linux/drivers/net/phy/amd-xgbe-phy.c

1458 lines
37 KiB
C
Raw Normal View History

/*
* AMD 10Gb Ethernet PHY driver
*
* This file is available to you under your choice of the following two
* licenses:
*
* License 1: GPLv2
*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* This file is free software; you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or (at
* your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* License 2: Modified BSD
*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Advanced Micro Devices, Inc. nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <linux/mdio.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/uaccess.h>
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION("1.0.0-a");
MODULE_DESCRIPTION("AMD 10GbE (amd-xgbe) PHY driver");
#define XGBE_PHY_ID 0x000162d0
#define XGBE_PHY_MASK 0xfffffff0
#define XGBE_PHY_SPEEDSET_PROPERTY "amd,speed-set"
#define XGBE_AN_INT_CMPLT 0x01
#define XGBE_AN_INC_LINK 0x02
#define XGBE_AN_PG_RCV 0x04
#define XNP_MCF_NULL_MESSAGE 0x001
#define XNP_ACK_PROCESSED (1 << 12)
#define XNP_MP_FORMATTED (1 << 13)
#define XNP_NP_EXCHANGE (1 << 15)
#define XGBE_PHY_RATECHANGE_COUNT 500
#ifndef MDIO_PMA_10GBR_PMD_CTRL
#define MDIO_PMA_10GBR_PMD_CTRL 0x0096
#endif
#ifndef MDIO_PMA_10GBR_FEC_CTRL
#define MDIO_PMA_10GBR_FEC_CTRL 0x00ab
#endif
#ifndef MDIO_AN_XNP
#define MDIO_AN_XNP 0x0016
#endif
#ifndef MDIO_AN_INTMASK
#define MDIO_AN_INTMASK 0x8001
#endif
#ifndef MDIO_AN_INT
#define MDIO_AN_INT 0x8002
#endif
#ifndef MDIO_CTRL1_SPEED1G
#define MDIO_CTRL1_SPEED1G (MDIO_CTRL1_SPEED10G & ~BMCR_SPEED100)
#endif
/* SerDes integration register offsets */
#define SIR0_KR_RT_1 0x002c
#define SIR0_STATUS 0x0040
#define SIR1_SPEED 0x0000
/* SerDes integration register entry bit positions and sizes */
#define SIR0_KR_RT_1_RESET_INDEX 11
#define SIR0_KR_RT_1_RESET_WIDTH 1
#define SIR0_STATUS_RX_READY_INDEX 0
#define SIR0_STATUS_RX_READY_WIDTH 1
#define SIR0_STATUS_TX_READY_INDEX 8
#define SIR0_STATUS_TX_READY_WIDTH 1
#define SIR1_SPEED_DATARATE_INDEX 4
#define SIR1_SPEED_DATARATE_WIDTH 2
#define SIR1_SPEED_PI_SPD_SEL_INDEX 12
#define SIR1_SPEED_PI_SPD_SEL_WIDTH 4
#define SIR1_SPEED_PLLSEL_INDEX 3
#define SIR1_SPEED_PLLSEL_WIDTH 1
#define SIR1_SPEED_RATECHANGE_INDEX 6
#define SIR1_SPEED_RATECHANGE_WIDTH 1
#define SIR1_SPEED_TXAMP_INDEX 8
#define SIR1_SPEED_TXAMP_WIDTH 4
#define SIR1_SPEED_WORDMODE_INDEX 0
#define SIR1_SPEED_WORDMODE_WIDTH 3
#define SPEED_10000_CDR 0x7
#define SPEED_10000_PLL 0x1
#define SPEED_10000_RATE 0x0
#define SPEED_10000_TXAMP 0xa
#define SPEED_10000_WORD 0x7
#define SPEED_2500_CDR 0x2
#define SPEED_2500_PLL 0x0
#define SPEED_2500_RATE 0x1
#define SPEED_2500_TXAMP 0xf
#define SPEED_2500_WORD 0x1
#define SPEED_1000_CDR 0x2
#define SPEED_1000_PLL 0x0
#define SPEED_1000_RATE 0x3
#define SPEED_1000_TXAMP 0xf
#define SPEED_1000_WORD 0x1
/* SerDes RxTx register offsets */
#define RXTX_REG20 0x0050
#define RXTX_REG114 0x01c8
/* SerDes RxTx register entry bit positions and sizes */
#define RXTX_REG20_BLWC_ENA_INDEX 2
#define RXTX_REG20_BLWC_ENA_WIDTH 1
#define RXTX_REG114_PQ_REG_INDEX 9
#define RXTX_REG114_PQ_REG_WIDTH 7
#define RXTX_10000_BLWC 0
#define RXTX_10000_PQ 0x1e
#define RXTX_2500_BLWC 1
#define RXTX_2500_PQ 0xa
#define RXTX_1000_BLWC 1
#define RXTX_1000_PQ 0xa
/* Bit setting and getting macros
* The get macro will extract the current bit field value from within
* the variable
*
* The set macro will clear the current bit field value within the
* variable and then set the bit field of the variable to the
* specified value
*/
#define GET_BITS(_var, _index, _width) \
