linux/tools/testing/selftests/bpf/test_verifier.c

1359 lines
35 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Testsuite for eBPF verifier
*
* Copyright (c) 2014 PLUMgrid, http://plumgrid.com
selftests/bpf: add verifier tests for bpf_call Add extensive set of tests for bpf_call verification logic: calls: basic sanity calls: using r0 returned by callee calls: callee is using r1 calls: callee using args1 calls: callee using wrong args2 calls: callee using two args calls: callee changing pkt pointers calls: two calls with args calls: two calls with bad jump calls: recursive call. test1 calls: recursive call. test2 calls: unreachable code calls: invalid call calls: jumping across function bodies. test1 calls: jumping across function bodies. test2 calls: call without exit calls: call into middle of ld_imm64 calls: call into middle of other call calls: two calls with bad fallthrough calls: two calls with stack read calls: two calls with stack write calls: spill into caller stack frame calls: two calls with stack write and void return calls: ambiguous return value calls: two calls that return map_value calls: two calls that return map_value with bool condition calls: two calls that return map_value with incorrect bool check calls: two calls that receive map_value via arg=ptr_stack_of_caller. test1 calls: two calls that receive map_value via arg=ptr_stack_of_caller. test2 calls: two jumps that receive map_value via arg=ptr_stack_of_jumper. test3 calls: two calls that receive map_value_ptr_or_null via arg. test1 calls: two calls that receive map_value_ptr_or_null via arg. test2 calls: pkt_ptr spill into caller stack Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:07 +08:00
* Copyright (c) 2017 Facebook
selftests/bpf: Add tests for reference tracking reference tracking: leak potential reference reference tracking: leak potential reference on stack reference tracking: leak potential reference on stack 2 reference tracking: zero potential reference reference tracking: copy and zero potential references reference tracking: release reference without check reference tracking: release reference reference tracking: release reference twice reference tracking: release reference twice inside branch reference tracking: alloc, check, free in one subbranch reference tracking: alloc, check, free in both subbranches reference tracking in call: free reference in subprog reference tracking in call: free reference in subprog and outside reference tracking in call: alloc & leak reference in subprog reference tracking in call: alloc in subprog, release outside reference tracking in call: sk_ptr leak into caller stack reference tracking in call: sk_ptr spill into caller stack reference tracking: allow LD_ABS reference tracking: forbid LD_ABS while holding reference reference tracking: allow LD_IND reference tracking: forbid LD_IND while holding reference reference tracking: check reference or tail call reference tracking: release reference then tail call reference tracking: leak possible reference over tail call reference tracking: leak checked reference over tail call reference tracking: mangle and release sock_or_null reference tracking: mangle and release sock reference tracking: access member reference tracking: write to member reference tracking: invalid 64-bit access of member reference tracking: access after release reference tracking: direct access for lookup unpriv: spill/fill of different pointers stx - ctx and sock unpriv: spill/fill of different pointers stx - leak sock unpriv: spill/fill of different pointers stx - sock and ctx (read) unpriv: spill/fill of different pointers stx - sock and ctx (write) Signed-off-by: Joe Stringer <joe@wand.net.nz> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 04:35:38 +08:00
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
*/
#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <assert.h>
#include <sys/capability.h>
#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/btf.h>
#include <bpf/bpf.h>
#include <bpf/libbpf.h>
#ifdef HAVE_GENHDR
# include "autoconf.h"
#else
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
# define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
# endif
#endif
#include "bpf_rlimit.h"
#include "bpf_rand.h"
#include "bpf_util.h"
#include "test_btf.h"
#include "../../../include/linux/filter.h"
#define MAX_INSNS BPF_MAXINSNS
#define MAX_TEST_INSNS 1000000
#define MAX_FIXUPS 8
#define MAX_NR_MAPS 21
#define MAX_TEST_RUNS 8
#define POINTER_VALUE 0xcafe4all
#define TEST_DATA_LEN 64
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
static bool unpriv_disabled = false;
static int skips;
static bool verbose = false;
struct bpf_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
struct bpf_insn *fill_insns;
int fixup_map_hash_8b[MAX_FIXUPS];
int fixup_map_hash_48b[MAX_FIXUPS];
int fixup_map_hash_16b[MAX_FIXUPS];
int fixup_map_array_48b[MAX_FIXUPS];
int fixup_map_sockmap[MAX_FIXUPS];
int fixup_map_sockhash[MAX_FIXUPS];
int fixup_map_xskmap[MAX_FIXUPS];
int fixup_map_stacktrace[MAX_FIXUPS];
int fixup_prog1[MAX_FIXUPS];
int fixup_prog2[MAX_FIXUPS];
int fixup_map_in_map[MAX_FIXUPS];
int fixup_cgroup_storage[MAX_FIXUPS];
int fixup_percpu_cgroup_storage[MAX_FIXUPS];
int fixup_map_spin_lock[MAX_FIXUPS];
int fixup_map_array_ro[MAX_FIXUPS];
int fixup_map_array_wo[MAX_FIXUPS];
int fixup_map_array_small[MAX_FIXUPS];
int fixup_sk_storage_map[MAX_FIXUPS];
int fixup_map_event_output[MAX_FIXUPS];
int fixup_map_reuseport_array[MAX_FIXUPS];
int fixup_map_ringbuf[MAX_FIXUPS];
/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
* Can be a tab-separated sequence of expected strings. An empty string
* means no log verification.
*/
const char *errstr;
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
const char *errstr_unpriv;
uint32_t insn_processed;
int prog_len;
enum {
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
UNDEF,
ACCEPT,
REJECT,
VERBOSE_ACCEPT,
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
} result, result_unpriv;
enum bpf_prog_type prog_type;
uint8_t flags;
void (*fill_helper)(struct bpf_test *self);
int runs;
#define bpf_testdata_struct_t \
struct { \
uint32_t retval, retval_unpriv; \
union { \
__u8 data[TEST_DATA_LEN]; \
__u64 data64[TEST_DATA_LEN / 8]; \
}; \
}
union {
bpf_testdata_struct_t;
bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
};
enum bpf_attach_type expected_attach_type;
const char *kfunc;
};
/* Note we want this to be 64 bit aligned so that the end of our array is
* actually the end of the structure.
*/
#define MAX_ENTRIES 11
struct test_val {
unsigned int index;
int foo[MAX_ENTRIES];
};
struct other_val {
long long foo;
long long bar;
};
static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
{
/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
#define PUSH_CNT 51
/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
struct bpf_insn *insn = self->fill_insns;
int i = 0, j, k = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
loop:
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
/* jump to error label */
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
i++;
}
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_pop),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
i++;
}
if (++k < 5)
goto loop;
for (; i < len - 3; i++)
insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
insn[len - 3] = BPF_JMP_A(1);
/* error label */
insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
insn[len - 1] = BPF_EXIT_INSN();
self->prog_len = len;
}
static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
* but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
* to extend the error value of the inlined ld_abs sequence which then
* contains 7 insns. so, set the dividend to 7 so the testcase could
* work on all arches.
