linux/drivers/block/drbd/drbd_receiver.c

6119 lines
176 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
drbd_receiver.c
This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
*/
#include <linux/module.h>
#include <linux/uaccess.h>
#include <net/sock.h>
#include <linux/drbd.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/in.h>
#include <linux/mm.h>
#include <linux/memcontrol.h>
#include <linux/mm_inline.h>
#include <linux/slab.h>
#include <uapi/linux/sched/types.h>
#include <linux/sched/signal.h>
#include <linux/pkt_sched.h>
#define __KERNEL_SYSCALLS__
#include <linux/unistd.h>
#include <linux/vmalloc.h>
#include <linux/random.h>
#include <linux/string.h>
#include <linux/scatterlist.h>
#include <linux/part_stat.h>
#include "drbd_int.h"
#include "drbd_protocol.h"
#include "drbd_req.h"
#include "drbd_vli.h"
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
#define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
struct packet_info {
enum drbd_packet cmd;
unsigned int size;
unsigned int vnr;
void *data;
};
enum finish_epoch {
FE_STILL_LIVE,
FE_DESTROYED,
FE_RECYCLED,
};
static int drbd_do_features(struct drbd_connection *connection);
static int drbd_do_auth(struct drbd_connection *connection);
static int drbd_disconnected(struct drbd_peer_device *);
static void conn_wait_active_ee_empty(struct drbd_connection *connection);
static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
static int e_end_block(struct drbd_work *, int);
#define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
/*
* some helper functions to deal with single linked page lists,
* page->private being our "next" pointer.
*/
/* If at least n pages are linked at head, get n pages off.
* Otherwise, don't modify head, and return NULL.
* Locking is the responsibility of the caller.
*/
static struct page *page_chain_del(struct page **head, int n)
{
struct page *page;
struct page *tmp;
BUG_ON(!n);
BUG_ON(!head);
page = *head;
if (!page)
return NULL;
while (page) {
tmp = page_chain_next(page);
if (--n == 0)
break; /* found sufficient pages */
if (tmp == NULL)
/* insufficient pages, don't use any of them. */
return NULL;
page = tmp;
}
/* add end of list marker for the returned list */
set_page_private(page, 0);
/* actual return value, and adjustment of head */
page = *head;
*head = tmp;
return page;
}
/* may be used outside of locks to find the tail of a (usually short)
* "private" page chain, before adding it back to a global chain head
* with page_chain_add() under a spinlock. */
static struct page *page_chain_tail(struct page *page, int *len)
{
struct page *tmp;
int i = 1;
while ((tmp = page_chain_next(page))) {
++i;
page = tmp;
}
if (len)
*len = i;
return page;
}
static int page_chain_free(struct page *page)
{
struct page *tmp;
int i = 0;
page_chain_for_each_safe(page, tmp) {
put_page(page);
++i;
}
return i;
}
static void page_chain_add(struct page **head,
struct page *chain_first, struct page *chain_last)
{
#if 1
struct page *tmp;
tmp = page_chain_tail(chain_first, NULL);
BUG_ON(tmp != chain_last);
#endif
/* add chain to head */
set_page_private(chain_last, (unsigned long)*head);
*head = chain_first;
}
static struct page *__drbd_alloc_pages(struct drbd_device *device,
unsigned int number)
{
struct page *page = NULL;
struct page *tmp = NULL;
unsigned int i = 0;
/* Yes, testing drbd_pp_vacant outside the lock is racy.
* So what. It saves a spin_lock. */
if (drbd_pp_vacant >= number) {
spin_lock(&drbd_pp_lock);
page = page_chain_del(&drbd_pp_pool, number);
if (page)
drbd_pp_vacant -= number;
spin_unlock(&drbd_pp_lock);
if (page)
return page;
}
/* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
for (i = 0; i < number; i++) {
tmp = alloc_page(GFP_TRY);
if (!tmp)
break;
set_page_private(tmp, (unsigned long)page);
page = tmp;
}
if (i == number)
return page;
/* Not enough pages immediately available this time.
* No need to jump around here, drbd_alloc_pages will retry this
* function "soon". */
if (page) {
tmp = page_chain_tail(page, NULL);
spin_lock(&drbd_pp_lock);
page_chain_add(&drbd_pp_pool, page, tmp);
drbd_pp_vacant += i;
spin_unlock(&drbd_pp_lock);
}
return NULL;
}
static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
struct list_head *to_be_freed)
{
struct drbd_peer_request *peer_req, *tmp;
/* The EEs are always appended to the end of the list. Since
they are sent in order over the wire, they have to finish
in order. As soon as we see the first not finished we can
stop to examine the list... */
list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
if (drbd_peer_req_has_active_page(peer_req))
break;
list_move(&peer_req->w.list, to_be_freed);
}
}
static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
{
LIST_HEAD(reclaimed);
struct drbd_peer_request *peer_req, *t;
spin_lock_irq(&device->resource->req_lock);
reclaim_finished_net_peer_reqs(device, &reclaimed);
spin_unlock_irq(&device->resource->req_lock);
list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
drbd_free_net_peer_req(device, peer_req);
}
static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
{
struct drbd_peer_device *peer_device;
int vnr;
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
if (!atomic_read(&device->pp_in_use_by_net))
continue;
kref_get(&device->kref);
rcu_read_unlock();
drbd_reclaim_net_peer_reqs(device);
kref_put(&device->kref, drbd_destroy_device);
rcu_read_lock();
}
rcu_read_unlock();
}
/**
* drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
* @peer_device: DRBD device.
* @number: number of pages requested
* @retry: whether to retry, if not enough pages are available right now
*
* Tries to allocate number pages, first from our own page pool, then from
* the kernel.
* Possibly retry until DRBD frees sufficient pages somewhere else.
*
* If this allocation would exceed the max_buffers setting, we throttle
* allocation (schedule_timeout) to give the system some room to breathe.
*
* We do not use max-buffers as hard limit, because it could lead to
* congestion and further to a distributed deadlock during online-verify or
* (checksum based) resync, if the max-buffers, socket buffer sizes and
* resync-rate settings are mis-configured.
*
* Returns a page chain linked via page->private.
*/
struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
bool retry)
{
struct drbd_device *device = peer_device->device;
struct page *page = NULL;
struct net_conf *nc;
DEFINE_WAIT(wait);
unsigned int mxb;
rcu_read_lock();
nc = rcu_dereference(peer_device->connection->net_conf);
mxb = nc ? nc->max_buffers : 1000000;
rcu_read_unlock();
if (atomic_read(&device->pp_in_use) < mxb)
page = __drbd_alloc_pages(device, number);
/* Try to keep the fast path fast, but occasionally we need
* to reclaim the pages we lended to the network stack. */
if (page && atomic_read(&device->pp_in_use_by_net) > 512)
drbd_reclaim_net_peer_reqs(device);
while (page == NULL) {
prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
drbd_reclaim_net_peer_reqs(device);
if (atomic_read(&device->pp_in_use) < mxb) {
page = __drbd_alloc_pages(device, number);
if (page)
break;
}
if (!retry)
break;
if (signal_pending(current)) {
drbd_warn(device, "drbd_alloc_pages interrupted!\n");
break;
}
if (schedule_timeout(HZ/10) == 0)
mxb = UINT_MAX;
}
finish_wait(&drbd_pp_wait, &wait);
if (page)
atomic_add(number, &device->pp_in_use);
return page;
}
/* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
* Is also used from inside an other spin_lock_irq(&resource->req_lock);
* Either links the page chain back to the global pool,
* or returns all pages to the system. */
static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
{
atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
int i;
if (page == NULL)
return;
if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
i = page_chain_free(page);
else {
struct page *tmp;
tmp = page_chain_tail(page, &i);
spin_lock(&drbd_pp_lock);
page_chain_add(&drbd_pp_pool, page, tmp);
drbd_pp_vacant += i;
spin_unlock(&drbd_pp_lock);
}
i = atomic_sub_return(i, a);
if (i < 0)
drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
is_net ? "pp_in_use_by_net" : "pp_in_use", i);
wake_up(&drbd_pp_wait);
}
/*
You need to hold the req_lock:
_drbd_wait_ee_list_empty()
You must not have the req_lock:
drbd_free_peer_req()
drbd_alloc_peer_req()
drbd_free_peer_reqs()
drbd_ee_fix_bhs()
drbd_finish_peer_reqs()
drbd_clear_done_ee()
drbd_wait_ee_list_empty()
*/
/* normal: payload_size == request size (bi_size)
* w_same: payload_size == logical_block_size
* trim: payload_size == 0 */
struct drbd_peer_request *
drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
struct drbd_peer_request *peer_req;
struct page *page = NULL;
unsigned int nr_pages = PFN_UP(payload_size);
if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
return NULL;
peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
if (!peer_req) {
if (!(gfp_mask & __GFP_NOWARN))
drbd_err(device, "%s: allocation failed\n", __func__);
return NULL;
}
if (nr_pages) {
mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-07 08:28:21 +08:00
page = drbd_alloc_pages(peer_device, nr_pages,
gfpflags_allow_blocking(gfp_mask));
if (!page)
goto fail;
}
memset(peer_req, 0, sizeof(*peer_req));
INIT_LIST_HEAD(&peer_req->w.list);
drbd_clear_interval(&peer_req->i);
peer_req->i.size = request_size;
peer_req->i.sector = sector;
peer_req->submit_jif = jiffies;
peer_req->peer_device = peer_device;
peer_req->pages = page;
/*
* The block_id is opaque to the receiver. It is not endianness
* converted, and sent back to the sender unchanged.
*/
peer_req->block_id = id;
return peer_req;
fail:
mempool_free(peer_req, &drbd_ee_mempool);
return NULL;
}
void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
int is_net)
{
might_sleep();
if (peer_req->flags & EE_HAS_DIGEST)
kfree(peer_req->digest);
drbd_free_pages(device, peer_req->pages, is_net);
D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
D_ASSERT(device, drbd_interval_empty(&peer_req->i));
if (!expect(!(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
drbd_al_complete_io(device, &peer_req->i);
}
mempool_free(peer_req, &drbd_ee_mempool);
}
int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
{
LIST_HEAD(work_list);
struct drbd_peer_request *peer_req, *t;
int count = 0;
int is_net = list == &device->net_ee;
spin_lock_irq(&device->resource->req_lock);
list_splice_init(list, &work_list);
spin_unlock_irq(&device->resource->req_lock);
list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
__drbd_free_peer_req(device, peer_req, is_net);
count++;
}
return count;
}
/*
* See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
*/
static int drbd_finish_peer_reqs(struct drbd_device *device)
{
LIST_HEAD(work_list);
LIST_HEAD(reclaimed);
struct drbd_peer_request *peer_req, *t;
int err = 0;
spin_lock_irq(&device->resource->req_lock);
reclaim_finished_net_peer_reqs(device, &reclaimed);
list_splice_init(&device->done_ee, &work_list);
spin_unlock_irq(&device->resource->req_lock);
list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
drbd_free_net_peer_req(device, peer_req);
/* possible callbacks here:
* e_end_block, and e_end_resync_block, e_send_superseded.
* all ignore the last argument.
*/
list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
int err2;
/* list_del not necessary, next/prev members not touched */
err2 = peer_req->w.cb(&peer_req->w, !!err);
if (!err)
err = err2;
drbd_free_peer_req(device, peer_req);
}
wake_up(&device->ee_wait);
return err;
}
static void _drbd_wait_ee_list_empty(struct drbd_device *device,
struct list_head *head)
{
DEFINE_WAIT(wait);
/* avoids spin_lock/unlock
* and calling prepare_to_wait in the fast path */
while (!list_empty(head)) {
prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irq(&device->resource->req_lock);
io_schedule();
finish_wait(&device->ee_wait, &wait);
spin_lock_irq(&device->resource->req_lock);
}
}
static void drbd_wait_ee_list_empty(struct drbd_device *device,
struct list_head *head)
{
spin_lock_irq(&device->resource->req_lock);
_drbd_wait_ee_list_empty(device, head);
spin_unlock_irq(&device->resource->req_lock);
}
static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
{
struct kvec iov = {
.iov_base = buf,
.iov_len = size,
};
struct msghdr msg = {
.msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
};
iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, size);
return sock_recvmsg(sock, &msg, msg.msg_flags);
}
static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
{
int rv;
rv = drbd_recv_short(connection->data.socket, buf, size, 0);
if (rv < 0) {
if (rv == -ECONNRESET)
drbd_info(connection, "sock was reset by peer\n");
else if (rv != -ERESTARTSYS)
drbd_err(connection, "sock_recvmsg returned %d\n", rv);
} else if (rv == 0) {
if (test_bit(DISCONNECT_SENT, &connection->flags)) {
long t;
rcu_read_lock();
t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
rcu_read_unlock();
t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
if (t)
goto out;
}
drbd_info(connection, "sock was shut down by peer\n");
}
if (rv != size)
conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
out:
return rv;
}
static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
{
int err;
err = drbd_recv(connection, buf, size);
if (err != size) {
if (err >= 0)
err = -EIO;
} else
err = 0;
return err;
}
static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
{
int err;
err = drbd_recv_all(connection, buf, size);
if (err && !signal_pending(current))
drbd_warn(connection, "short read (expected size %d)\n", (int)size);
return err;
}
/* quoting tcp(7):
* On individual connections, the socket buffer size must be set prior to the
* listen(2) or connect(2) calls in order to have it take effect.
* This is our wrapper to do so.
*/
static void drbd_setbufsize(struct socket *sock, unsigned int snd,
unsigned int rcv)
{
/* open coded SO_SNDBUF, SO_RCVBUF */
if (snd) {
sock->sk->sk_sndbuf = snd;
sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
}
if (rcv) {
sock->sk->sk_rcvbuf = rcv;
sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
}
}
static struct socket *drbd_try_connect(struct drbd_connection *connection)
{
const char *what;
struct socket *sock;
struct sockaddr_in6 src_in6;
struct sockaddr_in6 peer_in6;
struct net_conf *nc;
int err, peer_addr_len, my_addr_len;
int sndbuf_size, rcvbuf_size, connect_int;
int disconnect_on_error = 1;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (!nc) {
rcu_read_unlock();
return NULL;
}
sndbuf_size = nc->sndbuf_size;
rcvbuf_size = nc->rcvbuf_size;
connect_int = nc->connect_int;
rcu_read_unlock();
my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
memcpy(&src_in6, &connection->my_addr, my_addr_len);
if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
src_in6.sin6_port = 0;
else
((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
what = "sock_create_kern";
err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
if (err < 0) {
sock = NULL;
goto out;
}
sock->sk->sk_rcvtimeo =
sock->sk->sk_sndtimeo = connect_int * HZ;
drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
/* explicitly bind to the configured IP as source IP
* for the outgoing connections.
* This is needed for multihomed hosts and to be
* able to use lo: interfaces for drbd.
* Make sure to use 0 as port number, so linux selects
* a free one dynamically.
*/
what = "bind before connect";
err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
if (err < 0)
goto out;
/* connect may fail, peer not yet available.
* stay C_WF_CONNECTION, don't go Disconnecting! */
disconnect_on_error = 0;
what = "connect";
err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
out:
if (err < 0) {
if (sock) {
sock_release(sock);
sock = NULL;
}
switch (-err) {
/* timeout, busy, signal pending */
case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
case EINTR: case ERESTARTSYS:
/* peer not (yet) available, network problem */
case ECONNREFUSED: case ENETUNREACH:
case EHOSTDOWN: case EHOSTUNREACH:
disconnect_on_error = 0;
break;
default:
drbd_err(connection, "%s failed, err = %d\n", what, err);
}
if (disconnect_on_error)
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
}
return sock;
}
struct accept_wait_data {
struct drbd_connection *connection;
struct socket *s_listen;
struct completion door_bell;
void (*original_sk_state_change)(struct sock *sk);
};
static void drbd_incoming_connection(struct sock *sk)
{
struct accept_wait_data *ad = sk->sk_user_data;
void (*state_change)(struct sock *sk);
state_change = ad->original_sk_state_change;
if (sk->sk_state == TCP_ESTABLISHED)
complete(&ad->door_bell);
state_change(sk);
}
static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
{
int err, sndbuf_size, rcvbuf_size, my_addr_len;
struct sockaddr_in6 my_addr;
struct socket *s_listen;
struct net_conf *nc;
const char *what;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (!nc) {
rcu_read_unlock();
return -EIO;
}
sndbuf_size = nc->sndbuf_size;
rcvbuf_size = nc->rcvbuf_size;
rcu_read_unlock();
my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
memcpy(&my_addr, &connection->my_addr, my_addr_len);
what = "sock_create_kern";
err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
SOCK_STREAM, IPPROTO_TCP, &s_listen);
if (err) {
s_listen = NULL;
goto out;
}
s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
what = "bind before listen";
err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
if (err < 0)
goto out;
ad->s_listen = s_listen;
write_lock_bh(&s_listen->sk->sk_callback_lock);
ad->original_sk_state_change = s_listen->sk->sk_state_change;
s_listen->sk->sk_state_change = drbd_incoming_connection;
s_listen->sk->sk_user_data = ad;
write_unlock_bh(&s_listen->sk->sk_callback_lock);
what = "listen";
err = s_listen->ops->listen(s_listen, 5);
if (err < 0)
goto out;
return 0;
out:
if (s_listen)
sock_release(s_listen);
if (err < 0) {
if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
drbd_err(connection, "%s failed, err = %d\n", what, err);
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
}
}
return -EIO;
}
static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
{
write_lock_bh(&sk->sk_callback_lock);
sk->sk_state_change = ad->original_sk_state_change;
sk->sk_user_data = NULL;
write_unlock_bh(&sk->sk_callback_lock);
}
static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
{
int timeo, connect_int, err = 0;
struct socket *s_estab = NULL;
struct net_conf *nc;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (!nc) {
rcu_read_unlock();
return NULL;
}
connect_int = nc->connect_int;
rcu_read_unlock();
timeo = connect_int * HZ;
/* 28.5% random jitter */
timeo += (prandom_u32() & 1) ? timeo / 7 : -timeo / 7;
err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
if (err <= 0)
return NULL;
err = kernel_accept(ad->s_listen, &s_estab, 0);
if (err < 0) {
if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
drbd_err(connection, "accept failed, err = %d\n", err);
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
}
}
if (s_estab)
unregister_state_change(s_estab->sk, ad);
return s_estab;
}
static int decode_header(struct drbd_connection *, void *, struct packet_info *);
static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
enum drbd_packet cmd)
{
if (!conn_prepare_command(connection, sock))
return -EIO;
return conn_send_command(connection, sock, cmd, 0, NULL, 0);
}
static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
{
unsigned int header_size = drbd_header_size(connection);
struct packet_info pi;
struct net_conf *nc;
int err;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (!nc) {
rcu_read_unlock();
return -EIO;
}
sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
rcu_read_unlock();
err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
if (err != header_size) {
if (err >= 0)
err = -EIO;
return err;
}
err = decode_header(connection, connection->data.rbuf, &pi);
if (err)
return err;
return pi.cmd;
}
/**
* drbd_socket_okay() - Free the socket if its connection is not okay
* @sock: pointer to the pointer to the socket.
*/
static bool drbd_socket_okay(struct socket **sock)
{
int rr;
char tb[4];
if (!*sock)
return false;
rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
if (rr > 0 || rr == -EAGAIN) {
return true;
} else {
sock_release(*sock);
*sock = NULL;
return false;
}
}
static bool connection_established(struct drbd_connection *connection,
struct socket **sock1,
struct socket **sock2)
{
struct net_conf *nc;
int timeout;
bool ok;
if (!*sock1 || !*sock2)
return false;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
rcu_read_unlock();
schedule_timeout_interruptible(timeout);
ok = drbd_socket_okay(sock1);
ok = drbd_socket_okay(sock2) && ok;
return ok;
}
/* Gets called if a connection is established, or if a new minor gets created
in a connection */
int drbd_connected(struct drbd_peer_device *peer_device)
{
struct drbd_device *device = peer_device->device;
int err;
atomic_set(&device->packet_seq, 0);
device->peer_seq = 0;
device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
&peer_device->connection->cstate_mutex :
&device->own_state_mutex;
err = drbd_send_sync_param(peer_device);
if (!err)
err = drbd_send_sizes(peer_device, 0, 0);
if (!err)
err = drbd_send_uuids(peer_device);
if (!err)
err = drbd_send_current_state(peer_device);
clear_bit(USE_DEGR_WFC_T, &device->flags);
clear_bit(RESIZE_PENDING, &device->flags);
atomic_set(&device->ap_in_flight, 0);
mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
return err;
}
/*
* return values:
* 1 yes, we have a valid connection
* 0 oops, did not work out, please try again
* -1 peer talks different language,
* no point in trying again, please go standalone.
* -2 We do not have a network config...