(((_var) >> (_index)) & ((0x1 << (_width)) - 1))
#define SET_BITS(_var, _index, _width, _val) \
do { \
(_var) &= ~(((0x1 << (_width)) - 1) << (_index)); \
(_var) |= (((_val) & ((0x1 << (_width)) - 1)) << (_index)); \
} while (0)
#define XSIR_GET_BITS(_var, _prefix, _field) \
GET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH)
#define XSIR_SET_BITS(_var, _prefix, _field, _val) \
SET_BITS((_var), \
_prefix##_##_field##_INDEX, \
_prefix##_##_field##_WIDTH, (_val))
/* Macros for reading or writing SerDes integration registers
* The ioread macros will get bit fields or full values using the
* register definitions formed using the input names
*
* The iowrite macros will set bit fields or full values using the
* register definitions formed using the input names
*/
#define XSIR0_IOREAD(_priv, _reg) \
ioread16((_priv)->sir0_regs + _reg)
#define XSIR0_IOREAD_BITS(_priv, _reg, _field) \
GET_BITS(XSIR0_IOREAD((_priv), _reg), \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH)
#define XSIR0_IOWRITE(_priv, _reg, _val) \
iowrite16((_val), (_priv)->sir0_regs + _reg)
#define XSIR0_IOWRITE_BITS(_priv, _reg, _field, _val) \
do { \
u16 reg_val = XSIR0_IOREAD((_priv), _reg); \
SET_BITS(reg_val, \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH, (_val)); \
XSIR0_IOWRITE((_priv), _reg, reg_val); \
} while (0)
#define XSIR1_IOREAD(_priv, _reg) \
ioread16((_priv)->sir1_regs + _reg)
#define XSIR1_IOREAD_BITS(_priv, _reg, _field) \
GET_BITS(XSIR1_IOREAD((_priv), _reg), \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH)
#define XSIR1_IOWRITE(_priv, _reg, _val) \
iowrite16((_val), (_priv)->sir1_regs + _reg)
#define XSIR1_IOWRITE_BITS(_priv, _reg, _field, _val) \
do { \
u16 reg_val = XSIR1_IOREAD((_priv), _reg); \
SET_BITS(reg_val, \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH, (_val)); \
XSIR1_IOWRITE((_priv), _reg, reg_val); \
} while (0)
/* Macros for reading or writing SerDes RxTx registers
* The ioread macros will get bit fields or full values using the
* register definitions formed using the input names
*
* The iowrite macros will set bit fields or full values using the
* register definitions formed using the input names
*/
#define XRXTX_IOREAD(_priv, _reg) \
ioread16((_priv)->rxtx_regs + _reg)
#define XRXTX_IOREAD_BITS(_priv, _reg, _field) \
GET_BITS(XRXTX_IOREAD((_priv), _reg), \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH)
#define XRXTX_IOWRITE(_priv, _reg, _val) \
iowrite16((_val), (_priv)->rxtx_regs + _reg)
#define XRXTX_IOWRITE_BITS(_priv, _reg, _field, _val) \
do { \
u16 reg_val = XRXTX_IOREAD((_priv), _reg); \
SET_BITS(reg_val, \
_reg##_##_field##_INDEX, \
_reg##_##_field##_WIDTH, (_val)); \
XRXTX_IOWRITE((_priv), _reg, reg_val); \
} while (0)
enum amd_xgbe_phy_an {
AMD_XGBE_AN_READY = 0,
AMD_XGBE_AN_START,
AMD_XGBE_AN_EVENT,
AMD_XGBE_AN_PAGE_RECEIVED,
AMD_XGBE_AN_INCOMPAT_LINK,
AMD_XGBE_AN_COMPLETE,
AMD_XGBE_AN_NO_LINK,
AMD_XGBE_AN_EXIT,
AMD_XGBE_AN_ERROR,
};
enum amd_xgbe_phy_rx {
AMD_XGBE_RX_READY = 0,
AMD_XGBE_RX_BPA,
AMD_XGBE_RX_XNP,
AMD_XGBE_RX_COMPLETE,
};
enum amd_xgbe_phy_mode {
AMD_XGBE_MODE_KR,
AMD_XGBE_MODE_KX,
};
enum amd_xgbe_phy_speedset {
AMD_XGBE_PHY_SPEEDSET_1000_10000,
AMD_XGBE_PHY_SPEEDSET_2500_10000,
};
struct amd_xgbe_phy_priv {
struct platform_device *pdev;
struct device *dev;
struct phy_device *phydev;
/* SerDes related mmio resources */
struct resource *rxtx_res;
struct resource *sir0_res;
struct resource *sir1_res;
/* SerDes related mmio registers */
void __iomem *rxtx_regs; /* SerDes Rx/Tx CSRs */
void __iomem *sir0_regs; /* SerDes integration registers (1/2) */
void __iomem *sir1_regs; /* SerDes integration registers (2/2) */