*/
unsigned int len = (1 << 15) / 7;
int i = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
i++;
while (i < len - 1)
insn[i++] = BPF_LD_ABS(BPF_B, 1);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
}
static void bpf_fill_rand_ld_dw(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
uint64_t res = 0;
int i = 0;
insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
while (i < self->retval) {
uint64_t val = bpf_semi_rand_get();
struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
res ^= val;
insn[i++] = tmp[0];
insn[i++] = tmp[1];
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
}
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
res ^= (res >> 32);
self->retval = (uint32_t)res;
}
#define MAX_JMP_SEQ 8192
/* test the sequence of 8k jumps */
static void bpf_fill_scale1(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
int i = 0, k = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
/* test to check that the long sequence of jumps is acceptable */
while (k++ < MAX_JMP_SEQ) {
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_prandom_u32);
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
-8 * (k % 64 + 1));
}
/* is_state_visited() doesn't allocate state for pruning for every jump.
* Hence multiply jmps by 4 to accommodate that heuristic
*/
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
self->retval = 42;
}
/* test the sequence of 8k jumps in inner most function (function depth 8)*/
static void bpf_fill_scale2(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
int i = 0, k = 0;
#define FUNC_NEST 7
for (k = 0; k < FUNC_NEST; k++) {
insn[i++] = BPF_CALL_REL(1);
insn[i++] = BPF_EXIT_INSN();
}
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
/* test to check that the long sequence of jumps is acceptable */
k = 0;
while (k++ < MAX_JMP_SEQ) {
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_prandom_u32);
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
-8 * (k % (64 - 4 * FUNC_NEST) + 1));
}
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
self->retval = 42;
}
static void bpf_fill_scale(struct bpf_test *self)
{
switch (self->retval) {
case 1:
return bpf_fill_scale1(self);
case 2:
return bpf_fill_scale2(self);
default:
self->prog_len = 0;
break;
}
}
selftests/bpf: Add verifier tests for x64 jit jump padding There are 3 tests added into verifier's jit tests to trigger x64 jit jump padding. The first test can be represented as the following assembly code: 1: bpf_call bpf_get_prandom_u32 2: if r0 == 1 goto pc+128 3: if r0 == 2 goto pc+128 ... 129: if r0 == 128 goto pc+128 130: goto pc+128 131: goto pc+127 ... 256: goto pc+2 257: goto pc+1 258: r0 = 1 259: ret We first store a random number to r0 and add the corresponding conditional jumps (2~129) to make verifier believe that those jump instructions from 130 to 257 are reachable. When the program is sent to x64 jit, it starts to optimize out the NOP jumps backwards from 257. Since there are 128 such jumps, the program easily reaches 15 passes and triggers jump padding. Here is the x64 jit code of the first test: 0: 0f 1f 44 00 00 nop DWORD PTR [rax+rax*1+0x0] 5: 66 90 xchg ax,ax 7: 55 push rbp 8: 48 89 e5 mov rbp,rsp b: e8 4c 90 75 e3 call 0xffffffffe375905c 10: 48 83 f8 01 cmp rax,0x1 14: 0f 84 fe 04 00 00 je 0x518 1a: 48 83 f8 02 cmp rax,0x2 1e: 0f 84 f9 04 00 00 je 0x51d ... f6: 48 83 f8 18 cmp rax,0x18 fa: 0f 84 8b 04 00 00 je 0x58b 100: 48 83 f8 19 cmp rax,0x19 104: 0f 84 86 04 00 00 je 0x590 10a: 48 83 f8 1a cmp rax,0x1a 10e: 0f 84 81 04 00 00 je 0x595 ... 500: 0f 84 83 01 00 00 je 0x689 506: 48 81 f8 80 00 00 00 cmp rax,0x80 50d: 0f 84 76 01 00 00 je 0x689 513: e9 71 01 00 00 jmp 0x689 518: e9 6c 01 00 00 jmp 0x689 ... 5fe: e9 86 00 00 00 jmp 0x689 603: e9 81 00 00 00 jmp 0x689 608: 0f 1f 00 nop DWORD PTR [rax] 60b: eb 7c jmp 0x689 60d: eb 7a jmp 0x689 ... 683: eb 04 jmp 0x689 685: eb 02 jmp 0x689 687: 66 90 xchg ax,ax 689: b8 01 00 00 00 mov eax,0x1 68e: c9 leave 68f: c3 ret As expected, a 3 bytes NOPs is inserted at 608 due to the transition from imm32 jmp to imm8 jmp. A 2 bytes NOPs is also inserted at 687 to replace a NOP jump. The second test case is tricky. Here is the assembly code: 1: bpf_call bpf_get_prandom_u32 2: if r0 == 1 goto pc+2048 3: if r0 == 2 goto pc+2048 ... 2049: if r0 == 2048 goto pc+2048 2050: goto pc+2048 2051: goto pc+16 2052: goto pc+15 ... 2064: goto pc+3 2065: goto pc+2 2066: goto pc+1 ... [repeat "goto pc+16".."goto pc+1" 127 times] ... 4099: r0 = 2 4100: ret There are 4 major parts of the program. 1) 1~2049: Those are instructions to make 2050~4098 reachable. Some of them also could generate the padding for jmp_cond. 2) 2050: This is the target instruction for the imm32 nop jmp padding. 3) 2051~4098: The repeated "goto 1~16" instructions are designed to be consumed by the nop jmp optimization. In the end, those instrucitons become 128 continuous 0 offset jmp and are optimized out in 1 pass, and this make insn 2050 an imm32 nop jmp in the next pass, so that we can trigger the 5 bytes padding. 4) 4099~4100: Those are the instructions to end the program. The x64 jit code is like this: 0: 0f 1f 44 00 00 nop DWORD PTR [rax+rax*1+0x0] 5: 66 90 xchg ax,ax 7: 55 push rbp 8: 48 89 e5 mov rbp,rsp b: e8 bc 7b d5 d3 call 0xffffffffd3d57bcc 10: 48 83 f8 01 cmp rax,0x1 14: 0f 84 7e 66 00 00 je 0x6698 1a: 48 83 f8 02 cmp rax,0x2 1e: 0f 84 74 66 00 00 je 0x6698 24: 48 83 f8 03 cmp rax,0x3 28: 0f 84 6a 66 00 00 je 0x6698 2e: 48 83 f8 04 cmp rax,0x4 32: 0f 84 60 66 00 00 je 0x6698 38: 48 83 f8 05 cmp rax,0x5 3c: 0f 84 56 66 00 00 je 0x6698 42: 48 83 f8 06 cmp rax,0x6 46: 0f 84 4c 66 00 00 je 0x6698 ... 666c: 48 81 f8 fe 07 00 00 cmp rax,0x7fe 6673: 0f 1f 40 00 nop DWORD PTR [rax+0x0] 6677: 74 1f je 0x6698 6679: 48 81 f8 ff 07 00 00 cmp rax,0x7ff 6680: 0f 1f 40 00 nop DWORD PTR [rax+0x0] 6684: 74 12 je 0x6698 6686: 48 81 f8 00 08 00 00 cmp rax,0x800 668d: 0f 1f 40 00 nop DWORD PTR [rax+0x0] 6691: 74 05 je 0x6698 6693: 0f 1f 44 00 00 nop DWORD PTR [rax+rax*1+0x0] 6698: b8 02 00 00 00 mov eax,0x2 669d: c9 leave 669e: c3 ret Since insn 2051~4098 are optimized out right before the padding pass, there are several conditional jumps from the first part are replaced with imm8 jmp_cond, and this triggers the 4 bytes padding, for example at 6673, 6680, and 668d. On the other hand, Insn 2050 is replaced with the 5 bytes nops at 6693. The third test is to invoke the first and second tests as subprogs to test bpf2bpf. Per the system log, there was one more jit happened with only one pass and the same jit code was produced. v4: - Add the second test case which triggers jmp_cond padding and imm32 nop jmp padding. - Add the new test case as another subprog Signed-off-by: Gary Lin <glin@suse.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210119102501.511-4-glin@suse.com
2021-01-19 18:25:01 +08:00