*/
static int conn_connect(struct drbd_connection *connection)
{
struct drbd_socket sock, msock;
struct drbd_peer_device *peer_device;
struct net_conf *nc;
int vnr, timeout, h;
bool discard_my_data, ok;
enum drbd_state_rv rv;
struct accept_wait_data ad = {
.connection = connection,
.door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
};
clear_bit(DISCONNECT_SENT, &connection->flags);
if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
return -2;
mutex_init(&sock.mutex);
sock.sbuf = connection->data.sbuf;
sock.rbuf = connection->data.rbuf;
sock.socket = NULL;
mutex_init(&msock.mutex);
msock.sbuf = connection->meta.sbuf;
msock.rbuf = connection->meta.rbuf;
msock.socket = NULL;
/* Assume that the peer only understands protocol 80 until we know better. */
connection->agreed_pro_version = 80;
if (prepare_listen_socket(connection, &ad))
return 0;
do {
struct socket *s;
s = drbd_try_connect(connection);
if (s) {
if (!sock.socket) {
sock.socket = s;
send_first_packet(connection, &sock, P_INITIAL_DATA);
} else if (!msock.socket) {
clear_bit(RESOLVE_CONFLICTS, &connection->flags);
msock.socket = s;
send_first_packet(connection, &msock, P_INITIAL_META);
} else {
drbd_err(connection, "Logic error in conn_connect()\n");
goto out_release_sockets;
}
}
if (connection_established(connection, &sock.socket, &msock.socket))
break;
retry:
s = drbd_wait_for_connect(connection, &ad);
if (s) {
int fp = receive_first_packet(connection, s);
drbd_socket_okay(&sock.socket);
drbd_socket_okay(&msock.socket);
switch (fp) {
case P_INITIAL_DATA:
if (sock.socket) {
drbd_warn(connection, "initial packet S crossed\n");
sock_release(sock.socket);
sock.socket = s;
goto randomize;
}
sock.socket = s;
break;
case P_INITIAL_META:
set_bit(RESOLVE_CONFLICTS, &connection->flags);
if (msock.socket) {
drbd_warn(connection, "initial packet M crossed\n");
sock_release(msock.socket);
msock.socket = s;
goto randomize;
}
msock.socket = s;
break;
default:
drbd_warn(connection, "Error receiving initial packet\n");
sock_release(s);
randomize:
if (prandom_u32() & 1)
goto retry;
}
}
if (connection->cstate <= C_DISCONNECTING)
goto out_release_sockets;
if (signal_pending(current)) {
flush_signals(current);
smp_rmb();
if (get_t_state(&connection->receiver) == EXITING)
goto out_release_sockets;
}
ok = connection_established(connection, &sock.socket, &msock.socket);
} while (!ok);
if (ad.s_listen)
sock_release(ad.s_listen);
sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
sock.socket->sk->sk_allocation = GFP_NOIO;
msock.socket->sk->sk_allocation = GFP_NOIO;
sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
/* NOT YET ...
* sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
* sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
* first set it to the P_CONNECTION_FEATURES timeout,
* which we set to 4x the configured ping_timeout. */
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
sock.socket->sk->sk_sndtimeo =
sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
timeout = nc->timeout * HZ / 10;
discard_my_data = nc->discard_my_data;
rcu_read_unlock();
msock.socket->sk->sk_sndtimeo = timeout;
/* we don't want delays.
* we use TCP_CORK where appropriate, though */
tcp_sock_set_nodelay(sock.socket->sk);
tcp_sock_set_nodelay(msock.socket->sk);
connection->data.socket = sock.socket;
connection->meta.socket = msock.socket;
connection->last_received = jiffies;
h = drbd_do_features(connection);
if (h <= 0)
return h;
if (connection->cram_hmac_tfm) {
/* drbd_request_state(device, NS(conn, WFAuth)); */
switch (drbd_do_auth(connection)) {
case -1:
drbd_err(connection, "Authentication of peer failed\n");
return -1;
case 0:
drbd_err(connection, "Authentication of peer failed, trying again.\n");
return 0;
}
}
connection->data.socket->sk->sk_sndtimeo = timeout;
connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
if (drbd_send_protocol(connection) == -EOPNOTSUPP)
return -1;
/* Prevent a race between resync-handshake and
* being promoted to Primary.
*
* Grab and release the state mutex, so we know that any current
* drbd_set_role() is finished, and any incoming drbd_set_role
* will see the STATE_SENT flag, and wait for it to be cleared.
*/
idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
mutex_lock(peer_device->device->state_mutex);
/* avoid a race with conn_request_state( C_DISCONNECTING ) */
spin_lock_irq(&connection->resource->req_lock);
set_bit(STATE_SENT, &connection->flags);
spin_unlock_irq(&connection->resource->req_lock);
idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
mutex_unlock(peer_device->device->state_mutex);
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
kref_get(&device->kref);
rcu_read_unlock();
if (discard_my_data)
set_bit(DISCARD_MY_DATA, &device->flags);
else
clear_bit(DISCARD_MY_DATA, &device->flags);
drbd_connected(peer_device);
kref_put(&device->kref, drbd_destroy_device);
rcu_read_lock();
}
rcu_read_unlock();
rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
clear_bit(STATE_SENT, &connection->flags);
return 0;
}
drbd_thread_start(&connection->ack_receiver);
/* opencoded create_singlethread_workqueue(),
* to be able to use format string arguments */
connection->ack_sender =
alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
if (!connection->ack_sender) {
drbd_err(connection, "Failed to create workqueue ack_sender\n");
return 0;
}
mutex_lock(&connection->resource->conf_update);
/* The discard_my_data flag is a single-shot modifier to the next
* connection attempt, the handshake of which is now well underway.
* No need for rcu style copying of the whole struct
* just to clear a single value. */
connection->net_conf->discard_my_data = 0;
mutex_unlock(&connection->resource->conf_update);
return h;
out_release_sockets:
if (ad.s_listen)
sock_release(ad.s_listen);
if (sock.socket)
sock_release(sock.socket);
if (msock.socket)
sock_release(msock.socket);
return -1;
}
static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
{
unsigned int header_size = drbd_header_size(connection);
if (header_size == sizeof(struct p_header100) &&
*(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
struct p_header100 *h = header;
if (h->pad != 0) {
drbd_err(connection, "Header padding is not zero\n");
return -EINVAL;
}
pi->vnr = be16_to_cpu(h->volume);
pi->cmd = be16_to_cpu(h->command);
pi->size = be32_to_cpu(h->length);
} else if (header_size == sizeof(struct p_header95) &&
*(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
struct p_header95 *h = header;
pi->cmd = be16_to_cpu(h->command);
pi->size = be32_to_cpu(h->length);
pi->vnr = 0;
} else if (header_size == sizeof(struct p_header80) &&
*(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
struct p_header80 *h = header;
pi->cmd = be16_to_cpu(h->command);
pi->size = be16_to_cpu(h->length);
pi->vnr = 0;
} else {
drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
be32_to_cpu(*(__be32 *)header),
connection->agreed_pro_version);
return -EINVAL;
}
pi->data = header + header_size;
return 0;
}
static void drbd_unplug_all_devices(struct drbd_connection *connection)
{
if (current->plug == &connection->receiver_plug) {
blk_finish_plug(&connection->receiver_plug);
blk_start_plug(&connection->receiver_plug);
} /* else: maybe just schedule() ?? */
}
static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
{
void *buffer = connection->data.rbuf;
int err;
err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
if (err)
return err;
err = decode_header(connection, buffer, pi);
connection->last_received = jiffies;
return err;
}
static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
{
void *buffer = connection->data.rbuf;
unsigned int size = drbd_header_size(connection);
int err;
err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
if (err != size) {
/* If we have nothing in the receive buffer now, to reduce
* application latency, try to drain the backend queues as
* quickly as possible, and let remote TCP know what we have
* received so far. */
if (err == -EAGAIN) {
tcp_sock_set_quickack(connection->data.socket->sk, 2);
drbd_unplug_all_devices(connection);
}
if (err > 0) {
buffer += err;
size -= err;
}
err = drbd_recv_all_warn(connection, buffer, size);
if (err)
return err;
}
err = decode_header(connection, connection->data.rbuf, pi);
connection->last_received = jiffies;
return err;
}
/* This is blkdev_issue_flush, but asynchronous.
* We want to submit to all component volumes in parallel,
* then wait for all completions.
*/
struct issue_flush_context {
atomic_t pending;
int error;
struct completion done;
};
struct one_flush_context {
struct drbd_device *device;
struct issue_flush_context *ctx;
};
static void one_flush_endio(struct bio *bio)
{
struct one_flush_context *octx = bio->bi_private;
struct drbd_device *device = octx->device;
struct issue_flush_context *ctx = octx->ctx;
if (bio->bi_status) {
ctx->error = blk_status_to_errno(bio->bi_status);
drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
}
kfree(octx);
bio_put(bio);
clear_bit(FLUSH_PENDING, &device->flags);
put_ldev(device);
kref_put(&device->kref, drbd_destroy_device);
if (atomic_dec_and_test(&ctx->pending))
complete(&ctx->done);
}
static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
{
struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
REQ_OP_FLUSH | REQ_PREFLUSH, GFP_NOIO);
struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
if (!octx) {
drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
/* FIXME: what else can I do now? disconnecting or detaching
* really does not help to improve the state of the world, either.
*/
bio_put(bio);
ctx->error = -ENOMEM;
put_ldev(device);
kref_put(&device->kref, drbd_destroy_device);
return;
}
octx->device = device;
octx->ctx = ctx;
bio->bi_private = octx;
bio->bi_end_io = one_flush_endio;
device->flush_jif = jiffies;
set_bit(FLUSH_PENDING, &device->flags);
atomic_inc(&ctx->pending);
submit_bio(bio);
}
static void drbd_flush(struct drbd_connection *connection)
{
if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
struct drbd_peer_device *peer_device;
struct issue_flush_context ctx;
int vnr;
atomic_set(&ctx.pending, 1);
ctx.error = 0;
init_completion(&ctx.done);
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
if (!get_ldev(device))
continue;
kref_get(&device->kref);
rcu_read_unlock();
submit_one_flush(device, &ctx);
rcu_read_lock();
}
rcu_read_unlock();
/* Do we want to add a timeout,
* if disk-timeout is set? */
if (!atomic_dec_and_test(&ctx.pending))
wait_for_completion(&ctx.done);
if (ctx.error) {
/* would rather check on EOPNOTSUPP, but that is not reliable.
* don't try again for ANY return value != 0
* if (rv == -EOPNOTSUPP) */
/* Any error is already reported by bio_endio callback. */
drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
}
}
}
/**
* drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
* @connection: DRBD connection.
* @epoch: Epoch object.
* @ev: Epoch event.
*/
static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
struct drbd_epoch *epoch,
enum epoch_event ev)
{
int epoch_size;
struct drbd_epoch *next_epoch;
enum finish_epoch rv = FE_STILL_LIVE;
spin_lock(&connection->epoch_lock);
do {
next_epoch = NULL;
epoch_size = atomic_read(&epoch->epoch_size);
switch (ev & ~EV_CLEANUP) {
case EV_PUT:
atomic_dec(&epoch->active);
break;
case EV_GOT_BARRIER_NR:
set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
break;
case EV_BECAME_LAST:
/* nothing to do*/
break;
}
if (epoch_size != 0 &&
atomic_read(&epoch->active) == 0 &&
(test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
if (!(ev & EV_CLEANUP)) {
spin_unlock(&connection->epoch_lock);
drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
spin_lock(&connection->epoch_lock);
}
#if 0
/* FIXME: dec unacked on connection, once we have
* something to count pending connection packets in. */
if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
dec_unacked(epoch->connection);
#endif
if (connection->current_epoch != epoch) {
next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
list_del(&epoch->list);
ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
connection->epochs--;
kfree(epoch);
if (rv == FE_STILL_LIVE)
rv = FE_DESTROYED;
} else {
epoch->flags = 0;
atomic_set(&epoch->epoch_size, 0);
/* atomic_set(&epoch->active, 0); is already zero */
if (rv == FE_STILL_LIVE)
rv = FE_RECYCLED;
}
}
if (!next_epoch)
break;
epoch = next_epoch;
} while (1);
spin_unlock(&connection->epoch_lock);
return rv;
}
drbd: device->ldev is not guaranteed on an D_ATTACHING disk Some parts of the code assumed that get_ldev_if_state(device, D_ATTACHING) is sufficient to access the ldev member of the device object. That was wrong. ldev may not be there or might be freed at any time if the device has a disk state of D_ATTACHING. bm_rw() Documented that drbd_bm_read() is only called from drbd_adm_attach. drbd_bm_write() is only called when a reference is held, and it is documented that a caller has to hold a reference before calling drbd_bm_write() drbd_bm_write_page() Use get_ldev() instead of get_ldev_if_state(device, D_ATTACHING) drbd_bmio_set_n_write() No longer use get_ldev_if_state(device, D_ATTACHING). All callers hold a reference to ldev now. drbd_bmio_clear_n_write() All callers where holding a reference of ldev anyways. Remove the misleading get_ldev_if_state(device, D_ATTACHING) drbd_reconsider_max_bio_size() Removed the get_ldev_if_state(device, D_ATTACHING). All callers now pass a struct drbd_backing_dev* when they have a proper reference, or a NULL pointer. Before this fix, the receiver could trigger a NULL pointer deref when in drbd_reconsider_max_bio_size() drbd_bump_write_ordering() Used get_ldev_if_state(device, D_ATTACHING) with the wrong assumption. Remove it, and allow the caller to pass in a struct drbd_backing_dev* when the caller knows that accessing this bdev is safe. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2013-11-22 20:22:13 +08:00
static enum write_ordering_e
max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
{
struct disk_conf *dc;
dc = rcu_dereference(bdev->disk_conf);
if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
wo = WO_DRAIN_IO;
if (wo == WO_DRAIN_IO && !dc->disk_drain)
wo = WO_NONE;
drbd: device->ldev is not guaranteed on an D_ATTACHING disk Some parts of the code assumed that get_ldev_if_state(device, D_ATTACHING) is sufficient to access the ldev member of the device object. That was wrong. ldev may not be there or might be freed at any time if the device has a disk state of D_ATTACHING. bm_rw() Documented that drbd_bm_read() is only called from drbd_adm_attach. drbd_bm_write() is only called when a reference is held, and it is documented that a caller has to hold a reference before calling drbd_bm_write() drbd_bm_write_page() Use get_ldev() instead of get_ldev_if_state(device, D_ATTACHING) drbd_bmio_set_n_write() No longer use get_ldev_if_state(device, D_ATTACHING). All callers hold a reference to ldev now. drbd_bmio_clear_n_write() All callers where holding a reference of ldev anyways. Remove the misleading get_ldev_if_state(device, D_ATTACHING) drbd_reconsider_max_bio_size() Removed the get_ldev_if_state(device, D_ATTACHING). All callers now pass a struct drbd_backing_dev* when they have a proper reference, or a NULL pointer. Before this fix, the receiver could trigger a NULL pointer deref when in drbd_reconsider_max_bio_size() drbd_bump_write_ordering() Used get_ldev_if_state(device, D_ATTACHING) with the wrong assumption. Remove it, and allow the caller to pass in a struct drbd_backing_dev* when the caller knows that accessing this bdev is safe. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2013-11-22 20:22:13 +08:00
return wo;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* drbd_bump_write_ordering() - Fall back to an other write ordering method
* @wo: Write ordering method to try.
*/
drbd: device->ldev is not guaranteed on an D_ATTACHING disk Some parts of the code assumed that get_ldev_if_state(device, D_ATTACHING) is sufficient to access the ldev member of the device object. That was wrong. ldev may not be there or might be freed at any time if the device has a disk state of D_ATTACHING. bm_rw() Documented that drbd_bm_read() is only called from drbd_adm_attach. drbd_bm_write() is only called when a reference is held, and it is documented that a caller has to hold a reference before calling drbd_bm_write() drbd_bm_write_page() Use get_ldev() instead of get_ldev_if_state(device, D_ATTACHING) drbd_bmio_set_n_write() No longer use get_ldev_if_state(device, D_ATTACHING). All callers hold a reference to ldev now. drbd_bmio_clear_n_write() All callers where holding a reference of ldev anyways. Remove the misleading get_ldev_if_state(device, D_ATTACHING) drbd_reconsider_max_bio_size() Removed the get_ldev_if_state(device, D_ATTACHING). All callers now pass a struct drbd_backing_dev* when they have a proper reference, or a NULL pointer. Before this fix, the receiver could trigger a NULL pointer deref when in drbd_reconsider_max_bio_size() drbd_bump_write_ordering() Used get_ldev_if_state(device, D_ATTACHING) with the wrong assumption. Remove it, and allow the caller to pass in a struct drbd_backing_dev* when the caller knows that accessing this bdev is safe. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2013-11-22 20:22:13 +08:00
void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
enum write_ordering_e wo)
{
struct drbd_device *device;
enum write_ordering_e pwo;
int vnr;
static char *write_ordering_str[] = {
[WO_NONE] = "none",
[WO_DRAIN_IO] = "drain",
[WO_BDEV_FLUSH] = "flush",
};
pwo = resource->write_ordering;
if (wo != WO_BDEV_FLUSH)
wo = min(pwo, wo);
rcu_read_lock();
idr_for_each_entry(&resource->devices, device, vnr) {
drbd: device->ldev is not guaranteed on an D_ATTACHING disk Some parts of the code assumed that get_ldev_if_state(device, D_ATTACHING) is sufficient to access the ldev member of the device object. That was wrong. ldev may not be there or might be freed at any time if the device has a disk state of D_ATTACHING. bm_rw() Documented that drbd_bm_read() is only called from drbd_adm_attach. drbd_bm_write() is only called when a reference is held, and it is documented that a caller has to hold a reference before calling drbd_bm_write() drbd_bm_write_page() Use get_ldev() instead of get_ldev_if_state(device, D_ATTACHING) drbd_bmio_set_n_write() No longer use get_ldev_if_state(device, D_ATTACHING). All callers hold a reference to ldev now. drbd_bmio_clear_n_write() All callers where holding a reference of ldev anyways. Remove the misleading get_ldev_if_state(device, D_ATTACHING) drbd_reconsider_max_bio_size() Removed the get_ldev_if_state(device, D_ATTACHING). All callers now pass a struct drbd_backing_dev* when they have a proper reference, or a NULL pointer. Before this fix, the receiver could trigger a NULL pointer deref when in drbd_reconsider_max_bio_size() drbd_bump_write_ordering() Used get_ldev_if_state(device, D_ATTACHING) with the wrong assumption. Remove it, and allow the caller to pass in a struct drbd_backing_dev* when the caller knows that accessing this bdev is safe. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2013-11-22 20:22:13 +08:00
if (get_ldev(device)) {
wo = max_allowed_wo(device->ldev, wo);
if (device->ldev == bdev)
bdev = NULL;
put_ldev(device);
}
}
drbd: device->ldev is not guaranteed on an D_ATTACHING disk Some parts of the code assumed that get_ldev_if_state(device, D_ATTACHING) is sufficient to access the ldev member of the device object. That was wrong. ldev may not be there or might be freed at any time if the device has a disk state of D_ATTACHING. bm_rw() Documented that drbd_bm_read() is only called from drbd_adm_attach. drbd_bm_write() is only called when a reference is held, and it is documented that a caller has to hold a reference before calling drbd_bm_write() drbd_bm_write_page() Use get_ldev() instead of get_ldev_if_state(device, D_ATTACHING) drbd_bmio_set_n_write() No longer use get_ldev_if_state(device, D_ATTACHING). All callers hold a reference to ldev now. drbd_bmio_clear_n_write() All callers where holding a reference of ldev anyways. Remove the misleading get_ldev_if_state(device, D_ATTACHING) drbd_reconsider_max_bio_size() Removed the get_ldev_if_state(device, D_ATTACHING). All callers now pass a struct drbd_backing_dev* when they have a proper reference, or a NULL pointer. Before this fix, the receiver could trigger a NULL pointer deref when in drbd_reconsider_max_bio_size() drbd_bump_write_ordering() Used get_ldev_if_state(device, D_ATTACHING) with the wrong assumption. Remove it, and allow the caller to pass in a struct drbd_backing_dev* when the caller knows that accessing this bdev is safe. Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2013-11-22 20:22:13 +08:00
if (bdev)
wo = max_allowed_wo(bdev, wo);
rcu_read_unlock();
resource->write_ordering = wo;
if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
}
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
/*
* Mapping "discard" to ZEROOUT with UNMAP does not work for us:
* Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
* will directly go to fallback mode, submitting normal writes, and
* never even try to UNMAP.
*
* And dm-thin does not do this (yet), mostly because in general it has
* to assume that "skip_block_zeroing" is set. See also:
* https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
* https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
*
* We *may* ignore the discard-zeroes-data setting, if so configured.
*
* Assumption is that this "discard_zeroes_data=0" is only because the backend
* may ignore partial unaligned discards.
*
* LVM/DM thin as of at least
* LVM version: 2.02.115(2)-RHEL7 (2015-01-28)
* Library version: 1.02.93-RHEL7 (2015-01-28)
* Driver version: 4.29.0
* still behaves this way.
*
* For unaligned (wrt. alignment and granularity) or too small discards,
* we zero-out the initial (and/or) trailing unaligned partial chunks,
* but discard all the aligned full chunks.
*
* At least for LVM/DM thin, with skip_block_zeroing=false,
* the result is effectively "discard_zeroes_data=1".