/* Maintain link status for re-starting auto-negotiation */
unsigned int link;
enum amd_xgbe_phy_mode mode;
unsigned int speed_set;
/* Auto-negotiation state machine support */
struct mutex an_mutex;
enum amd_xgbe_phy_an an_result;
enum amd_xgbe_phy_an an_state;
enum amd_xgbe_phy_rx kr_state;
enum amd_xgbe_phy_rx kx_state;
struct work_struct an_work;
struct workqueue_struct *an_workqueue;
};
static int amd_xgbe_an_enable_kr_training(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
if (ret < 0)
return ret;
ret |= 0x02;
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret);
return 0;
}
static int amd_xgbe_an_disable_kr_training(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
if (ret < 0)
return ret;
ret &= ~0x02;
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret);
return 0;
}
static int amd_xgbe_phy_pcs_power_cycle(struct phy_device *phydev)
{
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
ret |= MDIO_CTRL1_LPOWER;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
usleep_range(75, 100);
ret &= ~MDIO_CTRL1_LPOWER;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
return 0;
}
static void amd_xgbe_phy_serdes_start_ratechange(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
/* Assert Rx and Tx ratechange */
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, RATECHANGE, 1);
}
static void amd_xgbe_phy_serdes_complete_ratechange(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
unsigned int wait;
u16 status;
/* Release Rx and Tx ratechange */
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, RATECHANGE, 0);
/* Wait for Rx and Tx ready */
wait = XGBE_PHY_RATECHANGE_COUNT;
while (wait--) {
usleep_range(50, 75);
status = XSIR0_IOREAD(priv, SIR0_STATUS);
if (XSIR_GET_BITS(status, SIR0_STATUS, RX_READY) &&
XSIR_GET_BITS(status, SIR0_STATUS, TX_READY))
return;
}
netdev_dbg(phydev->attached_dev, "SerDes rx/tx not ready (%#hx)\n",
status);
}
static int amd_xgbe_phy_xgmii_mode(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ret;
/* Enable KR training */
ret = amd_xgbe_an_enable_kr_training(phydev);
if (ret < 0)
return ret;
/* Set PCS to KR/10G speed */
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (ret < 0)
return ret;
ret &= ~MDIO_PCS_CTRL2_TYPE;
ret |= MDIO_PCS_CTRL2_10GBR;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
ret &= ~MDIO_CTRL1_SPEEDSEL;
ret |= MDIO_CTRL1_SPEED10G;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
ret = amd_xgbe_phy_pcs_power_cycle(phydev);
if (ret < 0)
return ret;
/* Set SerDes to 10G speed */
amd_xgbe_phy_serdes_start_ratechange(phydev);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_10000_RATE);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_10000_WORD);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, SPEED_10000_TXAMP);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_10000_PLL);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PI_SPD_SEL, SPEED_10000_CDR);
XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, RXTX_10000_BLWC);
XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, RXTX_10000_PQ);
amd_xgbe_phy_serdes_complete_ratechange(phydev);
priv->mode = AMD_XGBE_MODE_KR;
return 0;
}
static int amd_xgbe_phy_gmii_2500_mode(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ret;
/* Disable KR training */
ret = amd_xgbe_an_disable_kr_training(phydev);
if (ret < 0)
return ret;
/* Set PCS to KX/1G speed */
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (ret < 0)
return ret;
ret &= ~MDIO_PCS_CTRL2_TYPE;
ret |= MDIO_PCS_CTRL2_10GBX;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
