_buf_ring[ring_prod];
tx_buf->skb = NULL;
dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
/* unmap remaining mapped pages */
for (i = 0; i < last_frag; i++) {
prod = BNX2_NEXT_TX_BD(prod);
ring_prod = BNX2_TX_RING_IDX(prod);
tx_buf = &txr->tx_buf_ring[ring_prod];
dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
skb_frag_size(&skb_shinfo(skb)->frags[i]),
PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* Called with rtnl_lock */
static int
bnx2_close(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
[NET]: Make NAPI polling independent of struct net_device objects. Several devices have multiple independant RX queues per net device, and some have a single interrupt doorbell for several queues. In either case, it's easier to support layouts like that if the structure representing the poll is independant from the net device itself. The signature of the ->poll() call back goes from: int foo_poll(struct net_device *dev, int *budget) to int foo_poll(struct napi_struct *napi, int budget) The caller is returned the number of RX packets processed (or the number of "NAPI credits" consumed if you want to get abstract). The callee no longer messes around bumping dev->quota, *budget, etc. because that is all handled in the caller upon return. The napi_struct is to be embedded in the device driver private data structures. Furthermore, it is the driver's responsibility to disable all NAPI instances in it's ->stop() device close handler. Since the napi_struct is privatized into the driver's private data structures, only the driver knows how to get at all of the napi_struct instances it may have per-device. With lots of help and suggestions from Rusty Russell, Roland Dreier, Michael Chan, Jeff Garzik, and Jamal Hadi Salim. Bug fixes from Thomas Graf, Roland Dreier, Peter Zijlstra, Joseph Fannin, Scott Wood, Hans J. Koch, and Michael Chan. [ Ported to current tree and all drivers converted. Integrated Stephen's follow-on kerneldoc additions, and restored poll_list handling to the old style to fix mutual exclusion issues. -DaveM ] Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-04 07:41:36 +08:00
bnx2_disable_int_sync(bp);
bnx2_napi_disable(bp);
netif_tx_disable(dev);
del_timer_sync(&bp->timer);
bnx2_shutdown_chip(bp);
bnx2_free_irq(bp);
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
bnx2_del_napi(bp);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_set_power_state(bp, PCI_D3hot);
return 0;
}
static void
bnx2_save_stats(struct bnx2 *bp)
{
u32 *hw_stats = (u32 *) bp->stats_blk;
u32 *temp_stats = (u32 *) bp->temp_stats_blk;
int i;
/* The 1st 10 counters are 64-bit counters */
for (i = 0; i < 20; i += 2) {
u32 hi;
u64 lo;
hi = temp_stats[i] + hw_stats[i];
lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
if (lo > 0xffffffff)
hi++;
temp_stats[i] = hi;
temp_stats[i + 1] = lo & 0xffffffff;
}
for ( ; i < sizeof(struct statistics_block) / 4; i++)
temp_stats[i] += hw_stats[i];
}
#define GET_64BIT_NET_STATS64(ctr) \
(((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
#define GET_64BIT_NET_STATS(ctr) \
GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
#define GET_32BIT_NET_STATS(ctr) \
(unsigned long) (bp->stats_blk->ctr + \
bp->temp_stats_blk->ctr)
static struct rtnl_link_stats64 *
bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->stats_blk == NULL)
return net_stats;
net_stats->rx_packets =
GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
net_stats->tx_packets =
GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
net_stats->rx_bytes =
GET_64BIT_NET_STATS(stat_IfHCInOctets);
net_stats->tx_bytes =
GET_64BIT_NET_STATS(stat_IfHCOutOctets);
net_stats->multicast =
GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
net_stats->collisions =
GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
net_stats->rx_length_errors =
GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
net_stats->rx_over_errors =
GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
net_stats->rx_frame_errors =
GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
net_stats->rx_crc_errors =
GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
net_stats->rx_errors = net_stats->rx_length_errors +
net_stats->rx_over_errors + net_stats->rx_frame_errors +
net_stats->rx_crc_errors;
net_stats->tx_aborted_errors =
GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
net_stats->tx_carrier_errors = 0;
else {
net_stats->tx_carrier_errors =
GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
}
net_stats->tx_errors =
GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
net_stats->tx_aborted_errors +
net_stats->tx_carrier_errors;
net_stats->rx_missed_errors =
GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
GET_32BIT_NET_STATS(stat_FwRxDrop);
return net_stats;
}
/* All ethtool functions called with rtnl_lock */
static int
bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
int support_serdes = 0, support_copper = 0;
cmd->supported = SUPPORTED_Autoneg;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
support_serdes = 1;
support_copper = 1;
} else if (bp->phy_port == PORT_FIBRE)
support_serdes = 1;
else
support_copper = 1;
if (support_serdes) {
cmd->supported |= SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE;
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
cmd->supported |= SUPPORTED_2500baseX_Full;
}
if (support_copper) {
cmd->supported |= SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_TP;
}
spin_lock_bh(&bp->phy_lock);
cmd->port = bp->phy_port;
cmd->advertising = bp->advertising;
if (bp->autoneg & AUTONEG_SPEED) {
cmd->autoneg = AUTONEG_ENABLE;
} else {
cmd->autoneg = AUTONEG_DISABLE;
}
if (netif_carrier_ok(dev)) {
ethtool_cmd_speed_set(cmd, bp->line_speed);
cmd->duplex = bp->duplex;
}
else {
ethtool_cmd_speed_set(cmd, -1);
cmd->duplex = -1;
}
spin_unlock_bh(&bp->phy_lock);
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = bp->phy_addr;
return 0;
}
static int
bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
u8 autoneg = bp->autoneg;
u8 req_duplex = bp->req_duplex;
u16 req_line_speed = bp->req_line_speed;
u32 advertising = bp->advertising;
int err = -EINVAL;
spin_lock_bh(&bp->phy_lock);
if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
goto err_out_unlock;
if (cmd->port != bp->phy_port &&
!(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
goto err_out_unlock;
/* If device is down, we can store the settings only if the user
* is setting the currently active port.