*/
/* flags: EE_TRIM|EE_ZEROOUT */
int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
{
struct block_device *bdev = device->ldev->backing_bdev;
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
sector_t tmp, nr;
unsigned int max_discard_sectors, granularity;
int alignment;
int err = 0;
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
goto zero_out;
/* Zero-sector (unknown) and one-sector granularities are the same. */
granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
max_discard_sectors -= max_discard_sectors % granularity;
if (unlikely(!max_discard_sectors))
goto zero_out;
if (nr_sectors < granularity)
goto zero_out;
tmp = start;
if (sector_div(tmp, granularity) != alignment) {
if (nr_sectors < 2*granularity)
goto zero_out;
/* start + gran - (start + gran - align) % gran */
tmp = start + granularity - alignment;
tmp = start + granularity - sector_div(tmp, granularity);
nr = tmp - start;
/* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
* layers are below us, some may have smaller granularity */
err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
nr_sectors -= nr;
start = tmp;
}
while (nr_sectors >= max_discard_sectors) {
err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
GFP_NOIO);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
nr_sectors -= max_discard_sectors;
start += max_discard_sectors;
}
if (nr_sectors) {
/* max_discard_sectors is unsigned int (and a multiple of
* granularity, we made sure of that above already);
* nr is < max_discard_sectors;
* I don't need sector_div here, even though nr is sector_t */
nr = nr_sectors;
nr -= (unsigned int)nr % granularity;
if (nr) {
err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
nr_sectors -= nr;
start += nr;
}
}
zero_out:
if (nr_sectors) {
err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
(flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
}
return err != 0;
}
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
static bool can_do_reliable_discards(struct drbd_device *device)
{
struct disk_conf *dc;
bool can_do;
if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
return false;
rcu_read_lock();
dc = rcu_dereference(device->ldev->disk_conf);
can_do = dc->discard_zeroes_if_aligned;
rcu_read_unlock();
return can_do;
}
static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
{
/* If the backend cannot discard, or does not guarantee
* read-back zeroes in discarded ranges, we fall back to
* zero-out. Unless configuration specifically requested
* otherwise. */
if (!can_do_reliable_discards(device))
peer_req->flags |= EE_ZEROOUT;
if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
peer_req->flags |= EE_WAS_ERROR;
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
drbd_endio_write_sec_final(peer_req);
}
/**
* drbd_submit_peer_request()
* @device: DRBD device.
* @peer_req: peer request
*
* May spread the pages to multiple bios,
* depending on bio_add_page restrictions.
*
* Returns 0 if all bios have been submitted,
* -ENOMEM if we could not allocate enough bios,
* -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
* single page to an empty bio (which should never happen and likely indicates
* that the lower level IO stack is in some way broken). This has been observed
* on certain Xen deployments.
*/
/* TODO allocate from our own bio_set. */
int drbd_submit_peer_request(struct drbd_device *device,
struct drbd_peer_request *peer_req,
const unsigned op, const unsigned op_flags,
const int fault_type)
{
struct bio *bios = NULL;
struct bio *bio;
struct page *page = peer_req->pages;
sector_t sector = peer_req->i.sector;
unsigned int data_size = peer_req->i.size;
unsigned int n_bios = 0;
unsigned int nr_pages = PFN_UP(data_size);
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
/* TRIM/DISCARD: for now, always use the helper function
* blkdev_issue_zeroout(..., discard=true).
* It's synchronous, but it does the right thing wrt. bio splitting.
* Correctness first, performance later. Next step is to code an
* asynchronous variant of the same.
*/
if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
/* wait for all pending IO completions, before we start
* zeroing things out. */
conn_wait_active_ee_empty(peer_req->peer_device->connection);
/* add it to the active list now,
* so we can find it to present it in debugfs */
peer_req->submit_jif = jiffies;
peer_req->flags |= EE_SUBMITTED;
/* If this was a resync request from receive_rs_deallocated(),
* it is already on the sync_ee list */
if (list_empty(&peer_req->w.list)) {
spin_lock_irq(&device->resource->req_lock);
list_add_tail(&peer_req->w.list, &device->active_ee);
spin_unlock_irq(&device->resource->req_lock);
}
drbd_issue_peer_discard_or_zero_out(device, peer_req);
return 0;
}
/* In most cases, we will only need one bio. But in case the lower
* level restrictions happen to be different at this offset on this
* side than those of the sending peer, we may need to submit the
* request in more than one bio.
*
* Plain bio_alloc is good enough here, this is no DRBD internally
* generated bio, but a bio allocated on behalf of the peer.
*/
next_bio:
bio = bio_alloc(device->ldev->backing_bdev, nr_pages, op | op_flags,
GFP_NOIO);
/* > peer_req->i.sector, unless this is the first bio */
block: Abstract out bvec iterator Immutable biovecs are going to require an explicit iterator. To implement immutable bvecs, a later patch is going to add a bi_bvec_done member to this struct; for now, this patch effectively just renames things. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Matthew Wilcox <willy@linux.intel.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: dm-devel@redhat.com Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Boaz Harrosh <bharrosh@panasas.com> Cc: Benny Halevy <bhalevy@tonian.com> Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chris Mason <chris.mason@fusionio.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Joern Engel <joern@logfs.org> Cc: Prasad Joshi <prasadjoshi.linux@gmail.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Joel Becker <jlbec@evilplan.org> Cc: Ben Myers <bpm@sgi.com> Cc: xfs@oss.sgi.com Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Len Brown <len.brown@intel.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Cc: "Roger Pau Monné" <roger.pau@citrix.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com> Cc: Ian Campbell <Ian.Campbell@citrix.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Jiang Liu <jiang.liu@huawei.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchand@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Peng Tao <tao.peng@emc.com> Cc: Andy Adamson <andros@netapp.com> Cc: fanchaoting <fanchaoting@cn.fujitsu.com> Cc: Jie Liu <jeff.liu@oracle.com> Cc: Sunil Mushran <sunil.mushran@gmail.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Namjae Jeon <namjae.jeon@samsung.com> Cc: Pankaj Kumar <pankaj.km@samsung.com> Cc: Dan Magenheimer <dan.magenheimer@oracle.com> Cc: Mel Gorman <mgorman@suse.de>6
2013-10-12 06:44:27 +08:00
bio->bi_iter.bi_sector = sector;
bio->bi_private = peer_req;
bio->bi_end_io = drbd_peer_request_endio;
bio->bi_next = bios;
bios = bio;
++n_bios;
page_chain_for_each(page) {
unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
if (!bio_add_page(bio, page, len, 0))
goto next_bio;
data_size -= len;
sector += len >> 9;
--nr_pages;
}
D_ASSERT(device, data_size == 0);
D_ASSERT(device, page == NULL);
atomic_set(&peer_req->pending_bios, n_bios);
/* for debugfs: update timestamp, mark as submitted */
peer_req->submit_jif = jiffies;
peer_req->flags |= EE_SUBMITTED;
do {
bio = bios;
bios = bios->bi_next;
bio->bi_next = NULL;
drbd_submit_bio_noacct(device, fault_type, bio);
} while (bios);
return 0;
}
static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
struct drbd_peer_request *peer_req)
{
struct drbd_interval *i = &peer_req->i;
drbd_remove_interval(&device->write_requests, i);
drbd_clear_interval(i);
/* Wake up any processes waiting for this peer request to complete. */
if (i->waiting)
wake_up(&device->misc_wait);
}
static void conn_wait_active_ee_empty(struct drbd_connection *connection)
{
struct drbd_peer_device *peer_device;
int vnr;
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
kref_get(&device->kref);
rcu_read_unlock();
drbd_wait_ee_list_empty(device, &device->active_ee);
kref_put(&device->kref, drbd_destroy_device);
rcu_read_lock();
}
rcu_read_unlock();
}
static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
{
int rv;
struct p_barrier *p = pi->data;
struct drbd_epoch *epoch;
/* FIXME these are unacked on connection,
* not a specific (peer)device.
*/
connection->current_epoch->barrier_nr = p->barrier;
connection->current_epoch->connection = connection;
rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
/* P_BARRIER_ACK may imply that the corresponding extent is dropped from
* the activity log, which means it would not be resynced in case the
* R_PRIMARY crashes now.
* Therefore we must send the barrier_ack after the barrier request was
* completed. */
switch (connection->resource->write_ordering) {
case WO_NONE:
if (rv == FE_RECYCLED)
return 0;
/* receiver context, in the writeout path of the other node.
* avoid potential distributed deadlock */
epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
if (epoch)
break;
else
drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
fallthrough;
case WO_BDEV_FLUSH:
case WO_DRAIN_IO:
conn_wait_active_ee_empty(connection);
drbd_flush(connection);
if (atomic_read(&connection->current_epoch->epoch_size)) {
epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
if (epoch)
break;
}
return 0;
default:
drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
connection->resource->write_ordering);
return -EIO;
}
epoch->flags = 0;
atomic_set(&epoch->epoch_size, 0);
atomic_set(&epoch->active, 0);
spin_lock(&connection->epoch_lock);
if (atomic_read(&connection->current_epoch->epoch_size)) {
list_add(&epoch->list, &connection->current_epoch->list);
connection->current_epoch = epoch;
connection->epochs++;
} else {
/* The current_epoch got recycled while we allocated this one... */
kfree(epoch);
}
spin_unlock(&connection->epoch_lock);
return 0;
}
/* quick wrapper in case payload size != request_size (write same) */
static void drbd_csum_ee_size(struct crypto_shash *h,
struct drbd_peer_request *r, void *d,
unsigned int payload_size)
{
unsigned int tmp = r->i.size;
r->i.size = payload_size;
drbd_csum_ee(h, r, d);
r->i.size = tmp;
}
/* used from receive_RSDataReply (recv_resync_read)
* and from receive_Data.
* data_size: actual payload ("data in")
* for normal writes that is bi_size.
* for discards, that is zero.
* for write same, it is logical_block_size.
* both trim and write same have the bi_size ("data len to be affected")
* as extra argument in the packet header.
*/
static struct drbd_peer_request *
read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
struct packet_info *pi) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
const sector_t capacity = get_capacity(device->vdisk);
struct drbd_peer_request *peer_req;
struct page *page;
int digest_size, err;
unsigned int data_size = pi->size, ds;
void *dig_in = peer_device->connection->int_dig_in;
void *dig_vv = peer_device->connection->int_dig_vv;
unsigned long *data;
struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
digest_size = 0;
if (!trim && peer_device->connection->peer_integrity_tfm) {
digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
/*
* FIXME: Receive the incoming digest into the receive buffer
* here, together with its struct p_data?
*/
err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
if (err)
return NULL;
data_size -= digest_size;
}
/* assume request_size == data_size, but special case trim. */
ds = data_size;
if (trim) {
if (!expect(data_size == 0))
return NULL;
ds = be32_to_cpu(trim->size);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
} else if (zeroes) {
if (!expect(data_size == 0))
return NULL;
ds = be32_to_cpu(zeroes->size);
}
if (!expect(IS_ALIGNED(ds, 512)))
return NULL;
if (trim || zeroes) {
if (!expect(ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
return NULL;
} else if (!expect(ds <= DRBD_MAX_BIO_SIZE))
return NULL;
/* even though we trust out peer,
* we sometimes have to double check. */
if (sector + (ds>>9) > capacity) {
drbd_err(device, "request from peer beyond end of local disk: "
"capacity: %llus < sector: %llus + size: %u\n",
(unsigned long long)capacity,
(unsigned long long)sector, ds);
return NULL;
}
/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
if (!peer_req)
return NULL;
peer_req->flags |= EE_WRITE;
if (trim) {
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
peer_req->flags |= EE_TRIM;
return peer_req;
}
if (zeroes) {
peer_req->flags |= EE_ZEROOUT;
return peer_req;
}
/* receive payload size bytes into page chain */
ds = data_size;
page = peer_req->pages;
page_chain_for_each(page) {
unsigned len = min_t(int, ds, PAGE_SIZE);
data = kmap(page);
err = drbd_recv_all_warn(peer_device->connection, data, len);
if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
drbd_err(device, "Fault injection: Corrupting data on receive\n");
data[0] = data[0] ^ (unsigned long)-1;
}
kunmap(page);
if (err) {
drbd_free_peer_req(device, peer_req);
return NULL;
}
ds -= len;
}
if (digest_size) {
drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
if (memcmp(dig_in, dig_vv, digest_size)) {
drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
(unsigned long long)sector, data_size);
drbd_free_peer_req(device, peer_req);
return NULL;
}
}
device->recv_cnt += data_size >> 9;
return peer_req;
}
/* drbd_drain_block() just takes a data block
* out of the socket input buffer, and discards it.
*/
static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
{
struct page *page;
int err = 0;
void *data;
if (!data_size)
return 0;
page = drbd_alloc_pages(peer_device, 1, 1);
data = kmap(page);
while (data_size) {
unsigned int len = min_t(int, data_size, PAGE_SIZE);
err = drbd_recv_all_warn(peer_device->connection, data, len);
if (err)
break;
data_size -= len;
}
kunmap(page);
drbd_free_pages(peer_device->device, page, 0);
return err;
}
static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
sector_t sector, int data_size)
{
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
struct bio_vec bvec;
struct bvec_iter iter;
struct bio *bio;
int digest_size, err, expect;
void *dig_in = peer_device->connection->int_dig_in;
void *dig_vv = peer_device->connection->int_dig_vv;
digest_size = 0;
if (peer_device->connection->peer_integrity_tfm) {
digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
if (err)
return err;
data_size -= digest_size;
}
/* optimistically update recv_cnt. if receiving fails below,
* we disconnect anyways, and counters will be reset. */
peer_device->device->recv_cnt += data_size>>9;
bio = req->master_bio;
D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
bio_for_each_segment(bvec, bio, iter) {
void *mapped = bvec_kmap_local(&bvec);
block: Convert bio_for_each_segment() to bvec_iter More prep work for immutable biovecs - with immutable bvecs drivers won't be able to use the biovec directly, they'll need to use helpers that take into account bio->bi_iter.bi_bvec_done. This updates callers for the new usage without changing the implementation yet. Signed-off-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: "Ed L. Cashin" <ecashin@coraid.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Lars Ellenberg <drbd-dev@lists.linbit.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Paul Clements <Paul.Clements@steeleye.com> Cc: Jim Paris <jim@jtan.com> Cc: Geoff Levand <geoff@infradead.org> Cc: Yehuda Sadeh <yehuda@inktank.com> Cc: Sage Weil <sage@inktank.com> Cc: Alex Elder <elder@inktank.com> Cc: ceph-devel@vger.kernel.org Cc: Joshua Morris <josh.h.morris@us.ibm.com> Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Neil Brown <neilb@suse.de> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux390@de.ibm.com Cc: Nagalakshmi Nandigama <Nagalakshmi.Nandigama@lsi.com> Cc: Sreekanth Reddy <Sreekanth.Reddy@lsi.com> Cc: support@lsi.com Cc: "James E.J. Bottomley" <JBottomley@parallels.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Guo Chao <yan@linux.vnet.ibm.com> Cc: Asai Thambi S P <asamymuthupa@micron.com> Cc: Selvan Mani <smani@micron.com> Cc: Sam Bradshaw <sbradshaw@micron.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Cc: Quoc-Son Anh <quoc-sonx.anh@intel.com> Cc: Sebastian Ott <sebott@linux.vnet.ibm.com> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Seth Jennings <sjenning@linux.vnet.ibm.com> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Mike Snitzer <snitzer@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Jan Kara <jack@suse.cz> Cc: linux-m68k@lists.linux-m68k.org Cc: linuxppc-dev@lists.ozlabs.org Cc: drbd-user@lists.linbit.com Cc: nbd-general@lists.sourceforge.net Cc: cbe-oss-dev@lists.ozlabs.org Cc: xen-devel@lists.xensource.com Cc: virtualization@lists.linux-foundation.org Cc: linux-raid@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: DL-MPTFusionLinux@lsi.com Cc: linux-scsi@vger.kernel.org Cc: devel@driverdev.osuosl.org Cc: linux-fsdevel@vger.kernel.org Cc: cluster-devel@redhat.com Cc: linux-mm@kvack.org Acked-by: Geoff Levand <geoff@infradead.org>
2013-11-24 09:19:00 +08:00
expect = min_t(int, data_size, bvec.bv_len);
err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
kunmap_local(mapped);
if (err)
return err;
data_size -= expect;
}
if (digest_size) {
drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
if (memcmp(dig_in, dig_vv, digest_size)) {
drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
return -EINVAL;
}
}
D_ASSERT(peer_device->device, data_size == 0);
return 0;
}
/*
* e_end_resync_block() is called in ack_sender context via
* drbd_finish_peer_reqs().
*/
static int e_end_resync_block(struct drbd_work *w, int unused)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_peer_device *peer_device = peer_req->peer_device;
struct drbd_device *device = peer_device->device;
sector_t sector = peer_req->i.sector;
int err;
D_ASSERT(device, drbd_interval_empty(&peer_req->i));
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
drbd_set_in_sync(device, sector, peer_req->i.size);
err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
} else {
/* Record failure to sync */
drbd_rs_failed_io(device, sector, peer_req->i.size);
err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
}
dec_unacked(device);
return err;
}
static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
struct packet_info *pi) __releases(local)
{
struct drbd_device *device = peer_device->device;
struct drbd_peer_request *peer_req;
peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
if (!peer_req)
goto fail;
dec_rs_pending(device);
inc_unacked(device);
/* corresponding dec_unacked() in e_end_resync_block()
* respective _drbd_clear_done_ee */
peer_req->w.cb = e_end_resync_block;
peer_req->submit_jif = jiffies;
spin_lock_irq(&device->resource->req_lock);
list_add_tail(&peer_req->w.list, &device->sync_ee);
spin_unlock_irq(&device->resource->req_lock);
atomic_add(pi->size >> 9, &device->rs_sect_ev);
if (drbd_submit_peer_request(device, peer_req, REQ_OP_WRITE, 0,
DRBD_FAULT_RS_WR) == 0)
return 0;
/* don't care for the reason here */
drbd_err(device, "submit failed, triggering re-connect\n");
spin_lock_irq(&device->resource->req_lock);
list_del(&peer_req->w.list);
spin_unlock_irq(&device->resource->req_lock);
drbd_free_peer_req(device, peer_req);
fail:
put_ldev(device);
return -EIO;
}
static struct drbd_request *
find_request(struct drbd_device *device, struct rb_root *root, u64 id,
sector_t sector, bool missing_ok, const char *func)
{
struct drbd_request *req;
/* Request object according to our peer */
req = (struct drbd_request *)(unsigned long)id;
if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
return req;
if (!missing_ok) {
drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
(unsigned long)id, (unsigned long long)sector);
}
return NULL;
}
static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct drbd_request *req;
sector_t sector;
int err;
struct p_data *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
sector = be64_to_cpu(p->sector);
spin_lock_irq(&device->resource->req_lock);
req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
spin_unlock_irq(&device->resource->req_lock);
if (unlikely(!req))
return -EIO;
/* hlist_del(&req->collision) is done in _req_may_be_done, to avoid
* special casing it there for the various failure cases.
* still no race with drbd_fail_pending_reads */
err = recv_dless_read(peer_device, req, sector, pi->size);
if (!err)
req_mod(req, DATA_RECEIVED);
/* else: nothing. handled from drbd_disconnect...
* I don't think we may complete this just yet
* in case we are "on-disconnect: freeze" */
return err;
}
static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
sector_t sector;
int err;
struct p_data *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
sector = be64_to_cpu(p->sector);
D_ASSERT(device, p->block_id == ID_SYNCER);
if (get_ldev(device)) {
/* data is submitted to disk within recv_resync_read.
* corresponding put_ldev done below on error,
* or in drbd_peer_request_endio. */
err = recv_resync_read(peer_device, sector, pi);
} else {
if (__ratelimit(&drbd_ratelimit_state))
drbd_err(device, "Can not write resync data to local disk.\n");
err = drbd_drain_block(peer_device, pi->size);
drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
}
atomic_add(pi->size >> 9, &device->rs_sect_in);
return err;
}
static void restart_conflicting_writes(struct drbd_device *device,
sector_t sector, int size)
{
struct drbd_interval *i;
struct drbd_request *req;
drbd_for_each_overlap(i, &device->write_requests, sector, size) {
if (!i->local)
continue;
req = container_of(i, struct drbd_request, i);
if (req->rq_state & RQ_LOCAL_PENDING ||
!(req->rq_state & RQ_POSTPONED))
continue;
/* as it is RQ_POSTPONED, this will cause it to
* be queued on the retry workqueue. */
__req_mod(req, CONFLICT_RESOLVED, NULL);
}
}
/*
* e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
*/
static int e_end_block(struct drbd_work *w, int cancel)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_peer_device *peer_device = peer_req->peer_device;
struct drbd_device *device = peer_device->device;
sector_t sector = peer_req->i.sector;
int err = 0, pcmd;
if (peer_req->flags & EE_SEND_WRITE_ACK) {
if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
pcmd = (device->state.conn >= C_SYNC_SOURCE &&
device->state.conn <= C_PAUSED_SYNC_T &&
peer_req->flags & EE_MAY_SET_IN_SYNC) ?
P_RS_WRITE_ACK : P_WRITE_ACK;
err = drbd_send_ack(peer_device, pcmd, peer_req);
if (pcmd == P_RS_WRITE_ACK)
drbd_set_in_sync(device, sector, peer_req->i.size);
} else {
err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
/* we expect it to be marked out of sync anyways...