ret &= ~MDIO_CTRL1_SPEEDSEL;
ret |= MDIO_CTRL1_SPEED1G;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
ret = amd_xgbe_phy_pcs_power_cycle(phydev);
if (ret < 0)
return ret;
/* Set SerDes to 2.5G speed */
amd_xgbe_phy_serdes_start_ratechange(phydev);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_2500_RATE);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_2500_WORD);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, SPEED_2500_TXAMP);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_2500_PLL);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PI_SPD_SEL, SPEED_2500_CDR);
XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, RXTX_2500_BLWC);
XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, RXTX_2500_PQ);
amd_xgbe_phy_serdes_complete_ratechange(phydev);
priv->mode = AMD_XGBE_MODE_KX;
return 0;
}
static int amd_xgbe_phy_gmii_mode(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ret;
/* Disable KR training */
ret = amd_xgbe_an_disable_kr_training(phydev);
if (ret < 0)
return ret;
/* Set PCS to KX/1G speed */
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (ret < 0)
return ret;
ret &= ~MDIO_PCS_CTRL2_TYPE;
ret |= MDIO_PCS_CTRL2_10GBX;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
ret &= ~MDIO_CTRL1_SPEEDSEL;
ret |= MDIO_CTRL1_SPEED1G;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
ret = amd_xgbe_phy_pcs_power_cycle(phydev);
if (ret < 0)
return ret;
/* Set SerDes to 1G speed */
amd_xgbe_phy_serdes_start_ratechange(phydev);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_1000_RATE);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_1000_WORD);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, SPEED_1000_TXAMP);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_1000_PLL);
XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PI_SPD_SEL, SPEED_1000_CDR);
XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, RXTX_1000_BLWC);
XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, RXTX_1000_PQ);
amd_xgbe_phy_serdes_complete_ratechange(phydev);
priv->mode = AMD_XGBE_MODE_KX;
return 0;
}
static int amd_xgbe_phy_switch_mode(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ret;
/* If we are in KR switch to KX, and vice-versa */
if (priv->mode == AMD_XGBE_MODE_KR) {
if (priv->speed_set == AMD_XGBE_PHY_SPEEDSET_1000_10000)
ret = amd_xgbe_phy_gmii_mode(phydev);
else
ret = amd_xgbe_phy_gmii_2500_mode(phydev);
} else {
ret = amd_xgbe_phy_xgmii_mode(phydev);
}
return ret;
}
static enum amd_xgbe_phy_an amd_xgbe_an_switch_mode(struct phy_device *phydev)
{
int ret;
ret = amd_xgbe_phy_switch_mode(phydev);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
return AMD_XGBE_AN_START;
}
static enum amd_xgbe_phy_an amd_xgbe_an_tx_training(struct phy_device *phydev,
enum amd_xgbe_phy_rx *state)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ad_reg, lp_reg, ret;
*state = AMD_XGBE_RX_COMPLETE;
/* If we're in KX mode then we're done */
if (priv->mode == AMD_XGBE_MODE_KX)
return AMD_XGBE_AN_EVENT;
/* Enable/Disable FEC */
ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
if (ad_reg < 0)
return AMD_XGBE_AN_ERROR;
lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 2);
if (lp_reg < 0)
return AMD_XGBE_AN_ERROR;
ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FEC_CTRL);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
if ((ad_reg & 0xc000) && (lp_reg & 0xc000))
ret |= 0x01;
else
ret &= ~0x01;
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FEC_CTRL, ret);
/* Start KR training */
ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
XSIR0_IOWRITE_BITS(priv, SIR0_KR_RT_1, RESET, 1);
ret |= 0x01;
phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret);
XSIR0_IOWRITE_BITS(priv, SIR0_KR_RT_1, RESET, 0);
return AMD_XGBE_AN_EVENT;
}
static enum amd_xgbe_phy_an amd_xgbe_an_tx_xnp(struct phy_device *phydev,
enum amd_xgbe_phy_rx *state)
{
u16 msg;
*state = AMD_XGBE_RX_XNP;
msg = XNP_MCF_NULL_MESSAGE;
msg |= XNP_MP_FORMATTED;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP + 2, 0);
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP + 1, 0);
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP, msg);
return AMD_XGBE_AN_EVENT;
}
static enum amd_xgbe_phy_an amd_xgbe_an_rx_bpa(struct phy_device *phydev,
enum amd_xgbe_phy_rx *state)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
unsigned int link_support;
int ret, ad_reg, lp_reg;
/* Read Base Ability register 2 first */
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
/* Check for a supported mode, otherwise restart in a different one */
link_support = (priv->mode == AMD_XGBE_MODE_KR) ? 0x80 : 0x20;
if (!(ret & link_support))
return amd_xgbe_an_switch_mode(phydev);
/* Check Extended Next Page support */
ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (ad_reg < 0)
return AMD_XGBE_AN_ERROR;
lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg < 0)
return AMD_XGBE_AN_ERROR;
return ((ad_reg & XNP_NP_EXCHANGE) || (lp_reg & XNP_NP_EXCHANGE)) ?
amd_xgbe_an_tx_xnp(phydev, state) :
amd_xgbe_an_tx_training(phydev, state);
}
static enum amd_xgbe_phy_an amd_xgbe_an_rx_xnp(struct phy_device *phydev,
enum amd_xgbe_phy_rx *state)
{
int ad_reg, lp_reg;
/* Check Extended Next Page support */
ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (ad_reg < 0)
return AMD_XGBE_AN_ERROR;
lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_reg < 0)
return AMD_XGBE_AN_ERROR;
return ((ad_reg & XNP_NP_EXCHANGE) || (lp_reg & XNP_NP_EXCHANGE)) ?
amd_xgbe_an_tx_xnp(phydev, state) :
amd_xgbe_an_tx_training(phydev, state);
}
static enum amd_xgbe_phy_an amd_xgbe_an_start(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
int ret;
/* Be sure we aren't looping trying to negotiate */
if (priv->mode == AMD_XGBE_MODE_KR) {
if (priv->kr_state != AMD_XGBE_RX_READY)
return AMD_XGBE_AN_NO_LINK;
priv->kr_state = AMD_XGBE_RX_BPA;
} else {
if (priv->kx_state != AMD_XGBE_RX_READY)
return AMD_XGBE_AN_NO_LINK;
priv->kx_state = AMD_XGBE_RX_BPA;
}
/* Set up Advertisement register 3 first */
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
if (phydev->supported & SUPPORTED_10000baseR_FEC)
ret |= 0xc000;
else
ret &= ~0xc000;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2, ret);
/* Set up Advertisement register 2 next */
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
if (phydev->supported & SUPPORTED_10000baseKR_Full)
ret |= 0x80;
else
ret &= ~0x80;
if ((phydev->supported & SUPPORTED_1000baseKX_Full) ||
(phydev->supported & SUPPORTED_2500baseX_Full))
ret |= 0x20;
else
ret &= ~0x20;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1, ret);
/* Set up Advertisement register 1 last */
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
if (phydev->supported & SUPPORTED_Pause)
ret |= 0x400;
else
ret &= ~0x400;
if (phydev->supported & SUPPORTED_Asym_Pause)
ret |= 0x800;
else
ret &= ~0x800;
/* We don't intend to perform XNP */
ret &= ~XNP_NP_EXCHANGE;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE, ret);
/* Enable and start auto-negotiation */
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0);
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
ret |= MDIO_AN_CTRL1_ENABLE;
ret |= MDIO_AN_CTRL1_RESTART;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1, ret);
return AMD_XGBE_AN_EVENT;