*/
if (!netif_running(dev) && cmd->port != bp->phy_port)
goto err_out_unlock;
if (cmd->autoneg == AUTONEG_ENABLE) {
autoneg |= AUTONEG_SPEED;
advertising = cmd->advertising;
if (cmd->port == PORT_TP) {
advertising &= ETHTOOL_ALL_COPPER_SPEED;
if (!advertising)
advertising = ETHTOOL_ALL_COPPER_SPEED;
} else {
advertising &= ETHTOOL_ALL_FIBRE_SPEED;
if (!advertising)
advertising = ETHTOOL_ALL_FIBRE_SPEED;
}
advertising |= ADVERTISED_Autoneg;
}
else {
u32 speed = ethtool_cmd_speed(cmd);
if (cmd->port == PORT_FIBRE) {
if ((speed != SPEED_1000 &&
speed != SPEED_2500) ||
(cmd->duplex != DUPLEX_FULL))
goto err_out_unlock;
if (speed == SPEED_2500 &&
!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
goto err_out_unlock;
} else if (speed == SPEED_1000 || speed == SPEED_2500)
goto err_out_unlock;
autoneg &= ~AUTONEG_SPEED;
req_line_speed = speed;
req_duplex = cmd->duplex;
advertising = 0;
}
bp->autoneg = autoneg;
bp->advertising = advertising;
bp->req_line_speed = req_line_speed;
bp->req_duplex = req_duplex;
err = 0;
/* If device is down, the new settings will be picked up when it is
* brought up.
*/
if (netif_running(dev))
err = bnx2_setup_phy(bp, cmd->port);
err_out_unlock:
spin_unlock_bh(&bp->phy_lock);
return err;
}
static void
bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct bnx2 *bp = netdev_priv(dev);
strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
}
#define BNX2_REGDUMP_LEN (32 * 1024)
static int
bnx2_get_regs_len(struct net_device *dev)
{
return BNX2_REGDUMP_LEN;
}
static void
bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
{
u32 *p = _p, i, offset;
u8 *orig_p = _p;
struct bnx2 *bp = netdev_priv(dev);
static const u32 reg_boundaries[] = {
0x0000, 0x0098, 0x0400, 0x045c,
0x0800, 0x0880, 0x0c00, 0x0c10,
0x0c30, 0x0d08, 0x1000, 0x101c,
0x1040, 0x1048, 0x1080, 0x10a4,
0x1400, 0x1490, 0x1498, 0x14f0,
0x1500, 0x155c, 0x1580, 0x15dc,
0x1600, 0x1658, 0x1680, 0x16d8,
0x1800, 0x1820, 0x1840, 0x1854,
0x1880, 0x1894, 0x1900, 0x1984,
0x1c00, 0x1c0c, 0x1c40, 0x1c54,
0x1c80, 0x1c94, 0x1d00, 0x1d84,
0x2000, 0x2030, 0x23c0, 0x2400,
0x2800, 0x2820, 0x2830, 0x2850,
0x2b40, 0x2c10, 0x2fc0, 0x3058,
0x3c00, 0x3c94, 0x4000, 0x4010,
0x4080, 0x4090, 0x43c0, 0x4458,
0x4c00, 0x4c18, 0x4c40, 0x4c54,
0x4fc0, 0x5010, 0x53c0, 0x5444,
0x5c00, 0x5c18, 0x5c80, 0x5c90,
0x5fc0, 0x6000, 0x6400, 0x6428,
0x6800, 0x6848, 0x684c, 0x6860,
0x6888, 0x6910, 0x8000
};
regs->version = 0;
memset(p, 0, BNX2_REGDUMP_LEN);
if (!netif_running(bp->dev))
return;
i = 0;
offset = reg_boundaries[0];
p += offset;
while (offset < BNX2_REGDUMP_LEN) {
*p++ = BNX2_RD(bp, offset);
offset += 4;
if (offset == reg_boundaries[i + 1]) {
offset = reg_boundaries[i + 2];
p = (u32 *) (orig_p + offset);
i += 2;
}
}
}
static void
bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flags & BNX2_FLAG_NO_WOL) {
wol->supported = 0;
wol->wolopts = 0;
}
else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int
bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & BNX2_FLAG_NO_WOL)
return -EINVAL;
bp->wol = 1;
}
else {
bp->wol = 0;
}
return 0;
}
static int
bnx2_nway_reset(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 bmcr;
if (!netif_running(dev))
return -EAGAIN;
if (!(bp->autoneg & AUTONEG_SPEED)) {
return -EINVAL;
}
spin_lock_bh(&bp->phy_lock);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
int rc;
rc = bnx2_setup_remote_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
return rc;
}
/* Force a link down visible on the other side */
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(20);
spin_lock_bh(&bp->phy_lock);
bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr &= ~BMCR_LOOPBACK;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static u32
bnx2_get_link(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
return bp->link_up;
}
static int
bnx2_get_eeprom_len(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flash_info == NULL)
return 0;
return (int) bp->flash_size;
}
static int
bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
if (!netif_running(dev))
return -EAGAIN;
/* parameters already validated in ethtool_get_eeprom */
rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
if (!netif_running(dev))
return -EAGAIN;
/* parameters already validated in ethtool_set_eeprom */
rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
coal->tx_coalesce_usecs = bp->tx_ticks;
coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
coal->stats_block_coalesce_usecs = bp->stats_ticks;
return 0;
}
static int
bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
if (bp->rx_quick_cons_trip_int > 0xff)
bp->rx_quick_cons_trip_int = 0xff;
bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
0xff;
bp->stats_ticks = coal->stats_block_coalesce_usecs;
if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
bp->stats_ticks = USEC_PER_SEC;
}
if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
if (netif_running(bp->dev)) {
bnx2_netif_stop(bp, true);
bnx2_init_nic(bp, 0);
bnx2_netif_start(bp, true);
}
return 0;
}
static void
bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
ering->rx_pending = bp->rx_ring_size;
ering->rx_jumbo_pending = bp->rx_pg_ring_size;
ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
ering->tx_pending = bp->tx_ring_size;
}
static int
bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
{
if (netif_running(bp->dev)) {
/* Reset will erase chipset stats; save them */
bnx2_save_stats(bp);
bnx2_netif_stop(bp, true);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
if (reset_irq) {
bnx2_free_irq(bp);
bnx2_del_napi(bp);
} else {
__bnx2_free_irq(bp);
}
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
}
bnx2_set_rx_ring_size(bp, rx);
bp->tx_ring_size = tx;
if (netif_running(bp->dev)) {
int rc = 0;
if (reset_irq) {
rc = bnx2_setup_int_mode(bp, disable_msi);
bnx2_init_napi(bp);
}
if (!rc)
rc = bnx2_alloc_mem(bp);
if (!rc)
rc = bnx2_request_irq(bp);
if (!rc)
rc = bnx2_init_nic(bp, 0);
if (rc) {
bnx2_napi_enable(bp);
dev_close(bp->dev);
return rc;
}
#ifdef BCM_CNIC
mutex_lock(&bp->cnic_lock);
/* Let cnic know about the new status block. */
if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
bnx2_setup_cnic_irq_info(bp);
mutex_unlock(&bp->cnic_lock);
#endif
bnx2_netif_start(bp, true);
}
return 0;
}
static int
bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
(ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
(ering->tx_pending <= MAX_SKB_FRAGS)) {