* maybe assert this? */
}
dec_unacked(device);
}
/* we delete from the conflict detection hash _after_ we sent out the
* P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
if (peer_req->flags & EE_IN_INTERVAL_TREE) {
spin_lock_irq(&device->resource->req_lock);
D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
drbd_remove_epoch_entry_interval(device, peer_req);
if (peer_req->flags & EE_RESTART_REQUESTS)
restart_conflicting_writes(device, sector, peer_req->i.size);
spin_unlock_irq(&device->resource->req_lock);
} else
D_ASSERT(device, drbd_interval_empty(&peer_req->i));
drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
return err;
}
static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_peer_device *peer_device = peer_req->peer_device;
int err;
err = drbd_send_ack(peer_device, ack, peer_req);
dec_unacked(peer_device->device);
return err;
}
static int e_send_superseded(struct drbd_work *w, int unused)
{
return e_send_ack(w, P_SUPERSEDED);
}
static int e_send_retry_write(struct drbd_work *w, int unused)
{
struct drbd_peer_request *peer_req =
container_of(w, struct drbd_peer_request, w);
struct drbd_connection *connection = peer_req->peer_device->connection;
return e_send_ack(w, connection->agreed_pro_version >= 100 ?
P_RETRY_WRITE : P_SUPERSEDED);
}
static bool seq_greater(u32 a, u32 b)
{
/*
* We assume 32-bit wrap-around here.
* For 24-bit wrap-around, we would have to shift:
* a <<= 8; b <<= 8;
*/
return (s32)a - (s32)b > 0;
}
static u32 seq_max(u32 a, u32 b)
{
return seq_greater(a, b) ? a : b;
}
static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
{
struct drbd_device *device = peer_device->device;
unsigned int newest_peer_seq;
if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
spin_lock(&device->peer_seq_lock);
newest_peer_seq = seq_max(device->peer_seq, peer_seq);
device->peer_seq = newest_peer_seq;
spin_unlock(&device->peer_seq_lock);
/* wake up only if we actually changed device->peer_seq */
if (peer_seq == newest_peer_seq)
wake_up(&device->seq_wait);
}
}
static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
{
return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
}
/* maybe change sync_ee into interval trees as well? */
static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
{
struct drbd_peer_request *rs_req;
bool rv = false;
spin_lock_irq(&device->resource->req_lock);
list_for_each_entry(rs_req, &device->sync_ee, w.list) {
if (overlaps(peer_req->i.sector, peer_req->i.size,
rs_req->i.sector, rs_req->i.size)) {
rv = true;
break;
}
}
spin_unlock_irq(&device->resource->req_lock);
return rv;
}
/* Called from receive_Data.
* Synchronize packets on sock with packets on msock.
*
* This is here so even when a P_DATA packet traveling via sock overtook an Ack
* packet traveling on msock, they are still processed in the order they have
* been sent.
*
* Note: we don't care for Ack packets overtaking P_DATA packets.
*
* In case packet_seq is larger than device->peer_seq number, there are
* outstanding packets on the msock. We wait for them to arrive.
* In case we are the logically next packet, we update device->peer_seq
* ourselves. Correctly handles 32bit wrap around.
*
* Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
* about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
* for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
* 1<<9 == 512 seconds aka ages for the 32bit wrap around...
*
* returns 0 if we may process the packet,
* -ERESTARTSYS if we were interrupted (by disconnect signal). */
static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
{
struct drbd_device *device = peer_device->device;
DEFINE_WAIT(wait);
long timeout;
int ret = 0, tp;
if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
return 0;
spin_lock(&device->peer_seq_lock);
for (;;) {
if (!seq_greater(peer_seq - 1, device->peer_seq)) {
device->peer_seq = seq_max(device->peer_seq, peer_seq);
break;
}
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
rcu_read_lock();
tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
rcu_read_unlock();
if (!tp)
break;
/* Only need to wait if two_primaries is enabled */
prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
spin_unlock(&device->peer_seq_lock);
rcu_read_lock();
timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
rcu_read_unlock();
timeout = schedule_timeout(timeout);
spin_lock(&device->peer_seq_lock);
if (!timeout) {
ret = -ETIMEDOUT;
drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
break;
}
}
spin_unlock(&device->peer_seq_lock);
finish_wait(&device->seq_wait, &wait);
return ret;
}
/* see also bio_flags_to_wire()
* DRBD_REQ_*, because we need to semantically map the flags to data packet
* flags and back. We may replicate to other kernel versions. */
static unsigned long wire_flags_to_bio_flags(u32 dpf)
{
return (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
(dpf & DP_FUA ? REQ_FUA : 0) |
(dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
}
static unsigned long wire_flags_to_bio_op(u32 dpf)
{
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
if (dpf & DP_ZEROES)
return REQ_OP_WRITE_ZEROES;
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
if (dpf & DP_DISCARD)
return REQ_OP_DISCARD;
else
return REQ_OP_WRITE;
}
static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
unsigned int size)
{
struct drbd_interval *i;
repeat:
drbd_for_each_overlap(i, &device->write_requests, sector, size) {
struct drbd_request *req;
struct bio_and_error m;
if (!i->local)
continue;
req = container_of(i, struct drbd_request, i);
if (!(req->rq_state & RQ_POSTPONED))
continue;
req->rq_state &= ~RQ_POSTPONED;
__req_mod(req, NEG_ACKED, &m);
spin_unlock_irq(&device->resource->req_lock);
if (m.bio)
complete_master_bio(device, &m);
spin_lock_irq(&device->resource->req_lock);
goto repeat;
}
}
static int handle_write_conflicts(struct drbd_device *device,
struct drbd_peer_request *peer_req)
{
struct drbd_connection *connection = peer_req->peer_device->connection;
bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
sector_t sector = peer_req->i.sector;
const unsigned int size = peer_req->i.size;
struct drbd_interval *i;
bool equal;
int err;
/*
* Inserting the peer request into the write_requests tree will prevent
* new conflicting local requests from being added.
*/
drbd_insert_interval(&device->write_requests, &peer_req->i);
repeat:
drbd_for_each_overlap(i, &device->write_requests, sector, size) {
if (i == &peer_req->i)
continue;
if (i->completed)
continue;
if (!i->local) {
/*
* Our peer has sent a conflicting remote request; this
* should not happen in a two-node setup. Wait for the
* earlier peer request to complete.
*/
err = drbd_wait_misc(device, i);
if (err)
goto out;
goto repeat;
}
equal = i->sector == sector && i->size == size;
if (resolve_conflicts) {
/*
* If the peer request is fully contained within the
* overlapping request, it can be considered overwritten
* and thus superseded; otherwise, it will be retried
* once all overlapping requests have completed.
*/
bool superseded = i->sector <= sector && i->sector +
(i->size >> 9) >= sector + (size >> 9);
if (!equal)
drbd_alert(device, "Concurrent writes detected: "
"local=%llus +%u, remote=%llus +%u, "
"assuming %s came first\n",
(unsigned long long)i->sector, i->size,
(unsigned long long)sector, size,
superseded ? "local" : "remote");
peer_req->w.cb = superseded ? e_send_superseded :
e_send_retry_write;
list_add_tail(&peer_req->w.list, &device->done_ee);
queue_work(connection->ack_sender, &peer_req->peer_device->send_acks_work);
err = -ENOENT;
goto out;
} else {
struct drbd_request *req =
container_of(i, struct drbd_request, i);
if (!equal)
drbd_alert(device, "Concurrent writes detected: "
"local=%llus +%u, remote=%llus +%u\n",
(unsigned long long)i->sector, i->size,
(unsigned long long)sector, size);
if (req->rq_state & RQ_LOCAL_PENDING ||
!(req->rq_state & RQ_POSTPONED)) {
/*
* Wait for the node with the discard flag to
* decide if this request has been superseded
* or needs to be retried.
* Requests that have been superseded will
* disappear from the write_requests tree.
*
* In addition, wait for the conflicting
* request to finish locally before submitting
* the conflicting peer request.
*/
err = drbd_wait_misc(device, &req->i);
if (err) {
_conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
fail_postponed_requests(device, sector, size);
goto out;
}
goto repeat;
}
/*
* Remember to restart the conflicting requests after
* the new peer request has completed.
*/
peer_req->flags |= EE_RESTART_REQUESTS;
}
}
err = 0;
out:
if (err)
drbd_remove_epoch_entry_interval(device, peer_req);
return err;
}
/* mirrored write */
static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct net_conf *nc;
sector_t sector;
struct drbd_peer_request *peer_req;
struct p_data *p = pi->data;
u32 peer_seq = be32_to_cpu(p->seq_num);
int op, op_flags;
u32 dp_flags;
int err, tp;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
if (!get_ldev(device)) {
int err2;
err = wait_for_and_update_peer_seq(peer_device, peer_seq);
drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
atomic_inc(&connection->current_epoch->epoch_size);
err2 = drbd_drain_block(peer_device, pi->size);
if (!err)
err = err2;
return err;
}
/*
* Corresponding put_ldev done either below (on various errors), or in
* drbd_peer_request_endio, if we successfully submit the data at the
* end of this function.
*/
sector = be64_to_cpu(p->sector);
peer_req = read_in_block(peer_device, p->block_id, sector, pi);
if (!peer_req) {
put_ldev(device);
return -EIO;
}
peer_req->w.cb = e_end_block;
peer_req->submit_jif = jiffies;
peer_req->flags |= EE_APPLICATION;
dp_flags = be32_to_cpu(p->dp_flags);
op = wire_flags_to_bio_op(dp_flags);
op_flags = wire_flags_to_bio_flags(dp_flags);
if (pi->cmd == P_TRIM) {
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
D_ASSERT(peer_device, peer_req->i.size > 0);
D_ASSERT(peer_device, op == REQ_OP_DISCARD);
D_ASSERT(peer_device, peer_req->pages == NULL);
/* need to play safe: an older DRBD sender
* may mean zero-out while sending P_TRIM. */
if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
peer_req->flags |= EE_ZEROOUT;
} else if (pi->cmd == P_ZEROES) {
D_ASSERT(peer_device, peer_req->i.size > 0);
D_ASSERT(peer_device, op == REQ_OP_WRITE_ZEROES);
D_ASSERT(peer_device, peer_req->pages == NULL);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
/* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
if (dp_flags & DP_DISCARD)
peer_req->flags |= EE_TRIM;
} else if (peer_req->pages == NULL) {
D_ASSERT(device, peer_req->i.size == 0);
D_ASSERT(device, dp_flags & DP_FLUSH);
}
if (dp_flags & DP_MAY_SET_IN_SYNC)
peer_req->flags |= EE_MAY_SET_IN_SYNC;
spin_lock(&connection->epoch_lock);
peer_req->epoch = connection->current_epoch;
atomic_inc(&peer_req->epoch->epoch_size);
atomic_inc(&peer_req->epoch->active);
spin_unlock(&connection->epoch_lock);
rcu_read_lock();
nc = rcu_dereference(peer_device->connection->net_conf);
tp = nc->two_primaries;
if (peer_device->connection->agreed_pro_version < 100) {
switch (nc->wire_protocol) {
case DRBD_PROT_C:
dp_flags |= DP_SEND_WRITE_ACK;
break;
case DRBD_PROT_B:
dp_flags |= DP_SEND_RECEIVE_ACK;
break;
}
}
rcu_read_unlock();
if (dp_flags & DP_SEND_WRITE_ACK) {
peer_req->flags |= EE_SEND_WRITE_ACK;
inc_unacked(device);
/* corresponding dec_unacked() in e_end_block()
* respective _drbd_clear_done_ee */
}
if (dp_flags & DP_SEND_RECEIVE_ACK) {
/* I really don't like it that the receiver thread
* sends on the msock, but anyways */
drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
}
if (tp) {
/* two primaries implies protocol C */
D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
peer_req->flags |= EE_IN_INTERVAL_TREE;
err = wait_for_and_update_peer_seq(peer_device, peer_seq);
if (err)
goto out_interrupted;
spin_lock_irq(&device->resource->req_lock);
err = handle_write_conflicts(device, peer_req);
if (err) {
spin_unlock_irq(&device->resource->req_lock);
if (err == -ENOENT) {
put_ldev(device);
return 0;
}
goto out_interrupted;
}
} else {
update_peer_seq(peer_device, peer_seq);
spin_lock_irq(&device->resource->req_lock);
}
/* TRIM and is processed synchronously,
* we wait for all pending requests, respectively wait for
* active_ee to become empty in drbd_submit_peer_request();
* better not add ourselves here. */
if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
list_add_tail(&peer_req->w.list, &device->active_ee);
spin_unlock_irq(&device->resource->req_lock);
if (device->state.conn == C_SYNC_TARGET)
wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
if (device->state.pdsk < D_INCONSISTENT) {
/* In case we have the only disk of the cluster, */
drbd_set_out_of_sync(device, peer_req->i.sector, peer_req->i.size);
peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
drbd_al_begin_io(device, &peer_req->i);
peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
}
err = drbd_submit_peer_request(device, peer_req, op, op_flags,
DRBD_FAULT_DT_WR);
if (!err)
return 0;
/* don't care for the reason here */
drbd_err(device, "submit failed, triggering re-connect\n");
spin_lock_irq(&device->resource->req_lock);
list_del(&peer_req->w.list);
drbd_remove_epoch_entry_interval(device, peer_req);
spin_unlock_irq(&device->resource->req_lock);
if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
drbd_al_complete_io(device, &peer_req->i);
}
out_interrupted:
drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
put_ldev(device);
drbd_free_peer_req(device, peer_req);
return err;
}
/* We may throttle resync, if the lower device seems to be busy,
* and current sync rate is above c_min_rate.
*
* To decide whether or not the lower device is busy, we use a scheme similar
* to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
* (more than 64 sectors) of activity we cannot account for with our own resync
* activity, it obviously is "busy".
*
* The current sync rate used here uses only the most recent two step marks,
* to have a short time average so we can react faster.
*/
bool drbd_rs_should_slow_down(struct drbd_device *device, sector_t sector,
bool throttle_if_app_is_waiting)
{
struct lc_element *tmp;
bool throttle = drbd_rs_c_min_rate_throttle(device);
if (!throttle || throttle_if_app_is_waiting)
return throttle;
spin_lock_irq(&device->al_lock);
tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
if (tmp) {
struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
if (test_bit(BME_PRIORITY, &bm_ext->flags))
throttle = false;
/* Do not slow down if app IO is already waiting for this extent,
* and our progress is necessary for application IO to complete. */
}
spin_unlock_irq(&device->al_lock);
return throttle;
}
bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
{
struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
unsigned long db, dt, dbdt;
unsigned int c_min_rate;
int curr_events;
rcu_read_lock();
c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
rcu_read_unlock();
/* feature disabled? */
if (c_min_rate == 0)
return false;
curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
atomic_read(&device->rs_sect_ev);
if (atomic_read(&device->ap_actlog_cnt)
|| curr_events - device->rs_last_events > 64) {
unsigned long rs_left;
int i;
device->rs_last_events = curr_events;
/* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
* approx. */
i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
rs_left = device->ov_left;
else
rs_left = drbd_bm_total_weight(device) - device->rs_failed;
dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
if (!dt)
dt++;
db = device->rs_mark_left[i] - rs_left;
dbdt = Bit2KB(db/dt);
if (dbdt > c_min_rate)
return true;
}
return false;
}
static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
sector_t sector;
sector_t capacity;
struct drbd_peer_request *peer_req;
struct digest_info *di = NULL;
int size, verb;
unsigned int fault_type;
struct p_block_req *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
capacity = get_capacity(device->vdisk);
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
(unsigned long long)sector, size);
return -EINVAL;
}
if (sector + (size>>9) > capacity) {
drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
(unsigned long long)sector, size);
return -EINVAL;
}
if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
verb = 1;
switch (pi->cmd) {
case P_DATA_REQUEST:
drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
break;
case P_RS_THIN_REQ:
case P_RS_DATA_REQUEST:
case P_CSUM_RS_REQUEST:
case P_OV_REQUEST:
drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
break;
case P_OV_REPLY:
verb = 0;
dec_rs_pending(device);
drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
break;
default:
BUG();
}
if (verb && __ratelimit(&drbd_ratelimit_state))
drbd_err(device, "Can not satisfy peer's read request, "
"no local data.\n");
/* drain possibly payload */
return drbd_drain_block(peer_device, pi->size);
}
/* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
* "criss-cross" setup, that might cause write-out on some other DRBD,
* which in turn might block on the other node at this very place. */
peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
size, GFP_NOIO);
if (!peer_req) {
put_ldev(device);
return -ENOMEM;
}
switch (pi->cmd) {
case P_DATA_REQUEST:
peer_req->w.cb = w_e_end_data_req;
fault_type = DRBD_FAULT_DT_RD;
/* application IO, don't drbd_rs_begin_io */
peer_req->flags |= EE_APPLICATION;
goto submit;
case P_RS_THIN_REQ:
/* If at some point in the future we have a smart way to
find out if this data block is completely deallocated,
then we would do something smarter here than reading
the block... */
peer_req->flags |= EE_RS_THIN_REQ;
fallthrough;
case P_RS_DATA_REQUEST:
peer_req->w.cb = w_e_end_rsdata_req;
fault_type = DRBD_FAULT_RS_RD;
/* used in the sector offset progress display */
device->bm_resync_fo = BM_SECT_TO_BIT(sector);
break;
case P_OV_REPLY:
case P_CSUM_RS_REQUEST:
fault_type = DRBD_FAULT_RS_RD;
di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
if (!di)
goto out_free_e;
di->digest_size = pi->size;
di->digest = (((char *)di)+sizeof(struct digest_info));
peer_req->digest = di;
peer_req->flags |= EE_HAS_DIGEST;
if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
goto out_free_e;
if (pi->cmd == P_CSUM_RS_REQUEST) {
D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
peer_req->w.cb = w_e_end_csum_rs_req;
/* used in the sector offset progress display */
device->bm_resync_fo = BM_SECT_TO_BIT(sector);
/* remember to report stats in drbd_resync_finished */
device->use_csums = true;
} else if (pi->cmd == P_OV_REPLY) {
/* track progress, we may need to throttle */
atomic_add(size >> 9, &device->rs_sect_in);
peer_req->w.cb = w_e_end_ov_reply;
dec_rs_pending(device);
/* drbd_rs_begin_io done when we sent this request,
* but accounting still needs to be done. */
goto submit_for_resync;
}
break;
case P_OV_REQUEST:
if (device->ov_start_sector == ~(sector_t)0 &&
peer_device->connection->agreed_pro_version >= 90) {
unsigned long now = jiffies;
int i;
device->ov_start_sector = sector;
device->ov_position = sector;
device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
device->rs_total = device->ov_left;
for (i = 0; i < DRBD_SYNC_MARKS; i++) {
device->rs_mark_left[i] = device->ov_left;
device->rs_mark_time[i] = now;
}
drbd_info(device, "Online Verify start sector: %llu\n",
(unsigned long long)sector);
}
peer_req->w.cb = w_e_end_ov_req;
fault_type = DRBD_FAULT_RS_RD;
break;
default:
BUG();
}
/* Throttle, drbd_rs_begin_io and submit should become asynchronous
* wrt the receiver, but it is not as straightforward as it may seem.
* Various places in the resync start and stop logic assume resync
* requests are processed in order, requeuing this on the worker thread
* introduces a bunch of new code for synchronization between threads.
*
* Unlimited throttling before drbd_rs_begin_io may stall the resync
* "forever", throttling after drbd_rs_begin_io will lock that extent
* for application writes for the same time. For now, just throttle
* here, where the rest of the code expects the receiver to sleep for
* a while, anyways.
*/
/* Throttle before drbd_rs_begin_io, as that locks out application IO;
* this defers syncer requests for some time, before letting at least
* on request through. The resync controller on the receiving side
* will adapt to the incoming rate accordingly.
*
* We cannot throttle here if remote is Primary/SyncTarget:
* we would also throttle its application reads.
* In that case, throttling is done on the SyncTarget only.
*/
/* Even though this may be a resync request, we do add to "read_ee";
* "sync_ee" is only used for resync WRITEs.