static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
{
unsigned int len = 259, hlen = 128;
int i;
insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
for (i = 1; i <= hlen; i++) {
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
insn[i + hlen] = BPF_JMP_A(hlen - i);
}
insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
insn[len - 1] = BPF_EXIT_INSN();
return len;
}
static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
{
unsigned int len = 4100, jmp_off = 2048;
int i, j;
insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
for (i = 1; i <= jmp_off; i++) {
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
}
insn[i++] = BPF_JMP_A(jmp_off);
for (; i <= jmp_off * 2 + 1; i+=16) {
for (j = 0; j < 16; j++) {
insn[i + j] = BPF_JMP_A(16 - j - 1);
}
}
insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
insn[len - 1] = BPF_EXIT_INSN();
return len;
}
static void bpf_fill_torturous_jumps(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
int i = 0;
switch (self->retval) {
case 1:
self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
return;
case 2:
self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
return;
case 3:
/* main */
insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
insn[i++] = BPF_EXIT_INSN();
/* subprog 1 */
i += bpf_fill_torturous_jumps_insn_1(insn + i);
/* subprog 2 */
i += bpf_fill_torturous_jumps_insn_2(insn + i);
self->prog_len = i;
return;
default:
self->prog_len = 0;
break;
}
}
selftests/bpf: Add tests for reference tracking reference tracking: leak potential reference reference tracking: leak potential reference on stack reference tracking: leak potential reference on stack 2 reference tracking: zero potential reference reference tracking: copy and zero potential references reference tracking: release reference without check reference tracking: release reference reference tracking: release reference twice reference tracking: release reference twice inside branch reference tracking: alloc, check, free in one subbranch reference tracking: alloc, check, free in both subbranches reference tracking in call: free reference in subprog reference tracking in call: free reference in subprog and outside reference tracking in call: alloc & leak reference in subprog reference tracking in call: alloc in subprog, release outside reference tracking in call: sk_ptr leak into caller stack reference tracking in call: sk_ptr spill into caller stack reference tracking: allow LD_ABS reference tracking: forbid LD_ABS while holding reference reference tracking: allow LD_IND reference tracking: forbid LD_IND while holding reference reference tracking: check reference or tail call reference tracking: release reference then tail call reference tracking: leak possible reference over tail call reference tracking: leak checked reference over tail call reference tracking: mangle and release sock_or_null reference tracking: mangle and release sock reference tracking: access member reference tracking: write to member reference tracking: invalid 64-bit access of member reference tracking: access after release reference tracking: direct access for lookup unpriv: spill/fill of different pointers stx - ctx and sock unpriv: spill/fill of different pointers stx - leak sock unpriv: spill/fill of different pointers stx - sock and ctx (read) unpriv: spill/fill of different pointers stx - sock and ctx (write) Signed-off-by: Joe Stringer <joe@wand.net.nz> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 04:35:38 +08:00
/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
#define BPF_SK_LOOKUP(func) \
selftests/bpf: Add tests for reference tracking reference tracking: leak potential reference reference tracking: leak potential reference on stack reference tracking: leak potential reference on stack 2 reference tracking: zero potential reference reference tracking: copy and zero potential references reference tracking: release reference without check reference tracking: release reference reference tracking: release reference twice reference tracking: release reference twice inside branch reference tracking: alloc, check, free in one subbranch reference tracking: alloc, check, free in both subbranches reference tracking in call: free reference in subprog reference tracking in call: free reference in subprog and outside reference tracking in call: alloc & leak reference in subprog reference tracking in call: alloc in subprog, release outside reference tracking in call: sk_ptr leak into caller stack reference tracking in call: sk_ptr spill into caller stack reference tracking: allow LD_ABS reference tracking: forbid LD_ABS while holding reference reference tracking: allow LD_IND reference tracking: forbid LD_IND while holding reference reference tracking: check reference or tail call reference tracking: release reference then tail call reference tracking: leak possible reference over tail call reference tracking: leak checked reference over tail call reference tracking: mangle and release sock_or_null reference tracking: mangle and release sock reference tracking: access member reference tracking: write to member reference tracking: invalid 64-bit access of member reference tracking: access after release reference tracking: direct access for lookup unpriv: spill/fill of different pointers stx - ctx and sock unpriv: spill/fill of different pointers stx - leak sock unpriv: spill/fill of different pointers stx - sock and ctx (read) unpriv: spill/fill of different pointers stx - sock and ctx (write) Signed-off-by: Joe Stringer <joe@wand.net.nz> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 04:35:38 +08:00
/* struct bpf_sock_tuple tuple = {} */ \
BPF_MOV64_IMM(BPF_REG_2, 0), \
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
selftests/bpf: Add tests for reference tracking reference tracking: leak potential reference reference tracking: leak potential reference on stack reference tracking: leak potential reference on stack 2 reference tracking: zero potential reference reference tracking: copy and zero potential references reference tracking: release reference without check reference tracking: release reference reference tracking: release reference twice reference tracking: release reference twice inside branch reference tracking: alloc, check, free in one subbranch reference tracking: alloc, check, free in both subbranches reference tracking in call: free reference in subprog reference tracking in call: free reference in subprog and outside reference tracking in call: alloc & leak reference in subprog reference tracking in call: alloc in subprog, release outside reference tracking in call: sk_ptr leak into caller stack reference tracking in call: sk_ptr spill into caller stack reference tracking: allow LD_ABS reference tracking: forbid LD_ABS while holding reference reference tracking: allow LD_IND reference tracking: forbid LD_IND while holding reference reference tracking: check reference or tail call reference tracking: release reference then tail call reference tracking: leak possible reference over tail call reference tracking: leak checked reference over tail call reference tracking: mangle and release sock_or_null reference tracking: mangle and release sock reference tracking: access member reference tracking: write to member reference tracking: invalid 64-bit access of member reference tracking: access after release reference tracking: direct access for lookup unpriv: spill/fill of different pointers stx - ctx and sock unpriv: spill/fill of different pointers stx - leak sock unpriv: spill/fill of different pointers stx - sock and ctx (read) unpriv: spill/fill of different pointers stx - sock and ctx (write) Signed-off-by: Joe Stringer <joe@wand.net.nz> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 04:35:38 +08:00