}
static enum amd_xgbe_phy_an amd_xgbe_an_event(struct phy_device *phydev)
{
enum amd_xgbe_phy_an new_state;
int ret;
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT);
if (ret < 0)
return AMD_XGBE_AN_ERROR;
new_state = AMD_XGBE_AN_EVENT;
if (ret & XGBE_AN_PG_RCV)
new_state = AMD_XGBE_AN_PAGE_RECEIVED;
else if (ret & XGBE_AN_INC_LINK)
new_state = AMD_XGBE_AN_INCOMPAT_LINK;
else if (ret & XGBE_AN_INT_CMPLT)
new_state = AMD_XGBE_AN_COMPLETE;
if (new_state != AMD_XGBE_AN_EVENT)
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0);
return new_state;
}
static enum amd_xgbe_phy_an amd_xgbe_an_page_received(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
enum amd_xgbe_phy_rx *state;
int ret;
state = (priv->mode == AMD_XGBE_MODE_KR) ? &priv->kr_state
: &priv->kx_state;
switch (*state) {
case AMD_XGBE_RX_BPA:
ret = amd_xgbe_an_rx_bpa(phydev, state);
break;
case AMD_XGBE_RX_XNP:
ret = amd_xgbe_an_rx_xnp(phydev, state);
break;
default:
ret = AMD_XGBE_AN_ERROR;
}
return ret;
}
static enum amd_xgbe_phy_an amd_xgbe_an_incompat_link(struct phy_device *phydev)
{
return amd_xgbe_an_switch_mode(phydev);
}
static void amd_xgbe_an_state_machine(struct work_struct *work)
{
struct amd_xgbe_phy_priv *priv = container_of(work,
struct amd_xgbe_phy_priv,
an_work);
struct phy_device *phydev = priv->phydev;
enum amd_xgbe_phy_an cur_state;
int sleep;
unsigned int an_supported = 0;
while (1) {
mutex_lock(&priv->an_mutex);
cur_state = priv->an_state;
switch (priv->an_state) {
case AMD_XGBE_AN_START:
priv->an_state = amd_xgbe_an_start(phydev);
an_supported = 0;
break;
case AMD_XGBE_AN_EVENT:
priv->an_state = amd_xgbe_an_event(phydev);
break;
case AMD_XGBE_AN_PAGE_RECEIVED:
priv->an_state = amd_xgbe_an_page_received(phydev);
an_supported++;
break;
case AMD_XGBE_AN_INCOMPAT_LINK:
priv->an_state = amd_xgbe_an_incompat_link(phydev);
break;
case AMD_XGBE_AN_COMPLETE:
netdev_info(phydev->attached_dev, "%s successful\n",
an_supported ? "Auto negotiation"
: "Parallel detection");
/* fall through */
case AMD_XGBE_AN_NO_LINK:
case AMD_XGBE_AN_EXIT:
goto exit_unlock;
default:
priv->an_state = AMD_XGBE_AN_ERROR;
}
if (priv->an_state == AMD_XGBE_AN_ERROR) {
netdev_err(phydev->attached_dev,
"error during auto-negotiation, state=%u\n",
cur_state);
goto exit_unlock;
}
sleep = (priv->an_state == AMD_XGBE_AN_EVENT) ? 1 : 0;
mutex_unlock(&priv->an_mutex);
if (sleep)
usleep_range(20, 50);
}
exit_unlock:
priv->an_result = priv->an_state;
priv->an_state = AMD_XGBE_AN_READY;
mutex_unlock(&priv->an_mutex);
}
static int amd_xgbe_phy_soft_reset(struct phy_device *phydev)
{
int count, ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
ret |= MDIO_CTRL1_RESET;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
count = 50;
do {
msleep(20);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
return ret;
} while ((ret & MDIO_CTRL1_RESET) && --count);
if (ret & MDIO_CTRL1_RESET)
return -ETIMEDOUT;
return 0;
}
static int amd_xgbe_phy_config_init(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
/* Initialize supported features */
phydev->supported = SUPPORTED_Autoneg;
phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
phydev->supported |= SUPPORTED_Backplane;
phydev->supported |= SUPPORTED_10000baseKR_Full |
SUPPORTED_10000baseR_FEC;
switch (priv->speed_set) {
case AMD_XGBE_PHY_SPEEDSET_1000_10000:
phydev->supported |= SUPPORTED_1000baseKX_Full;
break;
case AMD_XGBE_PHY_SPEEDSET_2500_10000:
phydev->supported |= SUPPORTED_2500baseX_Full;
break;
}
phydev->advertising = phydev->supported;
/* Turn off and clear interrupts */
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INTMASK, 0);