return -EINVAL;
}
rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
false);
return rc;
}
static void
bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
}
static int
bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
bp->req_flow_ctrl = 0;
if (epause->rx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_RX;
if (epause->tx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_TX;
if (epause->autoneg) {
bp->autoneg |= AUTONEG_FLOW_CTRL;
}
else {
bp->autoneg &= ~AUTONEG_FLOW_CTRL;
}
if (netif_running(dev)) {
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
}
return 0;
}
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_stats_str_arr[] = {
{ "rx_bytes" },
{ "rx_error_bytes" },
{ "tx_bytes" },
{ "tx_error_bytes" },
{ "rx_ucast_packets" },
{ "rx_mcast_packets" },
{ "rx_bcast_packets" },
{ "tx_ucast_packets" },
{ "tx_mcast_packets" },
{ "tx_bcast_packets" },
{ "tx_mac_errors" },
{ "tx_carrier_errors" },
{ "rx_crc_errors" },
{ "rx_align_errors" },
{ "tx_single_collisions" },
{ "tx_multi_collisions" },
{ "tx_deferred" },
{ "tx_excess_collisions" },
{ "tx_late_collisions" },
{ "tx_total_collisions" },
{ "rx_fragments" },
{ "rx_jabbers" },
{ "rx_undersize_packets" },
{ "rx_oversize_packets" },
{ "rx_64_byte_packets" },
{ "rx_65_to_127_byte_packets" },
{ "rx_128_to_255_byte_packets" },
{ "rx_256_to_511_byte_packets" },
{ "rx_512_to_1023_byte_packets" },
{ "rx_1024_to_1522_byte_packets" },
{ "rx_1523_to_9022_byte_packets" },
{ "tx_64_byte_packets" },
{ "tx_65_to_127_byte_packets" },
{ "tx_128_to_255_byte_packets" },
{ "tx_256_to_511_byte_packets" },
{ "tx_512_to_1023_byte_packets" },
{ "tx_1024_to_1522_byte_packets" },
{ "tx_1523_to_9022_byte_packets" },
{ "rx_xon_frames" },
{ "rx_xoff_frames" },
{ "tx_xon_frames" },
{ "tx_xoff_frames" },
{ "rx_mac_ctrl_frames" },
{ "rx_filtered_packets" },
{ "rx_ftq_discards" },
{ "rx_discards" },
{ "rx_fw_discards" },
};
#define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
#define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
2006-03-04 10:33:57 +08:00
static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
STATS_OFFSET32(stat_IfHCInOctets_hi),
STATS_OFFSET32(stat_IfHCInBadOctets_hi),
STATS_OFFSET32(stat_IfHCOutOctets_hi),
STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
STATS_OFFSET32(stat_Dot3StatsFCSErrors),
STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
STATS_OFFSET32(stat_Dot3StatsLateCollisions),
STATS_OFFSET32(stat_EtherStatsCollisions),
STATS_OFFSET32(stat_EtherStatsFragments),
STATS_OFFSET32(stat_EtherStatsJabbers),
STATS_OFFSET32(stat_EtherStatsUndersizePkts),
STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
STATS_OFFSET32(stat_XonPauseFramesReceived),
STATS_OFFSET32(stat_XoffPauseFramesReceived),
STATS_OFFSET32(stat_OutXonSent),
STATS_OFFSET32(stat_OutXoffSent),
STATS_OFFSET32(stat_MacControlFramesReceived),
STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
STATS_OFFSET32(stat_IfInFTQDiscards),
STATS_OFFSET32(stat_IfInMBUFDiscards),
STATS_OFFSET32(stat_FwRxDrop),
};
/* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
* skipped because of errata.
*/
static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,0,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,
};
static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,
};
#define BNX2_NUM_TESTS 6
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
{ "register_test (offline)" },
{ "memory_test (offline)" },
{ "loopback_test (offline)" },
{ "nvram_test (online)" },
{ "interrupt_test (online)" },
{ "link_test (online)" },
};
static int
bnx2_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return BNX2_NUM_TESTS;
case ETH_SS_STATS:
return BNX2_NUM_STATS;
default:
return -EOPNOTSUPP;
}
}
static void
bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
bnx2_set_power_state(bp, PCI_D0);
memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int i;
bnx2_netif_stop(bp, true);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
bnx2_free_skbs(bp);
if (bnx2_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if ((buf[2] = bnx2_test_loopback(bp)) != 0)
etest->flags |= ETH_TEST_FL_FAILED;
if (!netif_running(bp->dev))
bnx2_shutdown_chip(bp);
else {
bnx2_init_nic(bp, 1);
bnx2_netif_start(bp, true);
}
/* wait for link up */
for (i = 0; i < 7; i++) {
if (bp->link_up)
break;
msleep_interruptible(1000);
}
}
if (bnx2_test_nvram(bp) != 0) {
buf[3] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_intr(bp) != 0) {
buf[4] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_link(bp) != 0) {
buf[5] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (!netif_running(bp->dev))
bnx2_set_power_state(bp, PCI_D3hot);
}
static void
bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, bnx2_stats_str_arr,
sizeof(bnx2_stats_str_arr));
break;
case ETH_SS_TEST:
memcpy(buf, bnx2_tests_str_arr,
sizeof(bnx2_tests_str_arr));
break;
}
}
static void
bnx2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
u32 *hw_stats = (u32 *) bp->stats_blk;
u32 *temp_stats = (u32 *) bp->temp_stats_blk;
u8 *stats_len_arr = NULL;
if (hw_stats == NULL) {
memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
return;
}
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
stats_len_arr = bnx2_5706_stats_len_arr;
else
stats_len_arr = bnx2_5708_stats_len_arr;
for (i = 0; i < BNX2_NUM_STATS; i++) {
unsigned long offset;
if (stats_len_arr[i] == 0) {
/* skip this counter */
buf[i] = 0;
continue;
}
offset = bnx2_stats_offset_arr[i];
if (stats_len_arr[i] == 4) {
/* 4-byte counter */
buf[i] = (u64) *(hw_stats + offset) +
*(temp_stats + offset);
continue;
}
/* 8-byte counter */
buf[i] = (((u64) *(hw_stats + offset)) << 32) +
*(hw_stats + offset + 1) +
(((u64) *(temp_stats + offset)) << 32) +
*(temp_stats + offset + 1);
}
}
static int
bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
{
struct bnx2 *bp = netdev_priv(dev);
switch (state) {
case ETHTOOL_ID_ACTIVE:
bnx2_set_power_state(bp, PCI_D0);
bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