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
BPF_MOV64_IMM(BPF_REG_4, 0), \
BPF_MOV64_IMM(BPF_REG_5, 0), \
BPF_EMIT_CALL(BPF_FUNC_ ## func)
selftests/bpf: Add tests for reference tracking reference tracking: leak potential reference reference tracking: leak potential reference on stack reference tracking: leak potential reference on stack 2 reference tracking: zero potential reference reference tracking: copy and zero potential references reference tracking: release reference without check reference tracking: release reference reference tracking: release reference twice reference tracking: release reference twice inside branch reference tracking: alloc, check, free in one subbranch reference tracking: alloc, check, free in both subbranches reference tracking in call: free reference in subprog reference tracking in call: free reference in subprog and outside reference tracking in call: alloc & leak reference in subprog reference tracking in call: alloc in subprog, release outside reference tracking in call: sk_ptr leak into caller stack reference tracking in call: sk_ptr spill into caller stack reference tracking: allow LD_ABS reference tracking: forbid LD_ABS while holding reference reference tracking: allow LD_IND reference tracking: forbid LD_IND while holding reference reference tracking: check reference or tail call reference tracking: release reference then tail call reference tracking: leak possible reference over tail call reference tracking: leak checked reference over tail call reference tracking: mangle and release sock_or_null reference tracking: mangle and release sock reference tracking: access member reference tracking: write to member reference tracking: invalid 64-bit access of member reference tracking: access after release reference tracking: direct access for lookup unpriv: spill/fill of different pointers stx - ctx and sock unpriv: spill/fill of different pointers stx - leak sock unpriv: spill/fill of different pointers stx - sock and ctx (read) unpriv: spill/fill of different pointers stx - sock and ctx (write) Signed-off-by: Joe Stringer <joe@wand.net.nz> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 04:35:38 +08:00
/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
* value into 0 and does necessary preparation for direct packet access
* through r2. The allowed access range is 8 bytes.
*/
#define BPF_DIRECT_PKT_R2 \
BPF_MOV64_IMM(BPF_REG_0, 0), \
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
offsetof(struct __sk_buff, data)), \
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
offsetof(struct __sk_buff, data_end)), \
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
BPF_EXIT_INSN()
/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
* positive u32, and zero-extend it into 64-bit.
*/
#define BPF_RAND_UEXT_R7 \
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
BPF_FUNC_get_prandom_u32), \
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
* negative u32, and sign-extend it into 64-bit.
*/
#define BPF_RAND_SEXT_R7 \
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
BPF_FUNC_get_prandom_u32), \
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
static struct bpf_test tests[] = {
#define FILL_ARRAY
#include <verifier/tests.h>
#undef FILL_ARRAY
};
static int probe_filter_length(const struct bpf_insn *fp)
{
int len;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].imm != 0)
break;
return len + 1;
}
static bool skip_unsupported_map(enum bpf_map_type map_type)
{
if (!bpf_probe_map_type(map_type, 0)) {
printf("SKIP (unsupported map type %d)\n", map_type);
skips++;
return true;
}
return false;
}
static int __create_map(uint32_t type, uint32_t size_key,
uint32_t size_value, uint32_t max_elem,
uint32_t extra_flags)
{
int fd;
fd = bpf_create_map(type, size_key, size_value, max_elem,
(type == BPF_MAP_TYPE_HASH ?
BPF_F_NO_PREALLOC : 0) | extra_flags);
if (fd < 0) {
if (skip_unsupported_map(type))
return -1;
printf("Failed to create hash map '%s'!\n", strerror(errno));
}
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
return fd;
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
}
static int create_map(uint32_t type, uint32_t size_key,
uint32_t size_value, uint32_t max_elem)
{
return __create_map(type, size_key, size_value, max_elem, 0);
}
static void update_map(int fd, int index)
{
struct test_val value = {
.index = (6 + 1) * sizeof(int),
.foo[6] = 0xabcdef12,
};
assert(!bpf_map_update_elem(fd, &index, &value, 0));
}
static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_0, ret),
BPF_EXIT_INSN(),
};
return bpf_load_program(prog_type, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
int idx, int ret)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_3, idx),
BPF_LD_MAP_FD(BPF_REG_2, mfd),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, ret),
BPF_EXIT_INSN(),
};
return bpf_load_program(prog_type, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
int p1key, int p2key, int p3key)
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
{
int mfd, p1fd, p2fd, p3fd;
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
sizeof(int), max_elem, 0);
if (mfd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
return -1;
printf("Failed to create prog array '%s'!\n", strerror(errno));
return -1;
}
p1fd = create_prog_dummy_simple(prog_type, 42);
p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
p3fd = create_prog_dummy_simple(prog_type, 24);
if (p1fd < 0 || p2fd < 0 || p3fd < 0)
goto err;
if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
goto err;
if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
goto err;
if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
err:
close(mfd);
mfd = -1;
}
close(p3fd);
close(p2fd);
close(p1fd);
return mfd;
}
static int create_map_in_map(void)
{
int inner_map_fd, outer_map_fd;
inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(int), 1, 0);
if (inner_map_fd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
return -1;