* Add to list early, so debugfs can find this request
* even if we have to sleep below. */
spin_lock_irq(&device->resource->req_lock);
list_add_tail(&peer_req->w.list, &device->read_ee);
spin_unlock_irq(&device->resource->req_lock);
update_receiver_timing_details(connection, drbd_rs_should_slow_down);
if (device->state.peer != R_PRIMARY
&& drbd_rs_should_slow_down(device, sector, false))
schedule_timeout_uninterruptible(HZ/10);
update_receiver_timing_details(connection, drbd_rs_begin_io);
if (drbd_rs_begin_io(device, sector))
goto out_free_e;
submit_for_resync:
atomic_add(size >> 9, &device->rs_sect_ev);
submit:
update_receiver_timing_details(connection, drbd_submit_peer_request);
inc_unacked(device);
if (drbd_submit_peer_request(device, peer_req, REQ_OP_READ, 0,
fault_type) == 0)
return 0;
/* don't care for the reason here */
drbd_err(device, "submit failed, triggering re-connect\n");
out_free_e:
spin_lock_irq(&device->resource->req_lock);
list_del(&peer_req->w.list);
spin_unlock_irq(&device->resource->req_lock);
/* no drbd_rs_complete_io(), we are dropping the connection anyways */
put_ldev(device);
drbd_free_peer_req(device, peer_req);
return -EIO;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* drbd_asb_recover_0p - Recover after split-brain with no remaining primaries
*/
static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
int self, peer, rv = -100;
unsigned long ch_self, ch_peer;
enum drbd_after_sb_p after_sb_0p;
self = device->ldev->md.uuid[UI_BITMAP] & 1;
peer = device->p_uuid[UI_BITMAP] & 1;
ch_peer = device->p_uuid[UI_SIZE];
ch_self = device->comm_bm_set;
rcu_read_lock();
after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
rcu_read_unlock();
switch (after_sb_0p) {
case ASB_CONSENSUS:
case ASB_DISCARD_SECONDARY:
case ASB_CALL_HELPER:
case ASB_VIOLENTLY:
drbd_err(device, "Configuration error.\n");
break;
case ASB_DISCONNECT:
break;
case ASB_DISCARD_YOUNGER_PRI:
if (self == 0 && peer == 1) {
rv = -1;
break;
}
if (self == 1 && peer == 0) {
rv = 1;
break;
}
fallthrough; /* to one of the other strategies */
case ASB_DISCARD_OLDER_PRI:
if (self == 0 && peer == 1) {
rv = 1;
break;
}
if (self == 1 && peer == 0) {
rv = -1;
break;
}
/* Else fall through to one of the other strategies... */
drbd_warn(device, "Discard younger/older primary did not find a decision\n"
"Using discard-least-changes instead\n");
fallthrough;
case ASB_DISCARD_ZERO_CHG:
if (ch_peer == 0 && ch_self == 0) {
rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
? -1 : 1;
break;
} else {
if (ch_peer == 0) { rv = 1; break; }
if (ch_self == 0) { rv = -1; break; }
}
if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
break;
fallthrough;
case ASB_DISCARD_LEAST_CHG:
if (ch_self < ch_peer)
rv = -1;
else if (ch_self > ch_peer)
rv = 1;
else /* ( ch_self == ch_peer ) */
/* Well, then use something else. */
rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
? -1 : 1;
break;
case ASB_DISCARD_LOCAL:
rv = -1;
break;
case ASB_DISCARD_REMOTE:
rv = 1;
}
return rv;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* drbd_asb_recover_1p - Recover after split-brain with one remaining primary
*/
static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
int hg, rv = -100;
enum drbd_after_sb_p after_sb_1p;
rcu_read_lock();
after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
rcu_read_unlock();
switch (after_sb_1p) {
case ASB_DISCARD_YOUNGER_PRI:
case ASB_DISCARD_OLDER_PRI:
case ASB_DISCARD_LEAST_CHG:
case ASB_DISCARD_LOCAL:
case ASB_DISCARD_REMOTE:
case ASB_DISCARD_ZERO_CHG:
drbd_err(device, "Configuration error.\n");
break;
case ASB_DISCONNECT:
break;
case ASB_CONSENSUS:
hg = drbd_asb_recover_0p(peer_device);
if (hg == -1 && device->state.role == R_SECONDARY)
rv = hg;
if (hg == 1 && device->state.role == R_PRIMARY)
rv = hg;
break;
case ASB_VIOLENTLY:
rv = drbd_asb_recover_0p(peer_device);
break;
case ASB_DISCARD_SECONDARY:
return device->state.role == R_PRIMARY ? 1 : -1;
case ASB_CALL_HELPER:
hg = drbd_asb_recover_0p(peer_device);
if (hg == -1 && device->state.role == R_PRIMARY) {
enum drbd_state_rv rv2;
/* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
* we might be here in C_WF_REPORT_PARAMS which is transient.
* we do not need to wait for the after state change work either. */
rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
if (rv2 != SS_SUCCESS) {
drbd_khelper(device, "pri-lost-after-sb");
} else {
drbd_warn(device, "Successfully gave up primary role.\n");
rv = hg;
}
} else
rv = hg;
}
return rv;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* drbd_asb_recover_2p - Recover after split-brain with two remaining primaries
*/
static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
int hg, rv = -100;
enum drbd_after_sb_p after_sb_2p;
rcu_read_lock();
after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
rcu_read_unlock();
switch (after_sb_2p) {
case ASB_DISCARD_YOUNGER_PRI:
case ASB_DISCARD_OLDER_PRI:
case ASB_DISCARD_LEAST_CHG:
case ASB_DISCARD_LOCAL:
case ASB_DISCARD_REMOTE:
case ASB_CONSENSUS:
case ASB_DISCARD_SECONDARY:
case ASB_DISCARD_ZERO_CHG:
drbd_err(device, "Configuration error.\n");
break;
case ASB_VIOLENTLY:
rv = drbd_asb_recover_0p(peer_device);
break;
case ASB_DISCONNECT:
break;
case ASB_CALL_HELPER:
hg = drbd_asb_recover_0p(peer_device);
if (hg == -1) {
enum drbd_state_rv rv2;
/* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
* we might be here in C_WF_REPORT_PARAMS which is transient.
* we do not need to wait for the after state change work either. */
rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
if (rv2 != SS_SUCCESS) {
drbd_khelper(device, "pri-lost-after-sb");
} else {
drbd_warn(device, "Successfully gave up primary role.\n");
rv = hg;
}
} else
rv = hg;
}
return rv;
}
static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
u64 bits, u64 flags)
{
if (!uuid) {
drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
return;
}
drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
text,
(unsigned long long)uuid[UI_CURRENT],
(unsigned long long)uuid[UI_BITMAP],
(unsigned long long)uuid[UI_HISTORY_START],
(unsigned long long)uuid[UI_HISTORY_END],
(unsigned long long)bits,
(unsigned long long)flags);
}
/*
100 after split brain try auto recover
2 C_SYNC_SOURCE set BitMap
1 C_SYNC_SOURCE use BitMap
0 no Sync
-1 C_SYNC_TARGET use BitMap
-2 C_SYNC_TARGET set BitMap
-100 after split brain, disconnect
-1000 unrelated data
-1091 requires proto 91
-1096 requires proto 96
*/
static int drbd_uuid_compare(struct drbd_device *const device, enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
{
struct drbd_peer_device *const peer_device = first_peer_device(device);
struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL;
u64 self, peer;
int i, j;
self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
*rule_nr = 10;
if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
return 0;
*rule_nr = 20;
if ((self == UUID_JUST_CREATED || self == (u64)0) &&
peer != UUID_JUST_CREATED)
return -2;
*rule_nr = 30;
if (self != UUID_JUST_CREATED &&
(peer == UUID_JUST_CREATED || peer == (u64)0))
return 2;
if (self == peer) {
int rct, dc; /* roles at crash time */
if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
if (connection->agreed_pro_version < 91)
return -1091;
if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
(device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
drbd_uuid_move_history(device);
device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
device->ldev->md.uuid[UI_BITMAP] = 0;
drbd_uuid_dump(device, "self", device->ldev->md.uuid,
device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
*rule_nr = 34;
} else {
drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
*rule_nr = 36;
}
return 1;
}
if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
if (connection->agreed_pro_version < 91)
return -1091;
if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
(device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
device->p_uuid[UI_BITMAP] = 0UL;
drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
*rule_nr = 35;
} else {
drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
*rule_nr = 37;
}
return -1;
}
/* Common power [off|failure] */
rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
(device->p_uuid[UI_FLAGS] & 2);
/* lowest bit is set when we were primary,
* next bit (weight 2) is set when peer was primary */
*rule_nr = 40;
/* Neither has the "crashed primary" flag set,
* only a replication link hickup. */
if (rct == 0)
return 0;
/* Current UUID equal and no bitmap uuid; does not necessarily
* mean this was a "simultaneous hard crash", maybe IO was
* frozen, so no UUID-bump happened.
* This is a protocol change, overload DRBD_FF_WSAME as flag
* for "new-enough" peer DRBD version. */
if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
*rule_nr = 41;
if (!(connection->agreed_features & DRBD_FF_WSAME)) {
drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
}
if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
/* At least one has the "crashed primary" bit set,
* both are primary now, but neither has rotated its UUIDs?
* "Can not happen." */
drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
return -100;
}
if (device->state.role == R_PRIMARY)
return 1;
return -1;
}
/* Both are secondary.
* Really looks like recovery from simultaneous hard crash.
* Check which had been primary before, and arbitrate. */
switch (rct) {
case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
case 1: /* self_pri && !peer_pri */ return 1;
case 2: /* !self_pri && peer_pri */ return -1;
case 3: /* self_pri && peer_pri */
dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
return dc ? -1 : 1;
}
}
*rule_nr = 50;
peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
if (self == peer)
return -1;
*rule_nr = 51;
peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
if (self == peer) {
if (connection->agreed_pro_version < 96 ?
(device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
(device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
/* The last P_SYNC_UUID did not get though. Undo the last start of
resync as sync source modifications of the peer's UUIDs. */
if (connection->agreed_pro_version < 91)
return -1091;
device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
drbd_info(device, "Lost last syncUUID packet, corrected:\n");
drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
return -1;
}
}
*rule_nr = 60;
self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
peer = device->p_uuid[i] & ~((u64)1);
if (self == peer)
return -2;
}
*rule_nr = 70;
self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
if (self == peer)
return 1;
*rule_nr = 71;
self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
if (self == peer) {
if (connection->agreed_pro_version < 96 ?
(device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
(device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
/* The last P_SYNC_UUID did not get though. Undo the last start of
resync as sync source modifications of our UUIDs. */
if (connection->agreed_pro_version < 91)
return -1091;
__drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
__drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
drbd_info(device, "Last syncUUID did not get through, corrected:\n");
drbd_uuid_dump(device, "self", device->ldev->md.uuid,
device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
return 1;
}
}
*rule_nr = 80;
peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
self = device->ldev->md.uuid[i] & ~((u64)1);
if (self == peer)
return 2;
}
*rule_nr = 90;
self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
if (self == peer && self != ((u64)0))
return 100;
*rule_nr = 100;
for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
self = device->ldev->md.uuid[i] & ~((u64)1);
for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
peer = device->p_uuid[j] & ~((u64)1);
if (self == peer)
return -100;
}
}
return -1000;
}
/* drbd_sync_handshake() returns the new conn state on success, or
CONN_MASK (-1) on failure.
*/
static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
enum drbd_role peer_role,
enum drbd_disk_state peer_disk) __must_hold(local)
{
struct drbd_device *device = peer_device->device;
enum drbd_conns rv = C_MASK;
enum drbd_disk_state mydisk;
struct net_conf *nc;
int hg, rule_nr, rr_conflict, tentative, always_asbp;
mydisk = device->state.disk;
if (mydisk == D_NEGOTIATING)
mydisk = device->new_state_tmp.disk;
drbd_info(device, "drbd_sync_handshake:\n");
spin_lock_irq(&device->ldev->md.uuid_lock);
drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
drbd_uuid_dump(device, "peer", device->p_uuid,
device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
hg = drbd_uuid_compare(device, peer_role, &rule_nr);
spin_unlock_irq(&device->ldev->md.uuid_lock);
drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
if (hg == -1000) {
drbd_alert(device, "Unrelated data, aborting!\n");
return C_MASK;
}
if (hg < -0x10000) {
int proto, fflags;
hg = -hg;
proto = hg & 0xff;
fflags = (hg >> 8) & 0xff;
drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
proto, fflags);
return C_MASK;
}
if (hg < -1000) {
drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
return C_MASK;
}
if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
(peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
int f = (hg == -100) || abs(hg) == 2;
hg = mydisk > D_INCONSISTENT ? 1 : -1;
if (f)
hg = hg*2;
drbd_info(device, "Becoming sync %s due to disk states.\n",
hg > 0 ? "source" : "target");
}
if (abs(hg) == 100)
drbd_khelper(device, "initial-split-brain");
rcu_read_lock();
nc = rcu_dereference(peer_device->connection->net_conf);
always_asbp = nc->always_asbp;
rr_conflict = nc->rr_conflict;
tentative = nc->tentative;
rcu_read_unlock();
if (hg == 100 || (hg == -100 && always_asbp)) {
int pcount = (device->state.role == R_PRIMARY)
+ (peer_role == R_PRIMARY);
int forced = (hg == -100);
switch (pcount) {
case 0:
hg = drbd_asb_recover_0p(peer_device);
break;
case 1:
hg = drbd_asb_recover_1p(peer_device);
break;
case 2:
hg = drbd_asb_recover_2p(peer_device);
break;
}
if (abs(hg) < 100) {
drbd_warn(device, "Split-Brain detected, %d primaries, "
"automatically solved. Sync from %s node\n",
pcount, (hg < 0) ? "peer" : "this");
if (forced) {
drbd_warn(device, "Doing a full sync, since"
" UUIDs where ambiguous.\n");
hg = hg*2;
}
}
}
if (hg == -100) {
if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
hg = -1;
if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
hg = 1;
if (abs(hg) < 100)
drbd_warn(device, "Split-Brain detected, manually solved. "
"Sync from %s node\n",
(hg < 0) ? "peer" : "this");
}
if (hg == -100) {
/* FIXME this log message is not correct if we end up here
* after an attempted attach on a diskless node.
* We just refuse to attach -- well, we drop the "connection"
* to that disk, in a way... */
drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
drbd_khelper(device, "split-brain");
return C_MASK;
}
if (hg > 0 && mydisk <= D_INCONSISTENT) {
drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
return C_MASK;
}
if (hg < 0 && /* by intention we do not use mydisk here. */
device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
switch (rr_conflict) {
case ASB_CALL_HELPER:
drbd_khelper(device, "pri-lost");
fallthrough;
case ASB_DISCONNECT:
drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
return C_MASK;
case ASB_VIOLENTLY:
drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
"assumption\n");
}
}
if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
if (hg == 0)
drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
else
drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
abs(hg) >= 2 ? "full" : "bit-map based");
return C_MASK;
}
if (abs(hg) >= 2) {
drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
BM_LOCKED_SET_ALLOWED))
return C_MASK;
}
if (hg > 0) { /* become sync source. */
rv = C_WF_BITMAP_S;
} else if (hg < 0) { /* become sync target */
rv = C_WF_BITMAP_T;
} else {
rv = C_CONNECTED;
if (drbd_bm_total_weight(device)) {
drbd_info(device, "No resync, but %lu bits in bitmap!\n",
drbd_bm_total_weight(device));
}
}
return rv;
}
static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
{
/* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
if (peer == ASB_DISCARD_REMOTE)
return ASB_DISCARD_LOCAL;
/* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
if (peer == ASB_DISCARD_LOCAL)
return ASB_DISCARD_REMOTE;
/* everything else is valid if they are equal on both sides. */
return peer;
}
static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
{
struct p_protocol *p = pi->data;
enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
int p_proto, p_discard_my_data, p_two_primaries, cf;
struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
char integrity_alg[SHARED_SECRET_MAX] = "";
struct crypto_shash *peer_integrity_tfm = NULL;
void *int_dig_in = NULL, *int_dig_vv = NULL;
p_proto = be32_to_cpu(p->protocol);
p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
p_two_primaries = be32_to_cpu(p->two_primaries);
cf = be32_to_cpu(p->conn_flags);
p_discard_my_data = cf & CF_DISCARD_MY_DATA;
if (connection->agreed_pro_version >= 87) {
int err;
if (pi->size > sizeof(integrity_alg))
return -EIO;
err = drbd_recv_all(connection, integrity_alg, pi->size);
if (err)
return err;
integrity_alg[SHARED_SECRET_MAX - 1] = 0;
}
if (pi->cmd != P_PROTOCOL_UPDATE) {
clear_bit(CONN_DRY_RUN, &connection->flags);
if (cf & CF_DRY_RUN)
set_bit(CONN_DRY_RUN, &connection->flags);
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
if (p_proto != nc->wire_protocol) {
drbd_err(connection, "incompatible %s settings\n", "protocol");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
goto disconnect_rcu_unlock;
}
if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
goto disconnect_rcu_unlock;
}
if (p_discard_my_data && nc->discard_my_data) {
drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
goto disconnect_rcu_unlock;
}
if (p_two_primaries != nc->two_primaries) {
drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
goto disconnect_rcu_unlock;
}
if (strcmp(integrity_alg, nc->integrity_alg)) {
drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
goto disconnect_rcu_unlock;
}
rcu_read_unlock();
}
if (integrity_alg[0]) {
int hash_size;
/*
* We can only change the peer data integrity algorithm
* here. Changing our own data integrity algorithm
* requires that we send a P_PROTOCOL_UPDATE packet at
* the same time; otherwise, the peer has no way to
* tell between which packets the algorithm should
* change.
*/
peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
if (IS_ERR(peer_integrity_tfm)) {
peer_integrity_tfm = NULL;
drbd_err(connection, "peer data-integrity-alg %s not supported\n",
integrity_alg);
goto disconnect;
}
hash_size = crypto_shash_digestsize(peer_integrity_tfm);
int_dig_in = kmalloc(hash_size, GFP_KERNEL);
int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
if (!(int_dig_in && int_dig_vv)) {
drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
goto disconnect;
}
}
new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
if (!new_net_conf)
goto disconnect;
mutex_lock(&connection->data.mutex);
mutex_lock(&connection->resource->conf_update);
old_net_conf = connection->net_conf;
*new_net_conf = *old_net_conf;
new_net_conf->wire_protocol = p_proto;
new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
new_net_conf->two_primaries = p_two_primaries;
rcu_assign_pointer(connection->net_conf, new_net_conf);
mutex_unlock(&connection->resource->conf_update);
mutex_unlock(&connection->data.mutex);
crypto_free_shash(connection->peer_integrity_tfm);
kfree(connection->int_dig_in);
kfree(connection->int_dig_vv);
connection->peer_integrity_tfm = peer_integrity_tfm;
connection->int_dig_in = int_dig_in;
connection->int_dig_vv = int_dig_vv;
if (strcmp(old_net_conf->integrity_alg, integrity_alg))
drbd_info(connection, "peer data-integrity-alg: %s\n",
integrity_alg[0] ? integrity_alg : "(none)");
synchronize_rcu();
kfree(old_net_conf);
return 0;
disconnect_rcu_unlock:
rcu_read_unlock();
disconnect:
crypto_free_shash(peer_integrity_tfm);
kfree(int_dig_in);
kfree(int_dig_vv);
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
/* helper function
* input: alg name, feature name
* return: NULL (alg name was "")
* ERR_PTR(error) if something goes wrong
* or the crypto hash ptr, if it worked out ok. */
static struct crypto_shash *drbd_crypto_alloc_digest_safe(
const struct drbd_device *device,
const char *alg, const char *name)
{
struct crypto_shash *tfm;
if (!alg[0])
return NULL;
tfm = crypto_alloc_shash(alg, 0, 0);
if (IS_ERR(tfm)) {
drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
alg, name, PTR_ERR(tfm));
return tfm;
}
return tfm;
}
static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
{
void *buffer = connection->data.rbuf;
int size = pi->size;
while (size) {
int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
s = drbd_recv(connection, buffer, s);
if (s <= 0) {
if (s < 0)
return s;
break;
}
size -= s;
}
if (size)
return -EIO;
return 0;
}
/*
* config_unknown_volume - device configuration command for unknown volume
*
* When a device is added to an existing connection, the node on which the
* device is added first will send configuration commands to its peer but the
* peer will not know about the device yet. It will warn and ignore these
* commands. Once the device is added on the second node, the second node will
* send the same device configuration commands, but in the other direction.
*
* (We can also end up here if drbd is misconfigured.)