ethtool: allow custom interval for physical identification When physical identification of an adapter is done by toggling the mechanism on and off through software utilizing the set_phys_id operation, it is done with a fixed duration for both on and off states. Some drivers may want to set a custom duration for the on/off intervals. This patch changes the API so the return code from the driver's entry point when it is called with ETHTOOL_ID_ACTIVE can specify the frequency at which to cycle the on/off states, and updates the drivers that have already been converted to use the new set_phys_id and use the synchronous method for identifying an adapter. The physical identification frequency set in the updated drivers is based on how it was done prior to the introduction of set_phys_id. Compile tested only. Also fixes a compiler warning in sfc. v2: drivers do not return -EINVAL for ETHOOL_ID_ACTIVE v3: fold patchset into single patch and cleanup per Ben's feedback Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Sathya Perla <sathya.perla@emulex.com> Cc: Subbu Seetharaman <subbu.seetharaman@emulex.com> Cc: Ajit Khaparde <ajit.khaparde@emulex.com> Cc: Michael Chan <mchan@broadcom.com> Cc: Eilon Greenstein <eilong@broadcom.com> Cc: Divy Le Ray <divy@chelsio.com> Cc: Don Fry <pcnet32@frontier.com> Cc: Jon Mason <jdmason@kudzu.us> Cc: Solarflare linux maintainers <linux-net-drivers@solarflare.com> Cc: Steve Hodgson <shodgson@solarflare.com> Cc: Stephen Hemminger <shemminger@linux-foundation.org> Cc: Matt Carlson <mcarlson@broadcom.com> Acked-by: Jon Mason <jdmason@kudzu.us> Acked-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-13 21:09:10 +08:00
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
BNX2_EMAC_LED_1000MB_OVERRIDE |
BNX2_EMAC_LED_100MB_OVERRIDE |
BNX2_EMAC_LED_10MB_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC);
break;
case ETHTOOL_ID_OFF:
BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
break;
case ETHTOOL_ID_INACTIVE:
BNX2_WR(bp, BNX2_EMAC_LED, 0);
BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
if (!netif_running(dev))
bnx2_set_power_state(bp, PCI_D3hot);
break;
}
return 0;
}
static netdev_features_t
bnx2_fix_features(struct net_device *dev, netdev_features_t features)
{
struct bnx2 *bp = netdev_priv(dev);
if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
features |= NETIF_F_HW_VLAN_CTAG_RX;
return features;
}
static int
bnx2_set_features(struct net_device *dev, netdev_features_t features)
{
struct bnx2 *bp = netdev_priv(dev);
/* TSO with VLAN tag won't work with current firmware */
if (features & NETIF_F_HW_VLAN_CTAG_TX)
dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
else
dev->vlan_features &= ~NETIF_F_ALL_TSO;
if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
!!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
netif_running(dev)) {
bnx2_netif_stop(bp, false);
dev->features = features;
bnx2_set_rx_mode(dev);
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
bnx2_netif_start(bp, false);
return 1;
}
return 0;
}
static void bnx2_get_channels(struct net_device *dev,
struct ethtool_channels *channels)
{
struct bnx2 *bp = netdev_priv(dev);
u32 max_rx_rings = 1;
u32 max_tx_rings = 1;
if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
max_rx_rings = RX_MAX_RINGS;
max_tx_rings = TX_MAX_RINGS;
}
channels->max_rx = max_rx_rings;
channels->max_tx = max_tx_rings;
channels->max_other = 0;
channels->max_combined = 0;
channels->rx_count = bp->num_rx_rings;
channels->tx_count = bp->num_tx_rings;
channels->other_count = 0;
channels->combined_count = 0;
}
static int bnx2_set_channels(struct net_device *dev,
struct ethtool_channels *channels)
{
struct bnx2 *bp = netdev_priv(dev);
u32 max_rx_rings = 1;
u32 max_tx_rings = 1;
int rc = 0;
if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
max_rx_rings = RX_MAX_RINGS;
max_tx_rings = TX_MAX_RINGS;
}
if (channels->rx_count > max_rx_rings ||
channels->tx_count > max_tx_rings)
return -EINVAL;
bp->num_req_rx_rings = channels->rx_count;
bp->num_req_tx_rings = channels->tx_count;
if (netif_running(dev))
rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
bp->tx_ring_size, true);
return rc;
}
static const struct ethtool_ops bnx2_ethtool_ops = {
.get_settings = bnx2_get_settings,
.set_settings = bnx2_set_settings,
.get_drvinfo = bnx2_get_drvinfo,
.get_regs_len = bnx2_get_regs_len,
.get_regs = bnx2_get_regs,
.get_wol = bnx2_get_wol,
.set_wol = bnx2_set_wol,
.nway_reset = bnx2_nway_reset,
.get_link = bnx2_get_link,
.get_eeprom_len = bnx2_get_eeprom_len,
.get_eeprom = bnx2_get_eeprom,
.set_eeprom = bnx2_set_eeprom,
.get_coalesce = bnx2_get_coalesce,
.set_coalesce = bnx2_set_coalesce,
.get_ringparam = bnx2_get_ringparam,
.set_ringparam = bnx2_set_ringparam,
.get_pauseparam = bnx2_get_pauseparam,
.set_pauseparam = bnx2_set_pauseparam,
.self_test = bnx2_self_test,
.get_strings = bnx2_get_strings,
.set_phys_id = bnx2_set_phys_id,
.get_ethtool_stats = bnx2_get_ethtool_stats,
.get_sset_count = bnx2_get_sset_count,
.get_channels = bnx2_get_channels,
.set_channels = bnx2_set_channels,
};
/* Called with rtnl_lock */
static int
bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct bnx2 *bp = netdev_priv(dev);
int err;
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = bp->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u32 mii_regval;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return -EOPNOTSUPP;
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&bp->phy_lock);
err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
spin_unlock_bh(&bp->phy_lock);
data->val_out = mii_regval;
return err;
}
case SIOCSMIIREG:
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return -EOPNOTSUPP;
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&bp->phy_lock);
err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
spin_unlock_bh(&bp->phy_lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
/* Called with rtnl_lock */
static int
bnx2_change_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct bnx2 *bp = netdev_priv(dev);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev))
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
return 0;
}
/* Called with rtnl_lock */
static int
bnx2_change_mtu(struct net_device *dev, int new_mtu)
{
struct bnx2 *bp = netdev_priv(dev);
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
return -EINVAL;
dev->mtu = new_mtu;
return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
false);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void
poll_bnx2(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
for (i = 0; i < bp->irq_nvecs; i++) {
struct bnx2_irq *irq = &bp->irq_tbl[i];
disable_irq(irq->vector);
irq->handler(irq->vector, &bp->bnx2_napi[i]);
enable_irq(irq->vector);
}
}
#endif
static void