printf("Failed to create array '%s'!\n", strerror(errno));
return inner_map_fd;
}
outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
sizeof(int), inner_map_fd, 1, 0);
if (outer_map_fd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
return -1;
printf("Failed to create array of maps '%s'!\n",
strerror(errno));
}
close(inner_map_fd);
return outer_map_fd;
}
static int create_cgroup_storage(bool percpu)
{
enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
BPF_MAP_TYPE_CGROUP_STORAGE;
int fd;
fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
TEST_DATA_LEN, 0, 0);
if (fd < 0) {
if (skip_unsupported_map(type))
return -1;
printf("Failed to create cgroup storage '%s'!\n",
strerror(errno));
}
return fd;
}
/* struct bpf_spin_lock {
* int val;
* };
* struct val {
* int cnt;
* struct bpf_spin_lock l;
* };
*/
static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
static __u32 btf_raw_types[] = {
/* int */
BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
/* struct bpf_spin_lock */ /* [2] */
BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
BTF_MEMBER_ENC(15, 1, 0), /* int val; */
/* struct val */ /* [3] */
BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
};
static int load_btf(void)
{
struct btf_header hdr = {
.magic = BTF_MAGIC,
.version = BTF_VERSION,
.hdr_len = sizeof(struct btf_header),
.type_len = sizeof(btf_raw_types),
.str_off = sizeof(btf_raw_types),
.str_len = sizeof(btf_str_sec),
};
void *ptr, *raw_btf;
int btf_fd;
ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
sizeof(btf_str_sec));
memcpy(ptr, &hdr, sizeof(hdr));
ptr += sizeof(hdr);
memcpy(ptr, btf_raw_types, hdr.type_len);
ptr += hdr.type_len;
memcpy(ptr, btf_str_sec, hdr.str_len);
ptr += hdr.str_len;
btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
free(raw_btf);
if (btf_fd < 0)
return -1;
return btf_fd;
}
static int create_map_spin_lock(void)
{
struct bpf_create_map_attr attr = {
.name = "test_map",
.map_type = BPF_MAP_TYPE_ARRAY,
.key_size = 4,
.value_size = 8,
.max_entries = 1,
.btf_key_type_id = 1,
.btf_value_type_id = 3,
};
int fd, btf_fd;
btf_fd = load_btf();
if (btf_fd < 0)
return -1;
attr.btf_fd = btf_fd;
fd = bpf_create_map_xattr(&attr);
if (fd < 0)
printf("Failed to create map with spin_lock\n");
return fd;
}
static int create_sk_storage_map(void)
{
struct bpf_create_map_attr attr = {
.name = "test_map",
.map_type = BPF_MAP_TYPE_SK_STORAGE,
.key_size = 4,
.value_size = 8,
.max_entries = 0,
.map_flags = BPF_F_NO_PREALLOC,
.btf_key_type_id = 1,
.btf_value_type_id = 3,
};
int fd, btf_fd;
btf_fd = load_btf();
if (btf_fd < 0)
return -1;
attr.btf_fd = btf_fd;
fd = bpf_create_map_xattr(&attr);
close(attr.btf_fd);
if (fd < 0)
printf("Failed to create sk_storage_map\n");
return fd;
}
static char bpf_vlog[UINT_MAX >> 8];
static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
struct bpf_insn *prog, int *map_fds)
{
int *fixup_map_hash_8b = test->fixup_map_hash_8b;
int *fixup_map_hash_48b = test->fixup_map_hash_48b;
int *fixup_map_hash_16b = test->fixup_map_hash_16b;
int *fixup_map_array_48b = test->fixup_map_array_48b;
int *fixup_map_sockmap = test->fixup_map_sockmap;
int *fixup_map_sockhash = test->fixup_map_sockhash;
int *fixup_map_xskmap = test->fixup_map_xskmap;
int *fixup_map_stacktrace = test->fixup_map_stacktrace;
int *fixup_prog1 = test->fixup_prog1;
int *fixup_prog2 = test->fixup_prog2;
int *fixup_map_in_map = test->fixup_map_in_map;
int *fixup_cgroup_storage = test->fixup_cgroup_storage;
int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
int *fixup_map_spin_lock = test->fixup_map_spin_lock;
int *fixup_map_array_ro = test->fixup_map_array_ro;
int *fixup_map_array_wo = test->fixup_map_array_wo;
int *fixup_map_array_small = test->fixup_map_array_small;
int *fixup_sk_storage_map = test->fixup_sk_storage_map;
int *fixup_map_event_output = test->fixup_map_event_output;
int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
int *fixup_map_ringbuf = test->fixup_map_ringbuf;
if (test->fill_helper) {
test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
test->fill_helper(test);
}
/* Allocating HTs with 1 elem is fine here, since we only test
* for verifier and not do a runtime lookup, so the only thing
* that really matters is value size in this case.
*/
if (*fixup_map_hash_8b) {
map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(long long), 1);
do {
prog[*fixup_map_hash_8b].imm = map_fds[0];
fixup_map_hash_8b++;
} while (*fixup_map_hash_8b);
}
if (*fixup_map_hash_48b) {
map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct test_val), 1);
do {
prog[*fixup_map_hash_48b].imm = map_fds[1];
fixup_map_hash_48b++;
} while (*fixup_map_hash_48b);
}
if (*fixup_map_hash_16b) {
map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct other_val), 1);
do {
prog[*fixup_map_hash_16b].imm = map_fds[2];
fixup_map_hash_16b++;
} while (*fixup_map_hash_16b);
}
if (*fixup_map_array_48b) {
map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1);
update_map(map_fds[3], 0);
do {
prog[*fixup_map_array_48b].imm = map_fds[3];
fixup_map_array_48b++;
} while (*fixup_map_array_48b);
}
if (*fixup_prog1) {
map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
do {
prog[*fixup_prog1].imm = map_fds[4];
fixup_prog1++;
} while (*fixup_prog1);
}
if (*fixup_prog2) {
map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
do {
prog[*fixup_prog2].imm = map_fds[5];
fixup_prog2++;
} while (*fixup_prog2);
}
if (*fixup_map_in_map) {
map_fds[6] = create_map_in_map();
do {
prog[*fixup_map_in_map].imm = map_fds[6];
fixup_map_in_map++;
} while (*fixup_map_in_map);
}
if (*fixup_cgroup_storage) {
map_fds[7] = create_cgroup_storage(false);
do {
prog[*fixup_cgroup_storage].imm = map_fds[7];
fixup_cgroup_storage++;
} while (*fixup_cgroup_storage);
}
if (*fixup_percpu_cgroup_storage) {
map_fds[8] = create_cgroup_storage(true);
do {
prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
fixup_percpu_cgroup_storage++;
} while (*fixup_percpu_cgroup_storage);
}
if (*fixup_map_sockmap) {
map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_sockmap].imm = map_fds[9];
fixup_map_sockmap++;
} while (*fixup_map_sockmap);
}
if (*fixup_map_sockhash) {
map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_sockhash].imm = map_fds[10];
fixup_map_sockhash++;
} while (*fixup_map_sockhash);
}
if (*fixup_map_xskmap) {
map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_xskmap].imm = map_fds[11];
fixup_map_xskmap++;
} while (*fixup_map_xskmap);
}
if (*fixup_map_stacktrace) {
map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
sizeof(u64), 1);
do {
prog[*fixup_map_stacktrace].imm = map_fds[12];
fixup_map_stacktrace++;
} while (*fixup_map_stacktrace);
}
if (*fixup_map_spin_lock) {
map_fds[13] = create_map_spin_lock();
do {
prog[*fixup_map_spin_lock].imm = map_fds[13];
fixup_map_spin_lock++;
} while (*fixup_map_spin_lock);
}
if (*fixup_map_array_ro) {