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0);
return 0;
}
static int amd_xgbe_phy_setup_forced(struct phy_device *phydev)
{
int ret;
/* Disable auto-negotiation */
ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1);
if (ret < 0)
return ret;
ret &= ~MDIO_AN_CTRL1_ENABLE;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1, ret);
/* Validate/Set specified speed */
switch (phydev->speed) {
case SPEED_10000:
ret = amd_xgbe_phy_xgmii_mode(phydev);
break;
case SPEED_2500:
ret = amd_xgbe_phy_gmii_2500_mode(phydev);
break;
case SPEED_1000:
ret = amd_xgbe_phy_gmii_mode(phydev);
break;
default:
ret = -EINVAL;
}
if (ret < 0)
return ret;
/* Validate duplex mode */
if (phydev->duplex != DUPLEX_FULL)
return -EINVAL;
phydev->pause = 0;
phydev->asym_pause = 0;
return 0;
}
static int amd_xgbe_phy_config_aneg(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
u32 mmd_mask = phydev->c45_ids.devices_in_package;
int ret;
if (phydev->autoneg != AUTONEG_ENABLE)
return amd_xgbe_phy_setup_forced(phydev);
/* Make sure we have the AN MMD present */
if (!(mmd_mask & MDIO_DEVS_AN))
return -EINVAL;
/* Get the current speed mode */
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (ret < 0)
return ret;
/* Start/Restart the auto-negotiation state machine */
mutex_lock(&priv->an_mutex);
priv->an_result = AMD_XGBE_AN_READY;
priv->an_state = AMD_XGBE_AN_START;
priv->kr_state = AMD_XGBE_RX_READY;
priv->kx_state = AMD_XGBE_RX_READY;
mutex_unlock(&priv->an_mutex);
queue_work(priv->an_workqueue, &priv->an_work);
return 0;
}
static int amd_xgbe_phy_aneg_done(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
enum amd_xgbe_phy_an state;
mutex_lock(&priv->an_mutex);
state = priv->an_result;
mutex_unlock(&priv->an_mutex);
return (state == AMD_XGBE_AN_COMPLETE);
}
static int amd_xgbe_phy_update_link(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
enum amd_xgbe_phy_an state;
unsigned int check_again, autoneg;
int ret;
/* If we're doing auto-negotiation don't report link down */
mutex_lock(&priv->an_mutex);
state = priv->an_state;
mutex_unlock(&priv->an_mutex);
if (state != AMD_XGBE_AN_READY) {
phydev->link = 1;
return 0;
}
/* Since the device can be in the wrong mode when a link is
* (re-)established (cable connected after the interface is
* up, etc.), the link status may report no link. If there
* is no link, try switching modes and checking the status
* again if auto negotiation is enabled.
*/
check_again = (phydev->autoneg == AUTONEG_ENABLE) ? 1 : 0;
again:
/* Link status is latched low, so read once to clear
* and then read again to get current state
*/
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_STAT1);
if (ret < 0)
return ret;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_STAT1);
if (ret < 0)
return ret;
phydev->link = (ret & MDIO_STAT1_LSTATUS) ? 1 : 0;
if (!phydev->link) {
if (check_again) {
ret = amd_xgbe_phy_switch_mode(phydev);
if (ret < 0)
return ret;
check_again = 0;
goto again;
}
}
autoneg = (phydev->link && !priv->link) ? 1 : 0;
priv->link = phydev->link;
if (autoneg) {
/* Link is (back) up, re-start auto-negotiation */
ret = amd_xgbe_phy_config_aneg(phydev);
if (ret < 0)
return ret;
}
return 0;
}
static int amd_xgbe_phy_read_status(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
u32 mmd_mask = phydev->c45_ids.devices_in_package;
int ret, mode, ad_ret, lp_ret;
ret = amd_xgbe_phy_update_link(phydev);
if (ret)
return ret;
mode = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (mode < 0)
return mode;
mode &= MDIO_PCS_CTRL2_TYPE;
if (phydev->autoneg == AUTONEG_ENABLE) {
if (!(mmd_mask & MDIO_DEVS_AN))