*/
static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
{
drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
cmdname(pi->cmd), pi->vnr);
return ignore_remaining_packet(connection, pi);
}
static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_rs_param_95 *p;
unsigned int header_size, data_size, exp_max_sz;
struct crypto_shash *verify_tfm = NULL;
struct crypto_shash *csums_tfm = NULL;
struct net_conf *old_net_conf, *new_net_conf = NULL;
struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
const int apv = connection->agreed_pro_version;
struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
unsigned int fifo_size = 0;
int err;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return config_unknown_volume(connection, pi);
device = peer_device->device;
exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
: apv == 88 ? sizeof(struct p_rs_param)
+ SHARED_SECRET_MAX
: apv <= 94 ? sizeof(struct p_rs_param_89)
: /* apv >= 95 */ sizeof(struct p_rs_param_95);
if (pi->size > exp_max_sz) {
drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
pi->size, exp_max_sz);
return -EIO;
}
if (apv <= 88) {
header_size = sizeof(struct p_rs_param);
data_size = pi->size - header_size;
} else if (apv <= 94) {
header_size = sizeof(struct p_rs_param_89);
data_size = pi->size - header_size;
D_ASSERT(device, data_size == 0);
} else {
header_size = sizeof(struct p_rs_param_95);
data_size = pi->size - header_size;
D_ASSERT(device, data_size == 0);
}
/* initialize verify_alg and csums_alg */
p = pi->data;
BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
memset(&p->algs, 0, sizeof(p->algs));
err = drbd_recv_all(peer_device->connection, p, header_size);
if (err)
return err;
mutex_lock(&connection->resource->conf_update);
old_net_conf = peer_device->connection->net_conf;
if (get_ldev(device)) {
new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
put_ldev(device);
mutex_unlock(&connection->resource->conf_update);
drbd_err(device, "Allocation of new disk_conf failed\n");
return -ENOMEM;
}
old_disk_conf = device->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
}
if (apv >= 88) {
if (apv == 88) {
if (data_size > SHARED_SECRET_MAX || data_size == 0) {
drbd_err(device, "verify-alg of wrong size, "
"peer wants %u, accepting only up to %u byte\n",
data_size, SHARED_SECRET_MAX);
goto reconnect;
}
err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
if (err)
goto reconnect;
/* we expect NUL terminated string */
/* but just in case someone tries to be evil */
D_ASSERT(device, p->verify_alg[data_size-1] == 0);
p->verify_alg[data_size-1] = 0;
} else /* apv >= 89 */ {
/* we still expect NUL terminated strings */
/* but just in case someone tries to be evil */
D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
p->verify_alg[SHARED_SECRET_MAX-1] = 0;
p->csums_alg[SHARED_SECRET_MAX-1] = 0;
}
if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
if (device->state.conn == C_WF_REPORT_PARAMS) {
drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
old_net_conf->verify_alg, p->verify_alg);
goto disconnect;
}
verify_tfm = drbd_crypto_alloc_digest_safe(device,
p->verify_alg, "verify-alg");
if (IS_ERR(verify_tfm)) {
verify_tfm = NULL;
goto disconnect;
}
}
if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
if (device->state.conn == C_WF_REPORT_PARAMS) {
drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
old_net_conf->csums_alg, p->csums_alg);
goto disconnect;
}
csums_tfm = drbd_crypto_alloc_digest_safe(device,
p->csums_alg, "csums-alg");
if (IS_ERR(csums_tfm)) {
csums_tfm = NULL;
goto disconnect;
}
}
if (apv > 94 && new_disk_conf) {
new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
if (fifo_size != device->rs_plan_s->size) {
new_plan = fifo_alloc(fifo_size);
if (!new_plan) {
drbd_err(device, "kmalloc of fifo_buffer failed");
put_ldev(device);
goto disconnect;
}
}
}
if (verify_tfm || csums_tfm) {
new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
if (!new_net_conf)
goto disconnect;
*new_net_conf = *old_net_conf;
if (verify_tfm) {
strcpy(new_net_conf->verify_alg, p->verify_alg);
new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
crypto_free_shash(peer_device->connection->verify_tfm);
peer_device->connection->verify_tfm = verify_tfm;
drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
}
if (csums_tfm) {
strcpy(new_net_conf->csums_alg, p->csums_alg);
new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
crypto_free_shash(peer_device->connection->csums_tfm);
peer_device->connection->csums_tfm = csums_tfm;
drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
}
rcu_assign_pointer(connection->net_conf, new_net_conf);
}
}
if (new_disk_conf) {
rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
put_ldev(device);
}
if (new_plan) {
old_plan = device->rs_plan_s;
rcu_assign_pointer(device->rs_plan_s, new_plan);
}
mutex_unlock(&connection->resource->conf_update);
synchronize_rcu();
if (new_net_conf)
kfree(old_net_conf);
kfree(old_disk_conf);
kfree(old_plan);
return 0;
reconnect:
if (new_disk_conf) {
put_ldev(device);
kfree(new_disk_conf);
}
mutex_unlock(&connection->resource->conf_update);
return -EIO;
disconnect:
kfree(new_plan);
if (new_disk_conf) {
put_ldev(device);
kfree(new_disk_conf);
}
mutex_unlock(&connection->resource->conf_update);
/* just for completeness: actually not needed,
* as this is not reached if csums_tfm was ok. */
crypto_free_shash(csums_tfm);
/* but free the verify_tfm again, if csums_tfm did not work out */
crypto_free_shash(verify_tfm);
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
/* warn if the arguments differ by more than 12.5% */
static void warn_if_differ_considerably(struct drbd_device *device,
const char *s, sector_t a, sector_t b)
{
sector_t d;
if (a == 0 || b == 0)
return;
d = (a > b) ? (a - b) : (b - a);
if (d > (a>>3) || d > (b>>3))
drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
(unsigned long long)a, (unsigned long long)b);
}
static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_sizes *p = pi->data;
struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
enum determine_dev_size dd = DS_UNCHANGED;
sector_t p_size, p_usize, p_csize, my_usize;
sector_t new_size, cur_size;
int ldsc = 0; /* local disk size changed */
enum dds_flags ddsf;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return config_unknown_volume(connection, pi);
device = peer_device->device;
cur_size = get_capacity(device->vdisk);
p_size = be64_to_cpu(p->d_size);
p_usize = be64_to_cpu(p->u_size);
p_csize = be64_to_cpu(p->c_size);
/* just store the peer's disk size for now.
* we still need to figure out whether we accept that. */
device->p_size = p_size;
if (get_ldev(device)) {
rcu_read_lock();
my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
rcu_read_unlock();
warn_if_differ_considerably(device, "lower level device sizes",
p_size, drbd_get_max_capacity(device->ldev));
warn_if_differ_considerably(device, "user requested size",
p_usize, my_usize);
/* if this is the first connect, or an otherwise expected
* param exchange, choose the minimum */
if (device->state.conn == C_WF_REPORT_PARAMS)
p_usize = min_not_zero(my_usize, p_usize);
/* Never shrink a device with usable data during connect,
* or "attach" on the peer.
* But allow online shrinking if we are connected. */
new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
if (new_size < cur_size &&
device->state.disk >= D_OUTDATED &&
(device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
(unsigned long long)new_size, (unsigned long long)cur_size);
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
put_ldev(device);
return -EIO;
}
if (my_usize != p_usize) {
struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
if (!new_disk_conf) {
put_ldev(device);
return -ENOMEM;
}
mutex_lock(&connection->resource->conf_update);
old_disk_conf = device->ldev->disk_conf;
*new_disk_conf = *old_disk_conf;
new_disk_conf->disk_size = p_usize;
rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
mutex_unlock(&connection->resource->conf_update);
synchronize_rcu();
kfree(old_disk_conf);
drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
(unsigned long)p_usize, (unsigned long)my_usize);
}
put_ldev(device);
}
device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
/* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
In case we cleared the QUEUE_FLAG_DISCARD from our queue in
drbd: when receiving P_TRIM, zero-out partial unaligned chunks We can avoid spurious data divergence caused by partially-ignored discards on certain backends with discard_zeroes_data=0, if we translate partial unaligned discard requests into explicit zero-out. The relevant use case is LVM/DM thin. If on different nodes, DRBD is backed by devices with differing discard characteristics, discards may lead to data divergence (old data or garbage left over on one backend, zeroes due to unmapped areas on the other backend). Online verify would now potentially report tons of spurious differences. While probably harmless for most use cases (fstrim on a file system), DRBD cannot have that, it would violate our promise to upper layers that our data instances on the nodes are identical. To be correct and play safe (make sure data is identical on both copies), we would have to disable discard support, if our local backend (on a Primary) does not support "discard_zeroes_data=true". We'd also have to translate discards to explicit zero-out on the receiving (typically: Secondary) side, unless the receiving side supports "discard_zeroes_data=true". Which both would allocate those blocks, instead of unmapping them, in contrast with expectations. LVM/DM thin does set discard_zeroes_data=0, because it silently ignores discards to partial chunks. We can work around this by checking the alignment first. For unaligned (wrt. alignment and granularity) or too small discards, we zero-out the initial (and/or) trailing unaligned partial chunks, but discard all the aligned full chunks. At least for LVM/DM thin, the result is effectively "discard_zeroes_data=1". Arguably it should behave this way internally, by default, and we'll try to make that happen. But our workaround is still valid for already deployed setups, and for other devices that may behave this way. Setting discard-zeroes-if-aligned=yes will allow DRBD to use discards, and to announce discard_zeroes_data=true, even on backends that announce discard_zeroes_data=false. Setting discard-zeroes-if-aligned=no will cause DRBD to always fall-back to zero-out on the receiving side, and to not even announce discard capabilities on the Primary, if the respective backend announces discard_zeroes_data=false. We used to ignore the discard_zeroes_data setting completely. To not break established and expected behaviour, and suddenly cause fstrim on thin-provisioned LVs to run out-of-space, instead of freeing up space, the default value is "yes". Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-06-14 06:26:20 +08:00
drbd_reconsider_queue_parameters(), we can be sure that after
drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
ddsf = be16_to_cpu(p->dds_flags);
if (get_ldev(device)) {
drbd_reconsider_queue_parameters(device, device->ldev, o);
dd = drbd_determine_dev_size(device, ddsf, NULL);
put_ldev(device);
if (dd == DS_ERROR)
return -EIO;
drbd_md_sync(device);
} else {
/*
* I am diskless, need to accept the peer's *current* size.
* I must NOT accept the peers backing disk size,
* it may have been larger than mine all along...
*
* At this point, the peer knows more about my disk, or at
* least about what we last agreed upon, than myself.
* So if his c_size is less than his d_size, the most likely
* reason is that *my* d_size was smaller last time we checked.
*
* However, if he sends a zero current size,
* take his (user-capped or) backing disk size anyways.
*
* Unless of course he does not have a disk himself.
* In which case we ignore this completely.
*/
sector_t new_size = p_csize ?: p_usize ?: p_size;
drbd_reconsider_queue_parameters(device, NULL, o);
if (new_size == 0) {
/* Ignore, peer does not know nothing. */
} else if (new_size == cur_size) {
/* nothing to do */
} else if (cur_size != 0 && p_size == 0) {
drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
(unsigned long long)new_size, (unsigned long long)cur_size);
} else if (new_size < cur_size && device->state.role == R_PRIMARY) {
drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
(unsigned long long)new_size, (unsigned long long)cur_size);
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
} else {
/* I believe the peer, if
* - I don't have a current size myself
* - we agree on the size anyways
* - I do have a current size, am Secondary,
* and he has the only disk
* - I do have a current size, am Primary,
* and he has the only disk,
* which is larger than my current size
*/
drbd_set_my_capacity(device, new_size);
}
}
if (get_ldev(device)) {
if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
ldsc = 1;
}
put_ldev(device);
}
if (device->state.conn > C_WF_REPORT_PARAMS) {
if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
ldsc) {
/* we have different sizes, probably peer
* needs to know my new size... */
drbd_send_sizes(peer_device, 0, ddsf);
}
if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
(dd == DS_GREW && device->state.conn == C_CONNECTED)) {
if (device->state.pdsk >= D_INCONSISTENT &&
device->state.disk >= D_INCONSISTENT) {
if (ddsf & DDSF_NO_RESYNC)
drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
else
resync_after_online_grow(device);
} else
set_bit(RESYNC_AFTER_NEG, &device->flags);
}
}
return 0;
}
static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_uuids *p = pi->data;
u64 *p_uuid;
int i, updated_uuids = 0;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return config_unknown_volume(connection, pi);
device = peer_device->device;
p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
if (!p_uuid)
return false;
for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
p_uuid[i] = be64_to_cpu(p->uuid[i]);
kfree(device->p_uuid);
device->p_uuid = p_uuid;
if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
device->state.disk < D_INCONSISTENT &&
device->state.role == R_PRIMARY &&
(device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
(unsigned long long)device->ed_uuid);
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
if (get_ldev(device)) {
int skip_initial_sync =
device->state.conn == C_CONNECTED &&
peer_device->connection->agreed_pro_version >= 90 &&
device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
(p_uuid[UI_FLAGS] & 8);
if (skip_initial_sync) {
drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
"clear_n_write from receive_uuids",
BM_LOCKED_TEST_ALLOWED);
_drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
_drbd_uuid_set(device, UI_BITMAP, 0);
_drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
CS_VERBOSE, NULL);
drbd_md_sync(device);
updated_uuids = 1;
}
put_ldev(device);
} else if (device->state.disk < D_INCONSISTENT &&
device->state.role == R_PRIMARY) {
/* I am a diskless primary, the peer just created a new current UUID
for me. */
updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
}
/* Before we test for the disk state, we should wait until an eventually
ongoing cluster wide state change is finished. That is important if
we are primary and are detaching from our disk. We need to see the
new disk state... */
mutex_lock(device->state_mutex);
mutex_unlock(device->state_mutex);
if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
if (updated_uuids)
drbd_print_uuids(device, "receiver updated UUIDs to");
return 0;
}
/**
* convert_state() - Converts the peer's view of the cluster state to our point of view
* @ps: The state as seen by the peer.
*/
static union drbd_state convert_state(union drbd_state ps)
{
union drbd_state ms;
static enum drbd_conns c_tab[] = {
[C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
[C_CONNECTED] = C_CONNECTED,
[C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
[C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
[C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
[C_VERIFY_S] = C_VERIFY_T,
[C_MASK] = C_MASK,
};
ms.i = ps.i;
ms.conn = c_tab[ps.conn];
ms.peer = ps.role;
ms.role = ps.peer;
ms.pdsk = ps.disk;
ms.disk = ps.pdsk;
ms.peer_isp = (ps.aftr_isp | ps.user_isp);
return ms;
}
static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_req_state *p = pi->data;
union drbd_state mask, val;
enum drbd_state_rv rv;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
mask.i = be32_to_cpu(p->mask);
val.i = be32_to_cpu(p->val);
if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
mutex_is_locked(device->state_mutex)) {
drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
return 0;
}
mask = convert_state(mask);
val = convert_state(val);
rv = drbd_change_state(device, CS_VERBOSE, mask, val);
drbd_send_sr_reply(peer_device, rv);
drbd_md_sync(device);
return 0;
}
static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
{
struct p_req_state *p = pi->data;
union drbd_state mask, val;
enum drbd_state_rv rv;
mask.i = be32_to_cpu(p->mask);
val.i = be32_to_cpu(p->val);
if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
mutex_is_locked(&connection->cstate_mutex)) {
conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
return 0;
}
mask = convert_state(mask);
val = convert_state(val);
rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
conn_send_sr_reply(connection, rv);
return 0;
}
static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_state *p = pi->data;
union drbd_state os, ns, peer_state;
enum drbd_disk_state real_peer_disk;
enum chg_state_flags cs_flags;
int rv;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return config_unknown_volume(connection, pi);
device = peer_device->device;
peer_state.i = be32_to_cpu(p->state);
real_peer_disk = peer_state.disk;
if (peer_state.disk == D_NEGOTIATING) {
real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
}
spin_lock_irq(&device->resource->req_lock);
retry:
os = ns = drbd_read_state(device);
spin_unlock_irq(&device->resource->req_lock);
/* If some other part of the code (ack_receiver thread, timeout)
drbd: fix race between disconnect and receive_state If the asender thread, or request_timer_fn(), or some other part of the code, decided to drop the connection (because of timeout or other), but the receiver just now was processing a P_STATE packet, there was a chance that receive_state() would do a hard state change "re-establishing" an already failed connection without additional handshake. Log excerpt: Remote failed to finish a request within ko-count * timeout peer( Secondary -> Unknown ) conn( Connected -> Timeout ) pdsk( UpToDate -> DUnknown ) asender terminated ... peer( Unknown -> Secondary ) conn( Timeout -> Connected ) pdsk( DUnknown -> UpToDate ) peer_isp( 0 -> 1 ) ... Connection closed peer( Secondary -> Unknown ) conn( Connected -> Unconnected ) pdsk( UpToDate -> DUnknown ) peer_isp( 1 -> 0 ) receiver terminated Impact: while the connection state is erroneously "Connected", requests may be queued and even sent, which would never be acknowledged, and may have been missed by the cleanup. These requests would never be completed. The next drbd_suspend_io() will then lock up, waiting forever for these requests to complete. Fixed in several code paths: Make sure the connection state is NetworkFailure or worse before starting the cleanup in drbd_disconnect(). This should make sure the cleanup won't miss any requests. Disallow receive_state() to "upgrade" the connection state from an error state. This will make sure the "illegal" state transition won't happen. For all connection failure states, relax the safe-guard in sanitize_state() again to silently mask out those state changes (e.g. Timeout -> Connected becomes Timeout -> Timeout). Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2011-12-05 21:39:25 +08:00
* already decided to close the connection again,
* we must not "re-establish" it here. */
if (os.conn <= C_TEAR_DOWN)
return -ECONNRESET;
drbd: fix race between disconnect and receive_state If the asender thread, or request_timer_fn(), or some other part of the code, decided to drop the connection (because of timeout or other), but the receiver just now was processing a P_STATE packet, there was a chance that receive_state() would do a hard state change "re-establishing" an already failed connection without additional handshake. Log excerpt: Remote failed to finish a request within ko-count * timeout peer( Secondary -> Unknown ) conn( Connected -> Timeout ) pdsk( UpToDate -> DUnknown ) asender terminated ... peer( Unknown -> Secondary ) conn( Timeout -> Connected ) pdsk( DUnknown -> UpToDate ) peer_isp( 0 -> 1 ) ... Connection closed peer( Secondary -> Unknown ) conn( Connected -> Unconnected ) pdsk( UpToDate -> DUnknown ) peer_isp( 1 -> 0 ) receiver terminated Impact: while the connection state is erroneously "Connected", requests may be queued and even sent, which would never be acknowledged, and may have been missed by the cleanup. These requests would never be completed. The next drbd_suspend_io() will then lock up, waiting forever for these requests to complete. Fixed in several code paths: Make sure the connection state is NetworkFailure or worse before starting the cleanup in drbd_disconnect(). This should make sure the cleanup won't miss any requests. Disallow receive_state() to "upgrade" the connection state from an error state. This will make sure the "illegal" state transition won't happen. For all connection failure states, relax the safe-guard in sanitize_state() again to silently mask out those state changes (e.g. Timeout -> Connected becomes Timeout -> Timeout). Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2011-12-05 21:39:25 +08:00
/* If this is the "end of sync" confirmation, usually the peer disk
* transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
* set) resync started in PausedSyncT, or if the timing of pause-/
* unpause-sync events has been "just right", the peer disk may
* transition from D_CONSISTENT to D_UP_TO_DATE as well.
*/
if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
real_peer_disk == D_UP_TO_DATE &&
os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
/* If we are (becoming) SyncSource, but peer is still in sync
* preparation, ignore its uptodate-ness to avoid flapping, it
* will change to inconsistent once the peer reaches active
* syncing states.
* It may have changed syncer-paused flags, however, so we
* cannot ignore this completely. */
if (peer_state.conn > C_CONNECTED &&
peer_state.conn < C_SYNC_SOURCE)
real_peer_disk = D_INCONSISTENT;
/* if peer_state changes to connected at the same time,
* it explicitly notifies us that it finished resync.
* Maybe we should finish it up, too? */
else if (os.conn >= C_SYNC_SOURCE &&
peer_state.conn == C_CONNECTED) {
if (drbd_bm_total_weight(device) <= device->rs_failed)
drbd_resync_finished(device);
return 0;
}
}
/* explicit verify finished notification, stop sector reached. */
if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
ov_out_of_sync_print(device);
drbd_resync_finished(device);
return 0;
}
/* peer says his disk is inconsistent, while we think it is uptodate,
* and this happens while the peer still thinks we have a sync going on,
* but we think we are already done with the sync.
* We ignore this to avoid flapping pdsk.
* This should not happen, if the peer is a recent version of drbd. */
if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
real_peer_disk = D_UP_TO_DATE;
if (ns.conn == C_WF_REPORT_PARAMS)
ns.conn = C_CONNECTED;
if (peer_state.conn == C_AHEAD)
ns.conn = C_BEHIND;
drbd: reject attach of unsuitable uuids even if connected Multiple failure scenario: a) all good Connected Primary/Secondary UpToDate/UpToDate b) lose disk on Primary, Connected Primary/Secondary Diskless/UpToDate c) continue to write to the device, changes only make it to the Secondary storage. d) lose disk on Secondary, Connected Primary/Secondary Diskless/Diskless e) now try to re-attach on Primary This would have succeeded before, even though that is clearly the wrong data set to attach to (missing the modifications from c). Because we only compared our "effective" and the "to-be-attached" data generation uuid tags if (device->state.conn < C_CONNECTED). Fix: change that constraint to (device->state.pdsk != D_UP_TO_DATE) compare the uuids, and reject the attach. This patch also tries to improve the reverse scenario: first lose Secondary, then Primary disk, then try to attach the disk on Secondary. Before this patch, the attach on the Secondary succeeds, but since commit drbd: disconnect, if the wrong UUIDs are attached on a connected peer the Primary will notice unsuitable data, and drop the connection hard. Though unfortunately at a point in time during the handshake where we cannot easily abort the attach on the peer without more refactoring of the handshake. We now reject any attach to "unsuitable" uuids, as long as we can see a Primary role, unless we already have access to "good" data. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:35 +08:00
/* TODO:
* if (primary and diskless and peer uuid != effective uuid)
* abort attach on peer;
*
* If this node does not have good data, was already connected, but
* the peer did a late attach only now, trying to "negotiate" with me,
* AND I am currently Primary, possibly frozen, with some specific
* "effective" uuid, this should never be reached, really, because
* we first send the uuids, then the current state.