bnx2_get_5709_media(struct bnx2 *bp)
{
u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
u32 strap;
if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
return;
else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
else
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
if (bp->func == 0) {
switch (strap) {
case 0x4:
case 0x5:
case 0x6:
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
} else {
switch (strap) {
case 0x1:
case 0x2:
case 0x4:
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
}
}
static void
bnx2_get_pci_speed(struct bnx2 *bp)
{
u32 reg;
reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
u32 clkreg;
bp->flags |= BNX2_FLAG_PCIX;
clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
bp->bus_speed_mhz = 133;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
bp->bus_speed_mhz = 100;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
bp->bus_speed_mhz = 66;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
bp->bus_speed_mhz = 50;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
bp->bus_speed_mhz = 33;
break;
}
}
else {
if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
bp->bus_speed_mhz = 66;
else
bp->bus_speed_mhz = 33;
}
if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
bp->flags |= BNX2_FLAG_PCI_32BIT;
}
static void
bnx2_read_vpd_fw_ver(struct bnx2 *bp)
{
int rc, i, j;
u8 *data;
unsigned int block_end, rosize, len;
#define BNX2_VPD_NVRAM_OFFSET 0x300
#define BNX2_VPD_LEN 128
#define BNX2_MAX_VER_SLEN 30
data = kmalloc(256, GFP_KERNEL);
if (!data)
return;
rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
BNX2_VPD_LEN);
if (rc)
goto vpd_done;
for (i = 0; i < BNX2_VPD_LEN; i += 4) {
data[i] = data[i + BNX2_VPD_LEN + 3];
data[i + 1] = data[i + BNX2_VPD_LEN + 2];
data[i + 2] = data[i + BNX2_VPD_LEN + 1];
data[i + 3] = data[i + BNX2_VPD_LEN];
}
i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
if (i < 0)
goto vpd_done;
rosize = pci_vpd_lrdt_size(&data[i]);
i += PCI_VPD_LRDT_TAG_SIZE;
block_end = i + rosize;
if (block_end > BNX2_VPD_LEN)
goto vpd_done;
j = pci_vpd_find_info_keyword(data, i, rosize,
PCI_VPD_RO_KEYWORD_MFR_ID);
if (j < 0)
goto vpd_done;
len = pci_vpd_info_field_size(&data[j]);
j += PCI_VPD_INFO_FLD_HDR_SIZE;
if (j + len > block_end || len != 4 ||
memcmp(&data[j], "1028", 4))
goto vpd_done;
j = pci_vpd_find_info_keyword(data, i, rosize,
PCI_VPD_RO_KEYWORD_VENDOR0);
if (j < 0)
goto vpd_done;
len = pci_vpd_info_field_size(&data[j]);
j += PCI_VPD_INFO_FLD_HDR_SIZE;
if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
goto vpd_done;
memcpy(bp->fw_version, &data[j], len);
bp->fw_version[len] = ' ';
vpd_done:
kfree(data);
}
static int
bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
{
struct bnx2 *bp;
int rc, i, j;
u32 reg;
u64 dma_mask, persist_dma_mask;
int err;
SET_NETDEV_DEV(dev, &pdev->dev);
bp = netdev_priv(dev);
bp->flags = 0;
bp->phy_flags = 0;
bp->temp_stats_blk =
kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
if (bp->temp_stats_blk == NULL) {
rc = -ENOMEM;
goto err_out;
}
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
goto err_out;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev,
"Cannot find PCI device base address, aborting\n");
rc = -ENODEV;
goto err_out_disable;
}
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
goto err_out_disable;
}
pci_set_master(pdev);
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (bp->pm_cap == 0) {
dev_err(&pdev->dev,
"Cannot find power management capability, aborting\n");
rc = -EIO;
goto err_out_release;
}
bp->dev = dev;
bp->pdev = pdev;
spin_lock_init(&bp->phy_lock);
spin_lock_init(&bp->indirect_lock);
#ifdef BCM_CNIC
mutex_init(&bp->cnic_lock);
#endif
INIT_WORK(&bp->reset_task, bnx2_reset_task);
bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
TX_MAX_TSS_RINGS + 1));
if (!bp->regview) {
dev_err(&pdev->dev, "Cannot map register space, aborting\n");
rc = -ENOMEM;
goto err_out_release;
}
bnx2_set_power_state(bp, PCI_D0);
/* Configure byte swap and enable write to the reg_window registers.
* Rely on CPU to do target byte swapping on big endian systems
* The chip's target access swapping will not swap all accesses
*/
BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
if (!pci_is_pcie(pdev)) {
dev_err(&pdev->dev, "Not PCIE, aborting\n");
rc = -EIO;
goto err_out_unmap;
}
bp->flags |= BNX2_FLAG_PCIE;
if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
/* AER (Advanced Error Reporting) hooks */
err = pci_enable_pcie_error_reporting(pdev);
if (!err)
bp->flags |= BNX2_FLAG_AER_ENABLED;
} else {
bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
if (bp->pcix_cap == 0) {
dev_err(&pdev->dev,
"Cannot find PCIX capability, aborting\n");
rc = -EIO;
goto err_out_unmap;
}
bp->flags |= BNX2_FLAG_BROKEN_STATS;
}
if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
bp->flags |= BNX2_FLAG_MSIX_CAP;
}
if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
bp->flags |= BNX2_FLAG_MSI_CAP;
}
/* 5708 cannot support DMA addresses > 40-bit. */
if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
else
persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
/* Configure DMA attributes. */
if (pci_set_dma_mask(pdev, dma_mask) == 0) {
dev->features |= NETIF_F_HIGHDMA;
rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
if (rc) {
dev_err(&pdev->dev,
"pci_set_consistent_dma_mask failed, aborting\n");
goto err_out_unmap;
}
} else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
dev_err(&pdev->dev, "System does not support DMA, aborting\n");
goto err_out_unmap;
}
if (!(bp->flags & BNX2_FLAG_PCIE))
bnx2_get_pci_speed(bp);
/* 5706A0 may falsely detect SERR and PERR. */
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
reg = BNX2_RD(bp, PCI_COMMAND);
reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
BNX2_WR(bp, PCI_COMMAND, reg);
} else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
!(bp->flags & BNX2_FLAG_PCIX)) {
dev_err(&pdev->dev,
"5706 A1 can only be used in a PCIX bus, aborting\n");
goto err_out_unmap;
}
bnx2_init_nvram(bp);
reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
bp->func = 1;
if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
BNX2_SHM_HDR_SIGNATURE_SIG) {
u32 off = bp->func << 2;
bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
} else
bp->shmem_base = HOST_VIEW_SHMEM_BASE;
/* Get the permanent MAC address. First we need to make sure the
* firmware is actually running.