map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1,
BPF_F_RDONLY_PROG);
update_map(map_fds[14], 0);
do {
prog[*fixup_map_array_ro].imm = map_fds[14];
fixup_map_array_ro++;
} while (*fixup_map_array_ro);
}
if (*fixup_map_array_wo) {
map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1,
BPF_F_WRONLY_PROG);
update_map(map_fds[15], 0);
do {
prog[*fixup_map_array_wo].imm = map_fds[15];
fixup_map_array_wo++;
} while (*fixup_map_array_wo);
}
if (*fixup_map_array_small) {
map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1, 1, 0);
update_map(map_fds[16], 0);
do {
prog[*fixup_map_array_small].imm = map_fds[16];
fixup_map_array_small++;
} while (*fixup_map_array_small);
}
if (*fixup_sk_storage_map) {
map_fds[17] = create_sk_storage_map();
do {
prog[*fixup_sk_storage_map].imm = map_fds[17];
fixup_sk_storage_map++;
} while (*fixup_sk_storage_map);
}
if (*fixup_map_event_output) {
map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
sizeof(int), sizeof(int), 1, 0);
do {
prog[*fixup_map_event_output].imm = map_fds[18];
fixup_map_event_output++;
} while (*fixup_map_event_output);
}
if (*fixup_map_reuseport_array) {
map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
sizeof(u32), sizeof(u64), 1, 0);
do {
prog[*fixup_map_reuseport_array].imm = map_fds[19];
fixup_map_reuseport_array++;
} while (*fixup_map_reuseport_array);
}
if (*fixup_map_ringbuf) {
map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
0, 4096);
do {
prog[*fixup_map_ringbuf].imm = map_fds[20];
fixup_map_ringbuf++;
} while (*fixup_map_ringbuf);
}
}
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
struct libcap {
struct __user_cap_header_struct hdr;
struct __user_cap_data_struct data[2];
};
static int set_admin(bool admin)
{
cap_t caps;
/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
const cap_value_t cap_net_admin = CAP_NET_ADMIN;
const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
struct libcap *cap;
int ret = -1;
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return -1;
}
cap = (struct libcap *)caps;
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
perror("cap_set_flag clear admin");
goto out;
}
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
admin ? CAP_SET : CAP_CLEAR)) {
perror("cap_set_flag set_or_clear net");
goto out;
}
/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
* so update effective bits manually
*/
if (admin) {
cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
} else {
cap->data[1].effective &= ~(1 << (38 - 32));
cap->data[1].effective &= ~(1 << (39 - 32));
}
if (cap_set_proc(caps)) {
perror("cap_set_proc");
goto out;
}
ret = 0;
out:
if (cap_free(caps))
perror("cap_free");
return ret;
}
static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
void *data, size_t size_data)
{
__u8 tmp[TEST_DATA_LEN << 2];
__u32 size_tmp = sizeof(tmp);
uint32_t retval;
int err, saved_errno;
if (unpriv)
set_admin(true);
err = bpf_prog_test_run(fd_prog, 1, data, size_data,
tmp, &size_tmp, &retval, NULL);
saved_errno = errno;
if (unpriv)
set_admin(false);
if (err) {
switch (saved_errno) {
case 524/*ENOTSUPP*/:
printf("Did not run the program (not supported) ");
return 0;
case EPERM:
if (unpriv) {
printf("Did not run the program (no permission) ");
return 0;
}
/* fallthrough; */
default:
printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
strerror(saved_errno));
return err;
}
}
if (retval != expected_val &&
expected_val != POINTER_VALUE) {
printf("FAIL retval %d != %d ", retval, expected_val);
return 1;
}
return 0;
}
/* Returns true if every part of exp (tab-separated) appears in log, in order.
*
* If exp is an empty string, returns true.
*/
static bool cmp_str_seq(const char *log, const char *exp)
{
char needle[200];
const char *p, *q;
int len;
do {
if (!strlen(exp))
break;
p = strchr(exp, '\t');
if (!p)
p = exp + strlen(exp);
len = p - exp;
if (len >= sizeof(needle) || !len) {
printf("FAIL\nTestcase bug\n");
return false;
}
strncpy(needle, exp, len);
needle[len] = 0;
q = strstr(log, needle);
if (!q) {
printf("FAIL\nUnexpected verifier log!\n"
"EXP: %s\nRES:\n", needle);
return false;
}
log = q + len;
exp = p + 1;
} while (*p);
return true;
}
static void do_test_single(struct bpf_test *test, bool unpriv,
int *passes, int *errors)
{
int fd_prog, expected_ret, alignment_prevented_execution;
int prog_len, prog_type = test->prog_type;
struct bpf_insn *prog = test->insns;
struct bpf_load_program_attr attr;
int run_errs, run_successes;
int map_fds[MAX_NR_MAPS];
const char *expected_err;
int saved_errno;
int fixup_skips;
__u32 pflags;
int i, err;
for (i = 0; i < MAX_NR_MAPS; i++)
map_fds[i] = -1;
if (!prog_type)
prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
fixup_skips = skips;
do_test_fixup(test, prog_type, prog, map_fds);
if (test->fill_insns) {
prog = test->fill_insns;
prog_len = test->prog_len;
} else {
prog_len = probe_filter_length(prog);
}
/* If there were some map skips during fixup due to missing bpf
* features, skip this test.
*/
if (fixup_skips != skips)
return;
selftests: bpf: enable hi32 randomization for all tests The previous libbpf patch allows user to specify "prog_flags" to bpf program load APIs. To enable high 32-bit randomization for a test, we need to set BPF_F_TEST_RND_HI32 in "prog_flags". To enable such randomization for all tests, we need to make sure all places are passing BPF_F_TEST_RND_HI32. Changing them one by one is not convenient, also, it would be better if a test could be switched to "normal" running mode without code change. Given the program load APIs used across bpf selftests are mostly: bpf_prog_load: load from file bpf_load_program: load from raw insns A test_stub.c is implemented for bpf seltests, it offers two functions for testing purpose: bpf_prog_test_load bpf_test_load_program The are the same as "bpf_prog_load" and "bpf_load_program", except they also set BPF_F_TEST_RND_HI32. Given *_xattr functions are the APIs to customize any "prog_flags", it makes little sense to put these two functions into libbpf. Then, the following CFLAGS are passed to compilations for host programs: -Dbpf_prog_load=bpf_prog_test_load -Dbpf_load_program=bpf_test_load_program They migrate the used load APIs to the test version, hence enable high 32-bit randomization for these tests without changing source code. Besides all these, there are several testcases are using "bpf_prog_load_attr" directly, their call sites are updated to pass BPF_F_TEST_RND_HI32. Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-25 06:25:21 +08:00
pflags = BPF_F_TEST_RND_HI32;
if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
pflags |= BPF_F_STRICT_ALIGNMENT;
if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
pflags |= BPF_F_ANY_ALIGNMENT;
if (test->flags & ~3)
pflags |= test->flags;
expected_ret = unpriv && test->result_unpriv != UNDEF ?
test->result_unpriv : test->result;
expected_err = unpriv && test->errstr_unpriv ?