*
* In this scenario, we already dropped the connection hard
* when we received the unsuitable uuids (receive_uuids().
*
* Should we want to change this, that is: not drop the connection in
* receive_uuids() already, then we would need to add a branch here
* that aborts the attach of "unsuitable uuids" on the peer in case
* this node is currently Diskless Primary.
*/
if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
get_ldev_if_state(device, D_NEGOTIATING)) {
int cr; /* consider resync */
/* if we established a new connection */
cr = (os.conn < C_CONNECTED);
/* if we had an established connection
* and one of the nodes newly attaches a disk */
cr |= (os.conn == C_CONNECTED &&
(peer_state.disk == D_NEGOTIATING ||
os.disk == D_NEGOTIATING));
/* if we have both been inconsistent, and the peer has been
* forced to be UpToDate with --force */
cr |= test_bit(CONSIDER_RESYNC, &device->flags);
/* if we had been plain connected, and the admin requested to
* start a sync by "invalidate" or "invalidate-remote" */
cr |= (os.conn == C_CONNECTED &&
(peer_state.conn >= C_STARTING_SYNC_S &&
peer_state.conn <= C_WF_BITMAP_T));
if (cr)
ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
put_ldev(device);
if (ns.conn == C_MASK) {
ns.conn = C_CONNECTED;
if (device->state.disk == D_NEGOTIATING) {
drbd_force_state(device, NS(disk, D_FAILED));
} else if (peer_state.disk == D_NEGOTIATING) {
drbd_err(device, "Disk attach process on the peer node was aborted.\n");
peer_state.disk = D_DISKLESS;
real_peer_disk = D_DISKLESS;
} else {
if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
return -EIO;
D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
}
}
spin_lock_irq(&device->resource->req_lock);
if (os.i != drbd_read_state(device).i)
goto retry;
clear_bit(CONSIDER_RESYNC, &device->flags);
ns.peer = peer_state.role;
ns.pdsk = real_peer_disk;
ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
ns.disk = device->new_state_tmp.disk;
cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
test_bit(NEW_CUR_UUID, &device->flags)) {
/* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
for temporal network outages! */
spin_unlock_irq(&device->resource->req_lock);
drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
tl_clear(peer_device->connection);
drbd_uuid_new_current(device);
clear_bit(NEW_CUR_UUID, &device->flags);
conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
return -EIO;
}
rv = _drbd_set_state(device, ns, cs_flags, NULL);
ns = drbd_read_state(device);
spin_unlock_irq(&device->resource->req_lock);
if (rv < SS_SUCCESS) {
conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
return -EIO;
}
if (os.conn > C_WF_REPORT_PARAMS) {
if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
peer_state.disk != D_NEGOTIATING ) {
/* we want resync, peer has not yet decided to sync... */
/* Nowadays only used when forcing a node into primary role and
setting its disk to UpToDate with that */
drbd_send_uuids(peer_device);
drbd_send_current_state(peer_device);
}
}
clear_bit(DISCARD_MY_DATA, &device->flags);
drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
return 0;
}
static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_rs_uuid *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
wait_event(device->misc_wait,
device->state.conn == C_WF_SYNC_UUID ||
device->state.conn == C_BEHIND ||
device->state.conn < C_CONNECTED ||
device->state.disk < D_NEGOTIATING);
/* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */
/* Here the _drbd_uuid_ functions are right, current should
_not_ be rotated into the history */
if (get_ldev_if_state(device, D_NEGOTIATING)) {
_drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
_drbd_uuid_set(device, UI_BITMAP, 0UL);
drbd_print_uuids(device, "updated sync uuid");
drbd_start_resync(device, C_SYNC_TARGET);
put_ldev(device);
} else
drbd_err(device, "Ignoring SyncUUID packet!\n");
return 0;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* receive_bitmap_plain
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
unsigned long *p, struct bm_xfer_ctx *c)
{
unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
drbd_header_size(peer_device->connection);
unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
c->bm_words - c->word_offset);
unsigned int want = num_words * sizeof(*p);
int err;
if (want != size) {
drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
return -EIO;
}
if (want == 0)
return 0;
err = drbd_recv_all(peer_device->connection, p, want);
if (err)
return err;
drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
c->word_offset += num_words;
c->bit_offset = c->word_offset * BITS_PER_LONG;
if (c->bit_offset > c->bm_bits)
c->bit_offset = c->bm_bits;
return 1;
}
static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
{
return (enum drbd_bitmap_code)(p->encoding & 0x0f);
}
static int dcbp_get_start(struct p_compressed_bm *p)
{
return (p->encoding & 0x80) != 0;
}
static int dcbp_get_pad_bits(struct p_compressed_bm *p)
{
return (p->encoding >> 4) & 0x7;
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* recv_bm_rle_bits
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
recv_bm_rle_bits(struct drbd_peer_device *peer_device,
struct p_compressed_bm *p,
struct bm_xfer_ctx *c,
unsigned int len)
{
struct bitstream bs;
u64 look_ahead;
u64 rl;
u64 tmp;
unsigned long s = c->bit_offset;
unsigned long e;
int toggle = dcbp_get_start(p);
int have;
int bits;
bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
bits = bitstream_get_bits(&bs, &look_ahead, 64);
if (bits < 0)
return -EIO;
for (have = bits; have > 0; s += rl, toggle = !toggle) {
bits = vli_decode_bits(&rl, look_ahead);
if (bits <= 0)
return -EIO;
if (toggle) {
e = s + rl -1;
if (e >= c->bm_bits) {
drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
return -EIO;
}
_drbd_bm_set_bits(peer_device->device, s, e);
}
if (have < bits) {
drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
have, bits, look_ahead,
(unsigned int)(bs.cur.b - p->code),
(unsigned int)bs.buf_len);
return -EIO;
}
/* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
if (likely(bits < 64))
look_ahead >>= bits;
else
look_ahead = 0;
have -= bits;
bits = bitstream_get_bits(&bs, &tmp, 64 - have);
if (bits < 0)
return -EIO;
look_ahead |= tmp << have;
have += bits;
}
c->bit_offset = s;
bm_xfer_ctx_bit_to_word_offset(c);
return (s != c->bm_bits);
}
block: drbd: drbd_receiver: Demote non-conformant kernel-doc headers Fixes the following W=1 kernel build warning(s): drivers/block/drbd/drbd_receiver.c:265: warning: Function parameter or member 'peer_device' not described in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:265: warning: Excess function parameter 'device' description in 'drbd_alloc_pages' drivers/block/drbd/drbd_receiver.c:1362: warning: Function parameter or member 'connection' not described in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1362: warning: Excess function parameter 'device' description in 'drbd_may_finish_epoch' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'resource' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Function parameter or member 'bdev' not described in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1451: warning: Excess function parameter 'connection' description in 'drbd_bump_write_ordering' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'op_flags' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Function parameter or member 'fault_type' not described in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:1643: warning: Excess function parameter 'rw' description in 'drbd_submit_peer_request' drivers/block/drbd/drbd_receiver.c:3055: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_0p' drivers/block/drbd/drbd_receiver.c:3138: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_1p' drivers/block/drbd/drbd_receiver.c:3195: warning: Function parameter or member 'peer_device' not described in 'drbd_asb_recover_2p' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'peer_device' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'size' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'p' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4684: warning: Function parameter or member 'c' not described in 'receive_bitmap_plain' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'peer_device' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'p' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'c' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4738: warning: Function parameter or member 'len' not described in 'recv_bm_rle_bits' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'peer_device' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'p' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'c' not described in 'decode_bitmap_c' drivers/block/drbd/drbd_receiver.c:4807: warning: Function parameter or member 'len' not described in 'decode_bitmap_c' Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: drbd-dev@lists.linbit.com Cc: linux-block@vger.kernel.org Signed-off-by: Lee Jones <lee.jones@linaro.org> Link: https://lore.kernel.org/r/20210312105530.2219008-6-lee.jones@linaro.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-12 18:55:24 +08:00
/*
* decode_bitmap_c
*
* Return 0 when done, 1 when another iteration is needed, and a negative error
* code upon failure.
*/
static int
decode_bitmap_c(struct drbd_peer_device *peer_device,
struct p_compressed_bm *p,
struct bm_xfer_ctx *c,
unsigned int len)
{
if (dcbp_get_code(p) == RLE_VLI_Bits)
return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
/* other variants had been implemented for evaluation,
* but have been dropped as this one turned out to be "best"
* during all our tests. */
drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
return -EIO;
}
void INFO_bm_xfer_stats(struct drbd_device *device,
const char *direction, struct bm_xfer_ctx *c)
{
/* what would it take to transfer it "plaintext" */
unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
unsigned int plain =
header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
c->bm_words * sizeof(unsigned long);
unsigned int total = c->bytes[0] + c->bytes[1];
unsigned int r;
/* total can not be zero. but just in case: */
if (total == 0)
return;
/* don't report if not compressed */
if (total >= plain)
return;
/* total < plain. check for overflow, still */
r = (total > UINT_MAX/1000) ? (total / (plain/1000))
: (1000 * total / plain);
if (r > 1000)
r = 1000;
r = 1000 - r;
drbd_info(device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
"total %u; compression: %u.%u%%\n",
direction,
c->bytes[1], c->packets[1],
c->bytes[0], c->packets[0],
total, r/10, r % 10);
}
/* Since we are processing the bitfield from lower addresses to higher,
it does not matter if the process it in 32 bit chunks or 64 bit
chunks as long as it is little endian. (Understand it as byte stream,
beginning with the lowest byte...) If we would use big endian
we would need to process it from the highest address to the lowest,
in order to be agnostic to the 32 vs 64 bits issue.
returns 0 on failure, 1 if we successfully received it. */
static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct bm_xfer_ctx c;
int err;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
/* you are supposed to send additional out-of-sync information
* if you actually set bits during this phase */
c = (struct bm_xfer_ctx) {
.bm_bits = drbd_bm_bits(device),
.bm_words = drbd_bm_words(device),
};
for(;;) {
if (pi->cmd == P_BITMAP)
err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
else if (pi->cmd == P_COMPRESSED_BITMAP) {
/* MAYBE: sanity check that we speak proto >= 90,
* and the feature is enabled! */
struct p_compressed_bm *p = pi->data;
if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
drbd_err(device, "ReportCBitmap packet too large\n");
err = -EIO;
goto out;
}
if (pi->size <= sizeof(*p)) {
drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
err = -EIO;
goto out;
}
err = drbd_recv_all(peer_device->connection, p, pi->size);
if (err)
goto out;
err = decode_bitmap_c(peer_device, p, &c, pi->size);
} else {
drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
err = -EIO;
goto out;
}
c.packets[pi->cmd == P_BITMAP]++;
c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
if (err <= 0) {
if (err < 0)
goto out;
break;
}
err = drbd_recv_header(peer_device->connection, pi);
if (err)
goto out;
}
INFO_bm_xfer_stats(device, "receive", &c);
if (device->state.conn == C_WF_BITMAP_T) {
enum drbd_state_rv rv;
err = drbd_send_bitmap(device);
if (err)
goto out;
/* Omit CS_ORDERED with this state transition to avoid deadlocks. */
rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
D_ASSERT(device, rv == SS_SUCCESS);
} else if (device->state.conn != C_WF_BITMAP_S) {
/* admin may have requested C_DISCONNECTING,
* other threads may have noticed network errors */
drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
drbd_conn_str(device->state.conn));
}
err = 0;
out:
drbd_bm_unlock(device);
if (!err && device->state.conn == C_WF_BITMAP_S)
drbd_start_resync(device, C_SYNC_SOURCE);
return err;
}
static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
{
drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
pi->cmd, pi->size);
return ignore_remaining_packet(connection, pi);
}
static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
{
/* Make sure we've acked all the TCP data associated
* with the data requests being unplugged */
tcp_sock_set_quickack(connection->data.socket->sk, 2);
return 0;
}
static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_desc *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
switch (device->state.conn) {
case C_WF_SYNC_UUID:
case C_WF_BITMAP_T:
case C_BEHIND:
break;
default:
drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
drbd_conn_str(device->state.conn));
}
drbd_set_out_of_sync(device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
return 0;
}
static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct p_block_desc *p = pi->data;
struct drbd_device *device;
sector_t sector;
int size, err = 0;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
dec_rs_pending(device);
if (get_ldev(device)) {
struct drbd_peer_request *peer_req;
const int op = REQ_OP_WRITE_ZEROES;
peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
size, 0, GFP_NOIO);
if (!peer_req) {
put_ldev(device);
return -ENOMEM;
}
peer_req->w.cb = e_end_resync_block;
peer_req->submit_jif = jiffies;
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
peer_req->flags |= EE_TRIM;
spin_lock_irq(&device->resource->req_lock);
list_add_tail(&peer_req->w.list, &device->sync_ee);
spin_unlock_irq(&device->resource->req_lock);
atomic_add(pi->size >> 9, &device->rs_sect_ev);
err = drbd_submit_peer_request(device, peer_req, op, 0, DRBD_FAULT_RS_WR);
if (err) {
spin_lock_irq(&device->resource->req_lock);
list_del(&peer_req->w.list);
spin_unlock_irq(&device->resource->req_lock);
drbd_free_peer_req(device, peer_req);
put_ldev(device);
err = 0;
goto fail;
}
inc_unacked(device);
/* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
as well as drbd_rs_complete_io() */
} else {
fail:
drbd_rs_complete_io(device, sector);
drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
}
atomic_add(size >> 9, &device->rs_sect_in);
return err;
}
struct data_cmd {
int expect_payload;
unsigned int pkt_size;
int (*fn)(struct drbd_connection *, struct packet_info *);
};
static struct data_cmd drbd_cmd_handler[] = {
[P_DATA] = { 1, sizeof(struct p_data), receive_Data },
[P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
[P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
[P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
[P_BITMAP] = { 1, 0, receive_bitmap } ,
[P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
[P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
[P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
[P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
[P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
[P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
[P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
[P_STATE] = { 0, sizeof(struct p_state), receive_state },
[P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
[P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
[P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
[P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
[P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest },
[P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
[P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
[P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
[P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
[P_TRIM] = { 0, sizeof(struct p_trim), receive_Data },
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
[P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data },
[P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
};
static void drbdd(struct drbd_connection *connection)
{
struct packet_info pi;
size_t shs; /* sub header size */
int err;
while (get_t_state(&connection->receiver) == RUNNING) {
struct data_cmd const *cmd;
drbd_thread_current_set_cpu(&connection->receiver);
update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
if (drbd_recv_header_maybe_unplug(connection, &pi))
goto err_out;
cmd = &drbd_cmd_handler[pi.cmd];
if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
drbd_err(connection, "Unexpected data packet %s (0x%04x)",
cmdname(pi.cmd), pi.cmd);
goto err_out;
}
shs = cmd->pkt_size;
if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
shs += sizeof(struct o_qlim);
if (pi.size > shs && !cmd->expect_payload) {
drbd_err(connection, "No payload expected %s l:%d\n",
cmdname(pi.cmd), pi.size);
goto err_out;
}
if (pi.size < shs) {
drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
cmdname(pi.cmd), (int)shs, pi.size);
goto err_out;
}
if (shs) {
update_receiver_timing_details(connection, drbd_recv_all_warn);
err = drbd_recv_all_warn(connection, pi.data, shs);
if (err)
goto err_out;
pi.size -= shs;
}
update_receiver_timing_details(connection, cmd->fn);
err = cmd->fn(connection, &pi);
if (err) {
drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
cmdname(pi.cmd), err, pi.size);
goto err_out;
}
}
return;
err_out:
conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
}
static void conn_disconnect(struct drbd_connection *connection)
{
struct drbd_peer_device *peer_device;
enum drbd_conns oc;
int vnr;
if (connection->cstate == C_STANDALONE)
return;
drbd: fix race between disconnect and receive_state If the asender thread, or request_timer_fn(), or some other part of the code, decided to drop the connection (because of timeout or other), but the receiver just now was processing a P_STATE packet, there was a chance that receive_state() would do a hard state change "re-establishing" an already failed connection without additional handshake. Log excerpt: Remote failed to finish a request within ko-count * timeout peer( Secondary -> Unknown ) conn( Connected -> Timeout ) pdsk( UpToDate -> DUnknown ) asender terminated ... peer( Unknown -> Secondary ) conn( Timeout -> Connected ) pdsk( DUnknown -> UpToDate ) peer_isp( 0 -> 1 ) ... Connection closed peer( Secondary -> Unknown ) conn( Connected -> Unconnected ) pdsk( UpToDate -> DUnknown ) peer_isp( 1 -> 0 ) receiver terminated Impact: while the connection state is erroneously "Connected", requests may be queued and even sent, which would never be acknowledged, and may have been missed by the cleanup. These requests would never be completed. The next drbd_suspend_io() will then lock up, waiting forever for these requests to complete. Fixed in several code paths: Make sure the connection state is NetworkFailure or worse before starting the cleanup in drbd_disconnect(). This should make sure the cleanup won't miss any requests. Disallow receive_state() to "upgrade" the connection state from an error state. This will make sure the "illegal" state transition won't happen. For all connection failure states, relax the safe-guard in sanitize_state() again to silently mask out those state changes (e.g. Timeout -> Connected becomes Timeout -> Timeout). Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2011-12-05 21:39:25 +08:00
/* We are about to start the cleanup after connection loss.
* Make sure drbd_make_request knows about that.
* Usually we should be in some network failure state already,
* but just in case we are not, we fix it up here.
*/
conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
drbd: fix race between disconnect and receive_state If the asender thread, or request_timer_fn(), or some other part of the code, decided to drop the connection (because of timeout or other), but the receiver just now was processing a P_STATE packet, there was a chance that receive_state() would do a hard state change "re-establishing" an already failed connection without additional handshake. Log excerpt: Remote failed to finish a request within ko-count * timeout peer( Secondary -> Unknown ) conn( Connected -> Timeout ) pdsk( UpToDate -> DUnknown ) asender terminated ... peer( Unknown -> Secondary ) conn( Timeout -> Connected ) pdsk( DUnknown -> UpToDate ) peer_isp( 0 -> 1 ) ... Connection closed peer( Secondary -> Unknown ) conn( Connected -> Unconnected ) pdsk( UpToDate -> DUnknown ) peer_isp( 1 -> 0 ) receiver terminated Impact: while the connection state is erroneously "Connected", requests may be queued and even sent, which would never be acknowledged, and may have been missed by the cleanup. These requests would never be completed. The next drbd_suspend_io() will then lock up, waiting forever for these requests to complete. Fixed in several code paths: Make sure the connection state is NetworkFailure or worse before starting the cleanup in drbd_disconnect(). This should make sure the cleanup won't miss any requests. Disallow receive_state() to "upgrade" the connection state from an error state. This will make sure the "illegal" state transition won't happen. For all connection failure states, relax the safe-guard in sanitize_state() again to silently mask out those state changes (e.g. Timeout -> Connected becomes Timeout -> Timeout). Signed-off-by: Philipp Reisner <philipp.reisner@linbit.com> Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com>
2011-12-05 21:39:25 +08:00
/* ack_receiver does not clean up anything. it must not interfere, either */
drbd_thread_stop(&connection->ack_receiver);
if (connection->ack_sender) {
destroy_workqueue(connection->ack_sender);
connection->ack_sender = NULL;
}
drbd_free_sock(connection);
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
kref_get(&device->kref);
rcu_read_unlock();
drbd_disconnected(peer_device);
kref_put(&device->kref, drbd_destroy_device);
rcu_read_lock();
}
rcu_read_unlock();
if (!list_empty(&connection->current_epoch->list))
drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
/* ok, no more ee's on the fly, it is safe to reset the epoch_size */
atomic_set(&connection->current_epoch->epoch_size, 0);
connection->send.seen_any_write_yet = false;
drbd_info(connection, "Connection closed\n");
if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
conn_try_outdate_peer_async(connection);
spin_lock_irq(&connection->resource->req_lock);
oc = connection->cstate;
if (oc >= C_UNCONNECTED)
_conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
spin_unlock_irq(&connection->resource->req_lock);
if (oc == C_DISCONNECTING)
conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
}
static int drbd_disconnected(struct drbd_peer_device *peer_device)
{
struct drbd_device *device = peer_device->device;
unsigned int i;
/* wait for current activity to cease. */
spin_lock_irq(&device->resource->req_lock);
_drbd_wait_ee_list_empty(device, &device->active_ee);
_drbd_wait_ee_list_empty(device, &device->sync_ee);
_drbd_wait_ee_list_empty(device, &device->read_ee);
spin_unlock_irq(&device->resource->req_lock);
/* We do not have data structures that would allow us to
* get the rs_pending_cnt down to 0 again.
* * On C_SYNC_TARGET we do not have any data structures describing
* the pending RSDataRequest's we have sent.