*/
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BNX2_DEV_INFO_SIGNATURE_MAGIC) {
dev_err(&pdev->dev, "Firmware not running, aborting\n");
rc = -ENODEV;
goto err_out_unmap;
}
bnx2_read_vpd_fw_ver(bp);
j = strlen(bp->fw_version);
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
for (i = 0; i < 3 && j < 24; i++) {
u8 num, k, skip0;
if (i == 0) {
bp->fw_version[j++] = 'b';
bp->fw_version[j++] = 'c';
bp->fw_version[j++] = ' ';
}
num = (u8) (reg >> (24 - (i * 8)));
for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
if (num >= k || !skip0 || k == 1) {
bp->fw_version[j++] = (num / k) + '0';
skip0 = 0;
}
}
if (i != 2)
bp->fw_version[j++] = '.';
}
reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
bp->wol = 1;
if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
bp->flags |= BNX2_FLAG_ASF_ENABLE;
for (i = 0; i < 30; i++) {
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
if (reg & BNX2_CONDITION_MFW_RUN_MASK)
break;
msleep(10);
}
}
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
reg &= BNX2_CONDITION_MFW_RUN_MASK;
if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
reg != BNX2_CONDITION_MFW_RUN_NONE) {
u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
if (j < 32)
bp->fw_version[j++] = ' ';
for (i = 0; i < 3 && j < 28; i++) {
reg = bnx2_reg_rd_ind(bp, addr + i * 4);
reg = be32_to_cpu(reg);
memcpy(&bp->fw_version[j], &reg, 4);
j += 4;
}
}
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
bp->mac_addr[0] = (u8) (reg >> 8);
bp->mac_addr[1] = (u8) reg;
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
bp->mac_addr[2] = (u8) (reg >> 24);
bp->mac_addr[3] = (u8) (reg >> 16);
bp->mac_addr[4] = (u8) (reg >> 8);
bp->mac_addr[5] = (u8) reg;
bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
bnx2_set_rx_ring_size(bp, 255);
bp->tx_quick_cons_trip_int = 2;
bp->tx_quick_cons_trip = 20;
bp->tx_ticks_int = 18;
bp->tx_ticks = 80;
bp->rx_quick_cons_trip_int = 2;
bp->rx_quick_cons_trip = 12;
bp->rx_ticks_int = 18;
bp->rx_ticks = 18;
bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
bp->current_interval = BNX2_TIMER_INTERVAL;
bp->phy_addr = 1;
/* Disable WOL support if we are running on a SERDES chip. */
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
bnx2_get_5709_media(bp);
else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
bp->phy_port = PORT_TP;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
bp->phy_port = PORT_FIBRE;
reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
bp->flags |= BNX2_FLAG_NO_WOL;
bp->wol = 0;
}
if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
/* Don't do parallel detect on this board because of
* some board problems. The link will not go down
* if we do parallel detect.
*/
if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
pdev->subsystem_device == 0x310c)
bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
} else {
bp->phy_addr = 2;
if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
}
} else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
BNX2_CHIP(bp) == BNX2_CHIP_5708)
bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
(BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
bnx2_init_fw_cap(bp);
if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
(BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
!(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
bp->flags |= BNX2_FLAG_NO_WOL;
bp->wol = 0;
}
if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
bp->tx_quick_cons_trip_int =
bp->tx_quick_cons_trip;
bp->tx_ticks_int = bp->tx_ticks;
bp->rx_quick_cons_trip_int =
bp->rx_quick_cons_trip;
bp->rx_ticks_int = bp->rx_ticks;
bp->comp_prod_trip_int = bp->comp_prod_trip;
bp->com_ticks_int = bp->com_ticks;
bp->cmd_ticks_int = bp->cmd_ticks;
}
/* Disable MSI on 5706 if AMD 8132 bridge is found.
*
* MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
* with byte enables disabled on the unused 32-bit word. This is legal
* but causes problems on the AMD 8132 which will eventually stop
* responding after a while.
*
* AMD believes this incompatibility is unique to the 5706, and
* prefers to locally disable MSI rather than globally disabling it.
*/
if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
struct pci_dev *amd_8132 = NULL;
while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_8132_BRIDGE,
amd_8132))) {
if (amd_8132->revision >= 0x10 &&
amd_8132->revision <= 0x13) {
disable_msi = 1;
pci_dev_put(amd_8132);
break;
}
}
}
bnx2_set_default_link(bp);
bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
init_timer(&bp->timer);
bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
bp->timer.data = (unsigned long) bp;
bp->timer.function = bnx2_timer;
#ifdef BCM_CNIC
if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
bp->cnic_eth_dev.max_iscsi_conn =
(bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
bp->cnic_probe = bnx2_cnic_probe;
#endif
pci_save_state(pdev);
return 0;
err_out_unmap:
if (bp->flags & BNX2_FLAG_AER_ENABLED) {
pci_disable_pcie_error_reporting(pdev);
bp->flags &= ~BNX2_FLAG_AER_ENABLED;
}
pci_iounmap(pdev, bp->regview);
bp->regview = NULL;
err_out_release:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return rc;
}
static char *
bnx2_bus_string(struct bnx2 *bp, char *str)
{
char *s = str;
if (bp->flags & BNX2_FLAG_PCIE) {
s += sprintf(s, "PCI Express");
} else {
s += sprintf(s, "PCI");
if (bp->flags & BNX2_FLAG_PCIX)
s += sprintf(s, "-X");
if (bp->flags & BNX2_FLAG_PCI_32BIT)
s += sprintf(s, " 32-bit");
else
s += sprintf(s, " 64-bit");
s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
}
return str;
}
static void
bnx2_del_napi(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++)
netif_napi_del(&bp->bnx2_napi[i].napi);
}
static void
bnx2_init_napi(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
int (*poll)(struct napi_struct *, int);
if (i == 0)
poll = bnx2_poll;
else
poll = bnx2_poll_msix;
netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
bnapi->bp = bp;
}
}
static const struct net_device_ops bnx2_netdev_ops = {
.ndo_open = bnx2_open,
.ndo_start_xmit = bnx2_start_xmit,
.ndo_stop = bnx2_close,
.ndo_get_stats64 = bnx2_get_stats64,
.ndo_set_rx_mode = bnx2_set_rx_mode,
.ndo_do_ioctl = bnx2_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = bnx2_change_mac_addr,