test->errstr_unpriv : test->errstr;
memset(&attr, 0, sizeof(attr));
attr.prog_type = prog_type;
attr.expected_attach_type = test->expected_attach_type;
attr.insns = prog;
attr.insns_cnt = prog_len;
attr.license = "GPL";
bpf: Make verifier log more relevant by default To make BPF verifier verbose log more releavant and easier to use to debug verification failures, "pop" parts of log that were successfully verified. This has effect of leaving only verifier logs that correspond to code branches that lead to verification failure, which in practice should result in much shorter and more relevant verifier log dumps. This behavior is made the default behavior and can be overriden to do exhaustive logging by specifying BPF_LOG_LEVEL2 log level. Using BPF_LOG_LEVEL2 to disable this behavior is not ideal, because in some cases it's good to have BPF_LOG_LEVEL2 per-instruction register dump verbosity, but still have only relevant verifier branches logged. But for this patch, I didn't want to add any new flags. It might be worth-while to just rethink how BPF verifier logging is performed and requested and streamline it a bit. But this trimming of successfully verified branches seems to be useful and a good default behavior. To test this, I modified runqslower slightly to introduce read of uninitialized stack variable. Log (**truncated in the middle** to save many lines out of this commit message) BEFORE this change: ; int handle__sched_switch(u64 *ctx) 0: (bf) r6 = r1 ; struct task_struct *prev = (struct task_struct *)ctx[1]; 1: (79) r1 = *(u64 *)(r6 +8) func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct' 2: (b7) r2 = 0 ; struct event event = {}; 3: (7b) *(u64 *)(r10 -24) = r2 last_idx 3 first_idx 0 regs=4 stack=0 before 2: (b7) r2 = 0 4: (7b) *(u64 *)(r10 -32) = r2 5: (7b) *(u64 *)(r10 -40) = r2 6: (7b) *(u64 *)(r10 -48) = r2 ; if (prev->state == TASK_RUNNING) [ ... instruction dump from insn #7 through #50 are cut out ... ] 51: (b7) r2 = 16 52: (85) call bpf_get_current_comm#16 last_idx 52 first_idx 42 regs=4 stack=0 before 51: (b7) r2 = 16 ; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU, 53: (bf) r1 = r6 54: (18) r2 = 0xffff8881f3868800 56: (18) r3 = 0xffffffff 58: (bf) r4 = r7 59: (b7) r5 = 32 60: (85) call bpf_perf_event_output#25 last_idx 60 first_idx 53 regs=20 stack=0 before 59: (b7) r5 = 32 61: (bf) r2 = r10 ; event.pid = pid; 62: (07) r2 += -16 ; bpf_map_delete_elem(&start, &pid); 63: (18) r1 = 0xffff8881f3868000 65: (85) call bpf_map_delete_elem#3 ; } 66: (b7) r0 = 0 67: (95) exit from 44 to 66: safe from 34 to 66: safe from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; bpf_map_update_elem(&start, &pid, &ts, 0); 28: (bf) r2 = r10 ; 29: (07) r2 += -16 ; tsp = bpf_map_lookup_elem(&start, &pid); 30: (18) r1 = 0xffff8881f3868000 32: (85) call bpf_map_lookup_elem#1 invalid indirect read from stack off -16+0 size 4 processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4 Notice how there is a successful code path from instruction 0 through 67, few successfully verified jumps (44->66, 34->66), and only after that 11->28 jump plus error on instruction #32. AFTER this change (full verifier log, **no truncation**): ; int handle__sched_switch(u64 *ctx) 0: (bf) r6 = r1 ; struct task_struct *prev = (struct task_struct *)ctx[1]; 1: (79) r1 = *(u64 *)(r6 +8) func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct' 2: (b7) r2 = 0 ; struct event event = {}; 3: (7b) *(u64 *)(r10 -24) = r2 last_idx 3 first_idx 0 regs=4 stack=0 before 2: (b7) r2 = 0 4: (7b) *(u64 *)(r10 -32) = r2 5: (7b) *(u64 *)(r10 -40) = r2 6: (7b) *(u64 *)(r10 -48) = r2 ; if (prev->state == TASK_RUNNING) 7: (79) r2 = *(u64 *)(r1 +16) ; if (prev->state == TASK_RUNNING) 8: (55) if r2 != 0x0 goto pc+19 R1_w=ptr_task_struct(id=0,off=0,imm=0) R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; trace_enqueue(prev->tgid, prev->pid); 9: (61) r1 = *(u32 *)(r1 +1184) 10: (63) *(u32 *)(r10 -4) = r1 ; if (!pid || (targ_pid && targ_pid != pid)) 11: (15) if r1 == 0x0 goto pc+16 from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 ; bpf_map_update_elem(&start, &pid, &ts, 0); 28: (bf) r2 = r10 ; 29: (07) r2 += -16 ; tsp = bpf_map_lookup_elem(&start, &pid); 30: (18) r1 = 0xffff8881db3ce800 32: (85) call bpf_map_lookup_elem#1 invalid indirect read from stack off -16+0 size 4 processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4 Notice how in this case, there are 0-11 instructions + jump from 11 to 28 is recorded + 28-32 instructions with error on insn #32. test_verifier test runner was updated to specify BPF_LOG_LEVEL2 for VERBOSE_ACCEPT expected result due to potentially "incomplete" success verbose log at BPF_LOG_LEVEL1. On success, verbose log will only have a summary of number of processed instructions, etc, but no branch tracing log. Having just a last succesful branch tracing seemed weird and confusing. Having small and clean summary log in success case seems quite logical and nice, though. Signed-off-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200423195850.1259827-1-andriin@fb.com
2020-04-24 03:58:50 +08:00
if (verbose)
attr.log_level = 1;
else if (expected_ret == VERBOSE_ACCEPT)
attr.log_level = 2;
else
attr.log_level = 4;
attr.prog_flags = pflags;
if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
attr.expected_attach_type);
if (attr.attach_btf_id < 0) {
printf("FAIL\nFailed to find BTF ID for '%s'!\n",
test->kfunc);
(*errors)++;
return;
}
}
fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
saved_errno = errno;
/* BPF_PROG_TYPE_TRACING requires more setup and
* bpf_probe_prog_type won't give correct answer
*/
if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
!bpf_probe_prog_type(prog_type, 0)) {
printf("SKIP (unsupported program type %d)\n", prog_type);
skips++;
goto close_fds;
}
alignment_prevented_execution = 0;
if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
if (fd_prog < 0) {
printf("FAIL\nFailed to load prog '%s'!\n",
strerror(saved_errno));
goto fail_log;
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (fd_prog >= 0 &&
(test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
alignment_prevented_execution = 1;
#endif
if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
goto fail_log;
}
} else {
if (fd_prog >= 0) {
printf("FAIL\nUnexpected success to load!\n");
goto fail_log;
}
if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
expected_err, bpf_vlog);
goto fail_log;
}
}
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
if (!unpriv && test->insn_processed) {
uint32_t insn_processed;
char *proc;
proc = strstr(bpf_vlog, "processed ");
insn_processed = atoi(proc + 10);