* * On C_SYNC_SOURCE there is no data structure that tracks
* the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
* And no, it is not the sum of the reference counts in the
* resync_LRU. The resync_LRU tracks the whole operation including
* the disk-IO, while the rs_pending_cnt only tracks the blocks
* on the fly. */
drbd_rs_cancel_all(device);
device->rs_total = 0;
device->rs_failed = 0;
atomic_set(&device->rs_pending_cnt, 0);
wake_up(&device->misc_wait);
del_timer_sync(&device->resync_timer);
resync_timer_fn(&device->resync_timer);
/* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
* w_make_resync_request etc. which may still be on the worker queue
* to be "canceled" */
drbd_flush_workqueue(&peer_device->connection->sender_work);
drbd_finish_peer_reqs(device);
/* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
might have issued a work again. The one before drbd_finish_peer_reqs() is
necessary to reclain net_ee in drbd_finish_peer_reqs(). */
drbd_flush_workqueue(&peer_device->connection->sender_work);
/* need to do it again, drbd_finish_peer_reqs() may have populated it
* again via drbd_try_clear_on_disk_bm(). */
drbd_rs_cancel_all(device);
kfree(device->p_uuid);
device->p_uuid = NULL;
if (!drbd_suspended(device))
tl_clear(peer_device->connection);
drbd_md_sync(device);
if (get_ldev(device)) {
drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
"write from disconnected", BM_LOCKED_CHANGE_ALLOWED);
put_ldev(device);
}
/* tcp_close and release of sendpage pages can be deferred. I don't
* want to use SO_LINGER, because apparently it can be deferred for
* more than 20 seconds (longest time I checked).
*
* Actually we don't care for exactly when the network stack does its
* put_page(), but release our reference on these pages right here.
*/
i = drbd_free_peer_reqs(device, &device->net_ee);
if (i)
drbd_info(device, "net_ee not empty, killed %u entries\n", i);
i = atomic_read(&device->pp_in_use_by_net);
if (i)
drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
i = atomic_read(&device->pp_in_use);
if (i)
drbd_info(device, "pp_in_use = %d, expected 0\n", i);
D_ASSERT(device, list_empty(&device->read_ee));
D_ASSERT(device, list_empty(&device->active_ee));
D_ASSERT(device, list_empty(&device->sync_ee));
D_ASSERT(device, list_empty(&device->done_ee));
return 0;
}
/*
* We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
* we can agree on is stored in agreed_pro_version.
*
* feature flags and the reserved array should be enough room for future
* enhancements of the handshake protocol, and possible plugins...
*
* for now, they are expected to be zero, but ignored.
*/
static int drbd_send_features(struct drbd_connection *connection)
{
struct drbd_socket *sock;
struct p_connection_features *p;
sock = &connection->data;
p = conn_prepare_command(connection, sock);
if (!p)
return -EIO;
memset(p, 0, sizeof(*p));
p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
p->feature_flags = cpu_to_be32(PRO_FEATURES);
return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
}
/*
* return values:
* 1 yes, we have a valid connection
* 0 oops, did not work out, please try again
* -1 peer talks different language,
* no point in trying again, please go standalone.
*/
static int drbd_do_features(struct drbd_connection *connection)
{
/* ASSERT current == connection->receiver ... */
struct p_connection_features *p;
const int expect = sizeof(struct p_connection_features);
struct packet_info pi;
int err;
err = drbd_send_features(connection);
if (err)
return 0;
err = drbd_recv_header(connection, &pi);
if (err)
return 0;
if (pi.cmd != P_CONNECTION_FEATURES) {
drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
return -1;
}
if (pi.size != expect) {
drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
expect, pi.size);
return -1;
}
p = pi.data;
err = drbd_recv_all_warn(connection, p, expect);
if (err)
return 0;
p->protocol_min = be32_to_cpu(p->protocol_min);
p->protocol_max = be32_to_cpu(p->protocol_max);
if (p->protocol_max == 0)
p->protocol_max = p->protocol_min;
if (PRO_VERSION_MAX < p->protocol_min ||
PRO_VERSION_MIN > p->protocol_max)
goto incompat;
connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
drbd_info(connection, "Handshake successful: "
"Agreed network protocol version %d\n", connection->agreed_pro_version);
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
connection->agreed_features,
connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
drbd: introduce P_ZEROES (REQ_OP_WRITE_ZEROES on the "wire") And also re-enable partial-zero-out + discard aligned. With the introduction of REQ_OP_WRITE_ZEROES, we started to use that for both WRITE_ZEROES and DISCARDS, hoping that WRITE_ZEROES would "do what we want", UNMAP if possible, zero-out the rest. The example scenario is some LVM "thin" backend. While an un-allocated block on dm-thin reads as zeroes, on a dm-thin with "skip_block_zeroing=true", after a partial block write allocated that block, that same block may well map "undefined old garbage" from the backends on LBAs that have not yet been written to. If we cannot distinguish between zero-out and discard on the receiving side, to avoid "undefined old garbage" to pop up randomly at later times on supposedly zero-initialized blocks, we'd need to map all discards to zero-out on the receiving side. But that would potentially do a full alloc on thinly provisioned backends, even when the expectation was to unmap/trim/discard/de-allocate. We need to distinguish on the protocol level, whether we need to guarantee zeroes (and thus use zero-out, potentially doing the mentioned full-alloc), or if we want to put the emphasis on discard, and only do a "best effort zeroing" (by "discarding" blocks aligned to discard-granularity, and zeroing only potential unaligned head and tail clippings to at least *try* to avoid "false positives" in an online-verify later), hoping that someone set skip_block_zeroing=false. For some discussion regarding this on dm-devel, see also https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html For backward compatibility, P_TRIM means zero-out, unless the DRBD_FF_WZEROES feature flag is agreed upon during handshake. To have upper layers even try to submit WRITE ZEROES requests, we need to announce "efficient zeroout" independently. We need to fixup max_write_zeroes_sectors after blk_queue_stack_limits(): if we can handle "zeroes" efficiently on the protocol, we want to do that, even if our backend does not announce max_write_zeroes_sectors itself. Signed-off-by: Lars Ellenberg <lars.ellenberg@linbit.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-21 00:23:42 +08:00
connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
connection->agreed_features ? "" : " none");
return 1;
incompat:
drbd_err(connection, "incompatible DRBD dialects: "
"I support %d-%d, peer supports %d-%d\n",
PRO_VERSION_MIN, PRO_VERSION_MAX,
p->protocol_min, p->protocol_max);
return -1;
}
#if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
static int drbd_do_auth(struct drbd_connection *connection)
{
drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
return -1;
}
#else
#define CHALLENGE_LEN 64
/* Return value:
1 - auth succeeded,
0 - failed, try again (network error),
-1 - auth failed, don't try again.
*/
static int drbd_do_auth(struct drbd_connection *connection)
{
struct drbd_socket *sock;
char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
char *response = NULL;
char *right_response = NULL;
char *peers_ch = NULL;
unsigned int key_len;
char secret[SHARED_SECRET_MAX]; /* 64 byte */
unsigned int resp_size;
struct shash_desc *desc;
struct packet_info pi;
struct net_conf *nc;
int err, rv;
/* FIXME: Put the challenge/response into the preallocated socket buffer. */
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
key_len = strlen(nc->shared_secret);
memcpy(secret, nc->shared_secret, key_len);
rcu_read_unlock();
desc = kmalloc(sizeof(struct shash_desc) +
crypto_shash_descsize(connection->cram_hmac_tfm),
GFP_KERNEL);
if (!desc) {
rv = -1;
goto fail;
}
desc->tfm = connection->cram_hmac_tfm;
rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
if (rv) {
drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
rv = -1;
goto fail;
}
get_random_bytes(my_challenge, CHALLENGE_LEN);
sock = &connection->data;
if (!conn_prepare_command(connection, sock)) {
rv = 0;
goto fail;
}
rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
my_challenge, CHALLENGE_LEN);
if (!rv)
goto fail;
err = drbd_recv_header(connection, &pi);
if (err) {
rv = 0;
goto fail;
}
if (pi.cmd != P_AUTH_CHALLENGE) {
drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
rv = -1;
goto fail;
}
if (pi.size > CHALLENGE_LEN * 2) {
drbd_err(connection, "expected AuthChallenge payload too big.\n");
rv = -1;
goto fail;
}
if (pi.size < CHALLENGE_LEN) {
drbd_err(connection, "AuthChallenge payload too small.\n");
rv = -1;
goto fail;
}
peers_ch = kmalloc(pi.size, GFP_NOIO);
if (!peers_ch) {
rv = -1;
goto fail;
}
err = drbd_recv_all_warn(connection, peers_ch, pi.size);
if (err) {
rv = 0;
goto fail;
}
if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
drbd_err(connection, "Peer presented the same challenge!\n");
rv = -1;
goto fail;
}
resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
response = kmalloc(resp_size, GFP_NOIO);
if (!response) {
rv = -1;
goto fail;
}
rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
if (rv) {
drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
rv = -1;
goto fail;
}
if (!conn_prepare_command(connection, sock)) {
rv = 0;
goto fail;
}
rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
response, resp_size);
if (!rv)
goto fail;
err = drbd_recv_header(connection, &pi);
if (err) {
rv = 0;
goto fail;
}
if (pi.cmd != P_AUTH_RESPONSE) {
drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
rv = 0;
goto fail;
}
if (pi.size != resp_size) {
drbd_err(connection, "expected AuthResponse payload of wrong size\n");
rv = 0;
goto fail;
}
err = drbd_recv_all_warn(connection, response , resp_size);
if (err) {
rv = 0;
goto fail;
}
right_response = kmalloc(resp_size, GFP_NOIO);
if (!right_response) {
rv = -1;
goto fail;
}
rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
right_response);
if (rv) {
drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
rv = -1;
goto fail;
}
rv = !memcmp(response, right_response, resp_size);
if (rv)
drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
resp_size);
else
rv = -1;
fail:
kfree(peers_ch);
kfree(response);
kfree(right_response);
if (desc) {
shash_desc_zero(desc);
kfree(desc);
}
return rv;
}
#endif
int drbd_receiver(struct drbd_thread *thi)
{
struct drbd_connection *connection = thi->connection;
int h;
drbd_info(connection, "receiver (re)started\n");
do {
h = conn_connect(connection);
if (h == 0) {
conn_disconnect(connection);
schedule_timeout_interruptible(HZ);
}
if (h == -1) {
drbd_warn(connection, "Discarding network configuration.\n");
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
}
} while (h == 0);
if (h > 0) {
blk_start_plug(&connection->receiver_plug);
drbdd(connection);
blk_finish_plug(&connection->receiver_plug);
}
conn_disconnect(connection);
drbd_info(connection, "receiver terminated\n");
return 0;
}
/* ********* acknowledge sender ******** */
static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct p_req_state_reply *p = pi->data;
int retcode = be32_to_cpu(p->retcode);
if (retcode >= SS_SUCCESS) {
set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
} else {
set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
drbd_set_st_err_str(retcode), retcode);
}
wake_up(&connection->ping_wait);
return 0;
}
static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_req_state_reply *p = pi->data;
int retcode = be32_to_cpu(p->retcode);
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
D_ASSERT(device, connection->agreed_pro_version < 100);
return got_conn_RqSReply(connection, pi);
}
if (retcode >= SS_SUCCESS) {
set_bit(CL_ST_CHG_SUCCESS, &device->flags);
} else {
set_bit(CL_ST_CHG_FAIL, &device->flags);
drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
drbd_set_st_err_str(retcode), retcode);
}
wake_up(&device->state_wait);
return 0;
}
static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
{
return drbd_send_ping_ack(connection);
}
static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
{
/* restore idle timeout */
connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
wake_up(&connection->ping_wait);
return 0;
}
static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int blksize = be32_to_cpu(p->blksize);
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
if (get_ldev(device)) {
drbd_rs_complete_io(device, sector);
drbd_set_in_sync(device, sector, blksize);
/* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
put_ldev(device);
}
dec_rs_pending(device);
atomic_add(blksize >> 9, &device->rs_sect_in);
return 0;
}
static int
validate_req_change_req_state(struct drbd_device *device, u64 id, sector_t sector,
struct rb_root *root, const char *func,
enum drbd_req_event what, bool missing_ok)
{
struct drbd_request *req;
struct bio_and_error m;
spin_lock_irq(&device->resource->req_lock);
req = find_request(device, root, id, sector, missing_ok, func);
if (unlikely(!req)) {
spin_unlock_irq(&device->resource->req_lock);
return -EIO;
}
__req_mod(req, what, &m);
spin_unlock_irq(&device->resource->req_lock);
if (m.bio)
complete_master_bio(device, &m);
return 0;
}
static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int blksize = be32_to_cpu(p->blksize);
enum drbd_req_event what;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
if (p->block_id == ID_SYNCER) {
drbd_set_in_sync(device, sector, blksize);
dec_rs_pending(device);
return 0;
}
switch (pi->cmd) {
case P_RS_WRITE_ACK:
what = WRITE_ACKED_BY_PEER_AND_SIS;
break;
case P_WRITE_ACK:
what = WRITE_ACKED_BY_PEER;
break;
case P_RECV_ACK:
what = RECV_ACKED_BY_PEER;
break;
case P_SUPERSEDED:
what = CONFLICT_RESOLVED;
break;
case P_RETRY_WRITE:
what = POSTPONE_WRITE;
break;
default:
BUG();
}
return validate_req_change_req_state(device, p->block_id, sector,
&device->write_requests, __func__,
what, false);
}
static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
int size = be32_to_cpu(p->blksize);
int err;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
if (p->block_id == ID_SYNCER) {
dec_rs_pending(device);
drbd_rs_failed_io(device, sector, size);
return 0;
}
err = validate_req_change_req_state(device, p->block_id, sector,
&device->write_requests, __func__,
NEG_ACKED, true);
if (err) {
/* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
The master bio might already be completed, therefore the
request is no longer in the collision hash. */
/* In Protocol B we might already have got a P_RECV_ACK
but then get a P_NEG_ACK afterwards. */
drbd_set_out_of_sync(device, sector, size);
}
return 0;
}
static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_ack *p = pi->data;
sector_t sector = be64_to_cpu(p->sector);
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
(unsigned long long)sector, be32_to_cpu(p->blksize));
return validate_req_change_req_state(device, p->block_id, sector,
&device->read_requests, __func__,
NEG_ACKED, false);
}
static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
sector_t sector;
int size;
struct p_block_ack *p = pi->data;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
dec_rs_pending(device);
if (get_ldev_if_state(device, D_FAILED)) {
drbd_rs_complete_io(device, sector);
switch (pi->cmd) {
case P_NEG_RS_DREPLY:
drbd_rs_failed_io(device, sector, size);
break;
case P_RS_CANCEL:
break;
default:
BUG();
}
put_ldev(device);
}
return 0;
}
static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
{
struct p_barrier_ack *p = pi->data;
struct drbd_peer_device *peer_device;
int vnr;
tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
rcu_read_lock();
idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
struct drbd_device *device = peer_device->device;
if (device->state.conn == C_AHEAD &&
atomic_read(&device->ap_in_flight) == 0 &&
!test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
device->start_resync_timer.expires = jiffies + HZ;
add_timer(&device->start_resync_timer);
}
}
rcu_read_unlock();
return 0;
}
static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
{
struct drbd_peer_device *peer_device;
struct drbd_device *device;
struct p_block_ack *p = pi->data;
struct drbd_device_work *dw;
sector_t sector;
int size;
peer_device = conn_peer_device(connection, pi->vnr);
if (!peer_device)
return -EIO;
device = peer_device->device;
sector = be64_to_cpu(p->sector);
size = be32_to_cpu(p->blksize);
update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
drbd_ov_out_of_sync_found(device, sector, size);
else
ov_out_of_sync_print(device);
if (!get_ldev(device))
return 0;
drbd_rs_complete_io(device, sector);
dec_rs_pending(device);
--device->ov_left;
/* let's advance progress step marks only for every other megabyte */
if ((device->ov_left & 0x200) == 0x200)
drbd_advance_rs_marks(device, device->ov_left);
if (device->ov_left == 0) {
dw = kmalloc(sizeof(*dw), GFP_NOIO);
if (dw) {
dw->w.cb = w_ov_finished;
dw->device = device;
drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
} else {
drbd_err(device, "kmalloc(dw) failed.");
ov_out_of_sync_print(device);
drbd_resync_finished(device);
}
}
put_ldev(device);
return 0;
}
static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
{
return 0;
}
struct meta_sock_cmd {
size_t pkt_size;
int (*fn)(struct drbd_connection *connection, struct packet_info *);
};
static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
{
long t;
struct net_conf *nc;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
t = ping_timeout ? nc->ping_timeo : nc->ping_int;
rcu_read_unlock();
t *= HZ;
if (ping_timeout)
t /= 10;
connection->meta.socket->sk->sk_rcvtimeo = t;
}
static void set_ping_timeout(struct drbd_connection *connection)
{
set_rcvtimeo(connection, 1);
}
static void set_idle_timeout(struct drbd_connection *connection)
{
set_rcvtimeo(connection, 0);
}
static struct meta_sock_cmd ack_receiver_tbl[] = {
[P_PING] = { 0, got_Ping },
[P_PING_ACK] = { 0, got_PingAck },
[P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
[P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck },
[P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
[P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
[P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
[P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
[P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
[P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
[P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
[P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
[P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
[P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
[P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
};
int drbd_ack_receiver(struct drbd_thread *thi)
{
struct drbd_connection *connection = thi->connection;
struct meta_sock_cmd *cmd = NULL;
struct packet_info pi;
unsigned long pre_recv_jif;
int rv;
void *buf = connection->meta.rbuf;
int received = 0;
unsigned int header_size = drbd_header_size(connection);
int expect = header_size;
bool ping_timeout_active = false;
sched_set_fifo_low(current);
while (get_t_state(thi) == RUNNING) {
drbd_thread_current_set_cpu(thi);
conn_reclaim_net_peer_reqs(connection);
if (test_and_clear_bit(SEND_PING, &connection->flags)) {
if (drbd_send_ping(connection)) {
drbd_err(connection, "drbd_send_ping has failed\n");
goto reconnect;
}
set_ping_timeout(connection);
ping_timeout_active = true;
}
pre_recv_jif = jiffies;
rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
/* Note:
* -EINTR (on meta) we got a signal
* -EAGAIN (on meta) rcvtimeo expired
* -ECONNRESET other side closed the connection
* -ERESTARTSYS (on data) we got a signal
* rv < 0 other than above: unexpected error!
* rv == expected: full header or command
* rv < expected: "woken" by signal during receive
* rv == 0 : "connection shut down by peer"
*/
if (likely(rv > 0)) {
received += rv;
buf += rv;
} else if (rv == 0) {
if (test_bit(DISCONNECT_SENT, &connection->flags)) {
long t;
rcu_read_lock();
t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
rcu_read_unlock();
t = wait_event_timeout(connection->ping_wait,
connection->cstate < C_WF_REPORT_PARAMS,
t);
if (t)
break;
}
drbd_err(connection, "meta connection shut down by peer.\n");
goto reconnect;
} else if (rv == -EAGAIN) {
/* If the data socket received something meanwhile,
* that is good enough: peer is still alive. */
if (time_after(connection->last_received, pre_recv_jif))
continue;
if (ping_timeout_active) {
drbd_err(connection, "PingAck did not arrive in time.\n");
goto reconnect;
}
set_bit(SEND_PING, &connection->flags);
continue;
} else if (rv == -EINTR) {
/* maybe drbd_thread_stop(): the while condition will notice.
* maybe woken for send_ping: we'll send a ping above,
* and change the rcvtimeo */
flush_signals(current);
continue;
} else {
drbd_err(connection, "sock_recvmsg returned %d\n", rv);
goto reconnect;
}
if (received == expect && cmd == NULL) {
if (decode_header(connection, connection->meta.rbuf, &pi))
goto reconnect;
cmd = &ack_receiver_tbl[pi.cmd];
if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
cmdname(pi.cmd), pi.cmd);
goto disconnect;
}
expect = header_size + cmd->pkt_size;
if (pi.size != expect - header_size) {
drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
pi.cmd, pi.size);
goto reconnect;
}
}
if (received == expect) {
bool err;
err = cmd->fn(connection, &pi);
if (err) {
2019-03-26 03:32:28 +08:00
drbd_err(connection, "%ps failed\n", cmd->fn);
goto reconnect;
}
connection->last_received = jiffies;
if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
set_idle_timeout(connection);
ping_timeout_active = false;
}
buf = connection->meta.rbuf;
received = 0;
expect = header_size;
cmd = NULL;
}
}
if (0) {
reconnect:
conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
conn_md_sync(connection);
}
if (0) {
disconnect:
conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
}
drbd_info(connection, "ack_receiver terminated\n");
return 0;
}
void drbd_send_acks_wf(struct work_struct *ws)
{
struct drbd_peer_device *peer_device =
container_of(ws, struct drbd_peer_device, send_acks_work);
struct drbd_connection *connection = peer_device->connection;
struct drbd_device *device = peer_device->device;
struct net_conf *nc;
int tcp_cork, err;
rcu_read_lock();
nc = rcu_dereference(connection->net_conf);
tcp_cork = nc->tcp_cork;
rcu_read_unlock();
if (tcp_cork)
tcp_sock_set_cork(connection->meta.socket->sk, true);
err = drbd_finish_peer_reqs(device);
kref_put(&device->kref, drbd_destroy_device);
/* get is in drbd_endio_write_sec_final(). That is necessary to keep the
struct work_struct send_acks_work alive, which is in the peer_device object */
if (err) {
conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
return;
}
if (tcp_cork)
tcp_sock_set_cork(connection->meta.socket->sk, false);
return;
}