.ndo_change_mtu = bnx2_change_mtu,
.ndo_fix_features = bnx2_fix_features,
.ndo_set_features = bnx2_set_features,
.ndo_tx_timeout = bnx2_tx_timeout,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = poll_bnx2,
#endif
};
static int
bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int version_printed = 0;
struct net_device *dev;
struct bnx2 *bp;
int rc;
char str[40];
if (version_printed++ == 0)
pr_info("%s", version);
/* dev zeroed in init_etherdev */
dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
if (!dev)
return -ENOMEM;
rc = bnx2_init_board(pdev, dev);
if (rc < 0)
goto err_free;
dev->netdev_ops = &bnx2_netdev_ops;
dev->watchdog_timeo = TX_TIMEOUT;
dev->ethtool_ops = &bnx2_ethtool_ops;
bp = netdev_priv(dev);
pci_set_drvdata(pdev, dev);
memcpy(dev->dev_addr, bp->mac_addr, 6);
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_TSO_ECN |
NETIF_F_RXHASH | NETIF_F_RXCSUM;
if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
dev->vlan_features = dev->hw_features;
dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
dev->features |= dev->hw_features;
dev->priv_flags |= IFF_UNICAST_FLT;
if ((rc = register_netdev(dev))) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto error;
}
netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
"node addr %pM\n", board_info[ent->driver_data].name,
((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
pdev->irq, dev->dev_addr);
return 0;
error:
pci_iounmap(pdev, bp->regview);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_free:
free_netdev(dev);
return rc;
}
static void
bnx2_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
unregister_netdev(dev);
bnx2: cancel timer on device removal This oops was recently reported to me: invalid opcode: 0000 [#1] SMP last sysfs file: /sys/devices/pci0000:00/0000:00:01.0/0000:01:0d.0/0000:02:05.0/device CPU 1 Modules linked in: bnx2(+) sunrpc ipv6 dm_mirror dm_region_hash dm_log sg microcode serio_raw amd64_edac_mod edac_core edac_mce_amd k8temp i2c_piix4 shpchp ext4 mbcache jbd2 sd_mod crc_t10dif mptsas mptscsih mptbase scsi_transport_sas radeon ttm drm_kms_helper drm hwmon i2c_algo_bit i2c_core dm_mod [last unloaded: bnx2] Modules linked in: bnx2(+) sunrpc ipv6 dm_mirror dm_region_hash dm_log sg microcode serio_raw amd64_edac_mod edac_core edac_mce_amd k8temp i2c_piix4 shpchp ext4 mbcache jbd2 sd_mod crc_t10dif mptsas mptscsih mptbase scsi_transport_sas radeon ttm drm_kms_helper drm hwmon i2c_algo_bit i2c_core dm_mod [last unloaded: bnx2] Pid: 23900, comm: pidof Not tainted 2.6.32-130.el6.x86_64 #1 BladeCenter LS21 -[797251Z]- RIP: 0010:[<ffffffffa058b270>] [<ffffffffa058b270>] 0xffffffffa058b270 RSP: 0018:ffff880002083e48 EFLAGS: 00010246 RAX: ffff880002083e90 RBX: ffff88007ccd4000 RCX: 0000000000000000 RDX: 0000000000000100 RSI: dead000000200200 RDI: ffff8800007b8700 RBP: ffff880002083ed0 R08: ffff88000208db40 R09: 0000022d191d27c8 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800007b9bc8 R13: ffff880002083e90 R14: ffff8800007b8700 R15: ffffffffa058b270 FS: 00007fbb3bcf7700(0000) GS:ffff880002080000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000001664a98 CR3: 0000000060395000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process pidof (pid: 23900, threadinfo ffff8800007e8000, task ffff8800091c0040) Stack: ffffffff81079f77 ffffffff8109e010 ffff88007ccd5c20 ffff88007ccd5820 <0> ffff88007ccd5420 ffff8800007e9fd8 ffff8800007e9fd8 0000010000000000 <0> ffff88007ccd5020 ffff880002083e90 ffff880002083e90 ffffffff8102a00d Call Trace: <IRQ> [<ffffffff81079f77>] ? run_timer_softirq+0x197/0x340 [<ffffffff8109e010>] ? tick_sched_timer+0x0/0xc0 [<ffffffff8102a00d>] ? lapic_next_event+0x1d/0x30 [<ffffffff8106f737>] __do_softirq+0xb7/0x1e0 [<ffffffff81092cc0>] ? hrtimer_interrupt+0x140/0x250 [<ffffffff81185f90>] ? filldir+0x0/0xe0 [<ffffffff8100c2cc>] call_softirq+0x1c/0x30 [<ffffffff8100df05>] do_softirq+0x65/0xa0 [<ffffffff8106f525>] irq_exit+0x85/0x90 [<ffffffff814e3340>] smp_apic_timer_interrupt+0x70/0x9b [<ffffffff8100bc93>] apic_timer_interrupt+0x13/0x20 <EOI> [<ffffffff81211ba5>] ? selinux_file_permission+0x45/0x150 [<ffffffff81262a75>] ? _atomic_dec_and_lock+0x55/0x80 [<ffffffff812050c6>] security_file_permission+0x16/0x20 [<ffffffff811861c1>] vfs_readdir+0x71/0xe0 [<ffffffff81186399>] sys_getdents+0x89/0xf0 [<ffffffff8100b172>] system_call_fastpath+0x16/0x1b It occured during some stress testing, in which the reporter was repeatedly removing and modprobing the bnx2 module while doing various other random operations on the bnx2 registered net device. Noting that this error occured on a serdes based device, we noted that there were a few ethtool operations (most notably self_test and set_phys_id) that have execution paths that lead into bnx2_setup_serdes_phy. This function is notable because it executes a mod_timer call, which starts the bp->timer running. Currently bnx2 is setup to assume that this timer only nees to be stopped when bnx2_close or bnx2_suspend is called. Since the above ethtool operations are not gated on the net device having been opened however, that assumption is incorrect, and can lead to the timer still running after the module has been removed, leading to the oops above (as well as other simmilar oopses). Fix the problem by ensuring that the timer is stopped when pci_device_unregister is called. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Hushan Jia <hjia@redhat.com> CC: Michael Chan <mchan@broadcom.com> CC: "David S. Miller" <davem@davemloft.net> Acked-by: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-26 18:30:11 +08:00
del_timer_sync(&bp->timer);
2011-07-15 14:53:58 +08:00
cancel_work_sync(&bp->reset_task);