if (test->insn_processed != insn_processed) {
printf("FAIL\nUnexpected insn_processed %u vs %u\n",
insn_processed, test->insn_processed);
goto fail_log;
}
}
if (verbose)
printf(", verifier log:\n%s", bpf_vlog);
run_errs = 0;
run_successes = 0;
if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
uint32_t expected_val;
int i;
if (!test->runs)
test->runs = 1;
for (i = 0; i < test->runs; i++) {
if (unpriv && test->retvals[i].retval_unpriv)
expected_val = test->retvals[i].retval_unpriv;
else
expected_val = test->retvals[i].retval;
err = do_prog_test_run(fd_prog, unpriv, expected_val,
test->retvals[i].data,
sizeof(test->retvals[i].data));
if (err) {
printf("(run %d/%d) ", i + 1, test->runs);
run_errs++;
} else {
run_successes++;
}
}
}
if (!run_errs) {
(*passes)++;
if (run_successes > 1)
printf("%d cases ", run_successes);
printf("OK");
if (alignment_prevented_execution)
printf(" (NOTE: not executed due to unknown alignment)");
printf("\n");
} else {
printf("\n");
goto fail_log;
}
close_fds:
if (test->fill_insns)
free(test->fill_insns);
close(fd_prog);
for (i = 0; i < MAX_NR_MAPS; i++)
close(map_fds[i]);
sched_yield();
return;
fail_log:
(*errors)++;
printf("%s", bpf_vlog);
goto close_fds;
}
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
static bool is_admin(void)
{
cap_flag_value_t net_priv = CAP_CLEAR;
bool perfmon_priv = false;
bool bpf_priv = false;
struct libcap *cap;
cap_t caps;
#ifdef CAP_IS_SUPPORTED
if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
perror("cap_get_flag");
return false;
}
#endif
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return false;
}
cap = (struct libcap *)caps;
bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
perror("cap_get_flag NET");
if (cap_free(caps))
perror("cap_free");
return bpf_priv && perfmon_priv && net_priv == CAP_SET;
}
static void get_unpriv_disabled()
{
char buf[2];
FILE *fd;
fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
if (!fd) {
perror("fopen /proc/sys/"UNPRIV_SYSCTL);
unpriv_disabled = true;
return;
}
if (fgets(buf, 2, fd) == buf && atoi(buf))
unpriv_disabled = true;
fclose(fd);
}
static bool test_as_unpriv(struct bpf_test *test)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
/* Some architectures have strict alignment requirements. In
* that case, the BPF verifier detects if a program has
* unaligned accesses and rejects them. A user can pass
* BPF_F_ANY_ALIGNMENT to a program to override this
* check. That, however, will only work when a privileged user
* loads a program. An unprivileged user loading a program
* with this flag will be rejected prior entering the
* verifier.
*/
if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
return false;
#endif
return !test->prog_type ||
test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
}
static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
int i, passes = 0, errors = 0;
for (i = from; i < to; i++) {
struct bpf_test *test = &tests[i];
/* Program types that are not supported by non-root we
* skip right away.
*/
if (test_as_unpriv(test) && unpriv_disabled) {
printf("#%d/u %s SKIP\n", i, test->descr);
skips++;
} else if (test_as_unpriv(test)) {
if (!unpriv)
set_admin(false);
printf("#%d/u %s ", i, test->descr);
do_test_single(test, true, &passes, &errors);
if (!unpriv)
set_admin(true);
}
if (unpriv) {
printf("#%d/p %s SKIP\n", i, test->descr);
skips++;
} else {
printf("#%d/p %s ", i, test->descr);
do_test_single(test, false, &passes, &errors);
}
}
printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
skips, errors);
return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}
int main(int argc, char **argv)
{
unsigned int from = 0, to = ARRAY_SIZE(tests);
bool unpriv = !is_admin();
int arg = 1;
if (argc > 1 && strcmp(argv[1], "-v") == 0) {
arg++;
verbose = true;
argc--;
}
if (argc == 3) {
unsigned int l = atoi(argv[arg]);
unsigned int u = atoi(argv[arg + 1]);
if (l < to && u < to) {
from = l;
to = u + 1;
}
} else if (argc == 2) {
unsigned int t = atoi(argv[arg]);
if (t < to) {
from = t;
to = t + 1;
}
}
bpf: add unprivileged bpf tests Add new tests samples/bpf/test_verifier: unpriv: return pointer checks that pointer cannot be returned from the eBPF program unpriv: add const to pointer unpriv: add pointer to pointer unpriv: neg pointer checks that pointer arithmetic is disallowed unpriv: cmp pointer with const unpriv: cmp pointer with pointer checks that comparison of pointers is disallowed Only one case allowed 'void *value = bpf_map_lookup_elem(..); if (value == 0) ...' unpriv: check that printk is disallowed since bpf_trace_printk is not available to unprivileged unpriv: pass pointer to helper function checks that pointers cannot be passed to functions that expect integers If function expects a pointer the verifier allows only that type of pointer. Like 1st argument of bpf_map_lookup_elem() must be pointer to map. (applies to non-root as well) unpriv: indirectly pass pointer on stack to helper function checks that pointer stored into stack cannot be used as part of key passed into bpf_map_lookup_elem() unpriv: mangle pointer on stack 1 unpriv: mangle pointer on stack 2 checks that writing into stack slot that already contains a pointer is disallowed unpriv: read pointer from stack in small chunks checks that < 8 byte read from stack slot that contains a pointer is disallowed unpriv: write pointer into ctx checks that storing pointers into skb->fields is disallowed unpriv: write pointer into map elem value checks that storing pointers into element values is disallowed For example: int bpf_prog(struct __sk_buff *skb) { u32 key = 0; u64 *value = bpf_map_lookup_elem(&map, &key); if (value) *value = (u64) skb; } will be rejected. unpriv: partial copy of pointer checks that doing 32-bit register mov from register containing a pointer is disallowed unpriv: pass pointer to tail_call checks that passing pointer as an index into bpf_tail_call is disallowed unpriv: cmp map pointer with zero checks that comparing map pointer with constant is disallowed unpriv: write into frame pointer checks that frame pointer is read-only (applies to root too) unpriv: cmp of frame pointer checks that R10 cannot be using in comparison unpriv: cmp of stack pointer checks that Rx = R10 - imm is ok, but comparing Rx is not unpriv: obfuscate stack pointer checks that Rx = R10 - imm is ok, but Rx -= imm is not Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-10-08 13:23:23 +08:00
get_unpriv_disabled();
if (unpriv && unpriv_disabled) {
printf("Cannot run as unprivileged user with sysctl %s.\n",
UNPRIV_SYSCTL);
return EXIT_FAILURE;
}
bpf_semi_rand_init();
return do_test(unpriv, from, to);
}