bnx2: cancel timer on device removal This oops was recently reported to me: invalid opcode: 0000 [#1] SMP last sysfs file: /sys/devices/pci0000:00/0000:00:01.0/0000:01:0d.0/0000:02:05.0/device CPU 1 Modules linked in: bnx2(+) sunrpc ipv6 dm_mirror dm_region_hash dm_log sg microcode serio_raw amd64_edac_mod edac_core edac_mce_amd k8temp i2c_piix4 shpchp ext4 mbcache jbd2 sd_mod crc_t10dif mptsas mptscsih mptbase scsi_transport_sas radeon ttm drm_kms_helper drm hwmon i2c_algo_bit i2c_core dm_mod [last unloaded: bnx2] Modules linked in: bnx2(+) sunrpc ipv6 dm_mirror dm_region_hash dm_log sg microcode serio_raw amd64_edac_mod edac_core edac_mce_amd k8temp i2c_piix4 shpchp ext4 mbcache jbd2 sd_mod crc_t10dif mptsas mptscsih mptbase scsi_transport_sas radeon ttm drm_kms_helper drm hwmon i2c_algo_bit i2c_core dm_mod [last unloaded: bnx2] Pid: 23900, comm: pidof Not tainted 2.6.32-130.el6.x86_64 #1 BladeCenter LS21 -[797251Z]- RIP: 0010:[<ffffffffa058b270>] [<ffffffffa058b270>] 0xffffffffa058b270 RSP: 0018:ffff880002083e48 EFLAGS: 00010246 RAX: ffff880002083e90 RBX: ffff88007ccd4000 RCX: 0000000000000000 RDX: 0000000000000100 RSI: dead000000200200 RDI: ffff8800007b8700 RBP: ffff880002083ed0 R08: ffff88000208db40 R09: 0000022d191d27c8 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800007b9bc8 R13: ffff880002083e90 R14: ffff8800007b8700 R15: ffffffffa058b270 FS: 00007fbb3bcf7700(0000) GS:ffff880002080000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000001664a98 CR3: 0000000060395000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process pidof (pid: 23900, threadinfo ffff8800007e8000, task ffff8800091c0040) Stack: ffffffff81079f77 ffffffff8109e010 ffff88007ccd5c20 ffff88007ccd5820 <0> ffff88007ccd5420 ffff8800007e9fd8 ffff8800007e9fd8 0000010000000000 <0> ffff88007ccd5020 ffff880002083e90 ffff880002083e90 ffffffff8102a00d Call Trace: <IRQ> [<ffffffff81079f77>] ? run_timer_softirq+0x197/0x340 [<ffffffff8109e010>] ? tick_sched_timer+0x0/0xc0 [<ffffffff8102a00d>] ? lapic_next_event+0x1d/0x30 [<ffffffff8106f737>] __do_softirq+0xb7/0x1e0 [<ffffffff81092cc0>] ? hrtimer_interrupt+0x140/0x250 [<ffffffff81185f90>] ? filldir+0x0/0xe0 [<ffffffff8100c2cc>] call_softirq+0x1c/0x30 [<ffffffff8100df05>] do_softirq+0x65/0xa0 [<ffffffff8106f525>] irq_exit+0x85/0x90 [<ffffffff814e3340>] smp_apic_timer_interrupt+0x70/0x9b [<ffffffff8100bc93>] apic_timer_interrupt+0x13/0x20 <EOI> [<ffffffff81211ba5>] ? selinux_file_permission+0x45/0x150 [<ffffffff81262a75>] ? _atomic_dec_and_lock+0x55/0x80 [<ffffffff812050c6>] security_file_permission+0x16/0x20 [<ffffffff811861c1>] vfs_readdir+0x71/0xe0 [<ffffffff81186399>] sys_getdents+0x89/0xf0 [<ffffffff8100b172>] system_call_fastpath+0x16/0x1b It occured during some stress testing, in which the reporter was repeatedly removing and modprobing the bnx2 module while doing various other random operations on the bnx2 registered net device. Noting that this error occured on a serdes based device, we noted that there were a few ethtool operations (most notably self_test and set_phys_id) that have execution paths that lead into bnx2_setup_serdes_phy. This function is notable because it executes a mod_timer call, which starts the bp->timer running. Currently bnx2 is setup to assume that this timer only nees to be stopped when bnx2_close or bnx2_suspend is called. Since the above ethtool operations are not gated on the net device having been opened however, that assumption is incorrect, and can lead to the timer still running after the module has been removed, leading to the oops above (as well as other simmilar oopses). Fix the problem by ensuring that the timer is stopped when pci_device_unregister is called. Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Reported-by: Hushan Jia <hjia@redhat.com> CC: Michael Chan <mchan@broadcom.com> CC: "David S. Miller" <davem@davemloft.net> Acked-by: Michael Chan <mchan@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-26 18:30:11 +08:00
pci_iounmap(bp->pdev, bp->regview);
kfree(bp->temp_stats_blk);
if (bp->flags & BNX2_FLAG_AER_ENABLED) {
pci_disable_pcie_error_reporting(pdev);
bp->flags &= ~BNX2_FLAG_AER_ENABLED;
}
bnx2_release_firmware(bp);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int
bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
/* PCI register 4 needs to be saved whether netif_running() or not.
* MSI address and data need to be saved if using MSI and
* netif_running().
*/
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
cancel_work_sync(&bp->reset_task);
bnx2_netif_stop(bp, true);
netif_device_detach(dev);
del_timer_sync(&bp->timer);
bnx2_shutdown_chip(bp);
bnx2_free_skbs(bp);
bnx2_set_power_state(bp, pci_choose_state(pdev, state));
return 0;
}
static int
bnx2_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
bnx2_set_power_state(bp, PCI_D0);
netif_device_attach(dev);
bnx2_init_nic(bp, 1);
bnx2_netif_start(bp, true);
return 0;
}
/**
* bnx2_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
rtnl_lock();
netif_device_detach(dev);
if (state == pci_channel_io_perm_failure) {
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
if (netif_running(dev)) {
bnx2_netif_stop(bp, true);
del_timer_sync(&bp->timer);
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
}
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnx2_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
pci_ers_result_t result;
int err;
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pci_restore_state(pdev);
pci_save_state(pdev);
if (netif_running(dev)) {
bnx2_set_power_state(bp, PCI_D0);
bnx2_init_nic(bp, 1);
}
result = PCI_ERS_RESULT_RECOVERED;
}
rtnl_unlock();
if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
return result;
err = pci_cleanup_aer_uncorrect_error_status(pdev);
if (err) {
dev_err(&pdev->dev,
"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
err); /* non-fatal, continue */
}
return result;
}
/**
* bnx2_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void bnx2_io_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
rtnl_lock();
if (netif_running(dev))
bnx2_netif_start(bp, true);
netif_device_attach(dev);
rtnl_unlock();
}
static const struct pci_error_handlers bnx2_err_handler = {
.error_detected = bnx2_io_error_detected,
.slot_reset = bnx2_io_slot_reset,
.resume = bnx2_io_resume,
};
static struct pci_driver bnx2_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnx2_pci_tbl,
.probe = bnx2_init_one,
.remove = bnx2_remove_one,
.suspend = bnx2_suspend,
.resume = bnx2_resume,
.err_handler = &bnx2_err_handler,
};
static int __init bnx2_init(void)
{
return pci_register_driver(&bnx2_pci_driver);
}
static void __exit bnx2_cleanup(void)
{
pci_unregister_driver(&bnx2_pci_driver);
}
module_init(bnx2_init);
module_exit(bnx2_cleanup);