return -EINVAL;
if (!amd_xgbe_phy_aneg_done(phydev))
return 0;
/* Compare Advertisement and Link Partner register 1 */
ad_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (ad_ret < 0)
return ad_ret;
lp_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA);
if (lp_ret < 0)
return lp_ret;
ad_ret &= lp_ret;
phydev->pause = (ad_ret & 0x400) ? 1 : 0;
phydev->asym_pause = (ad_ret & 0x800) ? 1 : 0;
/* Compare Advertisement and Link Partner register 2 */
ad_ret = phy_read_mmd(phydev, MDIO_MMD_AN,
MDIO_AN_ADVERTISE + 1);
if (ad_ret < 0)
return ad_ret;
lp_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 1);
if (lp_ret < 0)
return lp_ret;
ad_ret &= lp_ret;
if (ad_ret & 0x80) {
phydev->speed = SPEED_10000;
if (mode != MDIO_PCS_CTRL2_10GBR) {
ret = amd_xgbe_phy_xgmii_mode(phydev);
if (ret < 0)
return ret;
}
} else {
int (*mode_fcn)(struct phy_device *);
if (priv->speed_set ==
AMD_XGBE_PHY_SPEEDSET_1000_10000) {
phydev->speed = SPEED_1000;
mode_fcn = amd_xgbe_phy_gmii_mode;
} else {
phydev->speed = SPEED_2500;
mode_fcn = amd_xgbe_phy_gmii_2500_mode;
}
if (mode == MDIO_PCS_CTRL2_10GBR) {
ret = mode_fcn(phydev);
if (ret < 0)
return ret;
}
}
phydev->duplex = DUPLEX_FULL;
} else {
if (mode == MDIO_PCS_CTRL2_10GBR) {
phydev->speed = SPEED_10000;
} else {
if (priv->speed_set ==
AMD_XGBE_PHY_SPEEDSET_1000_10000)
phydev->speed = SPEED_1000;
else
phydev->speed = SPEED_2500;
}
phydev->duplex = DUPLEX_FULL;
phydev->pause = 0;
phydev->asym_pause = 0;
}
return 0;
}
static int amd_xgbe_phy_suspend(struct phy_device *phydev)
{
int ret;
mutex_lock(&phydev->lock);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
goto unlock;
ret |= MDIO_CTRL1_LPOWER;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
ret = 0;
unlock:
mutex_unlock(&phydev->lock);
return ret;
}
static int amd_xgbe_phy_resume(struct phy_device *phydev)
{
int ret;
mutex_lock(&phydev->lock);
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1);
if (ret < 0)
goto unlock;
ret &= ~MDIO_CTRL1_LPOWER;
phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret);
ret = 0;
unlock:
mutex_unlock(&phydev->lock);
return ret;
}
static int amd_xgbe_phy_probe(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv;
struct platform_device *pdev;
struct device *dev;
char *wq_name;
const __be32 *property;
unsigned int speed_set;
int ret;
if (!phydev->dev.of_node)
return -EINVAL;
pdev = of_find_device_by_node(phydev->dev.of_node);
if (!pdev)
return -EINVAL;
dev = &pdev->dev;
wq_name = kasprintf(GFP_KERNEL, "%s-amd-xgbe-phy", phydev->bus->name);
if (!wq_name) {
ret = -ENOMEM;
goto err_pdev;
}
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv) {
ret = -ENOMEM;
goto err_name;
}
priv->pdev = pdev;
priv->dev = dev;
priv->phydev = phydev;
/* Get the device mmio areas */
priv->rxtx_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
priv->rxtx_regs = devm_ioremap_resource(dev, priv->rxtx_res);
if (IS_ERR(priv->rxtx_regs)) {
dev_err(dev, "rxtx ioremap failed\n");
ret = PTR_ERR(priv->rxtx_regs);
goto err_priv;
}
priv->sir0_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
priv->sir0_regs = devm_ioremap_resource(dev, priv->sir0_res);
if (IS_ERR(priv->sir0_regs)) {
dev_err(dev, "sir0 ioremap failed\n");
ret = PTR_ERR(priv->sir0_regs);
goto err_rxtx;
}
priv->sir1_res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
priv->sir1_regs = devm_ioremap_resource(dev, priv->sir1_res);
if (IS_ERR(priv->sir1_regs)) {
dev_err(dev, "sir1 ioremap failed\n");
ret = PTR_ERR(priv->sir1_regs);
goto err_sir0;
}
/* Get the device speed set property */
speed_set = 0;
property = of_get_property(dev->of_node, XGBE_PHY_SPEEDSET_PROPERTY,
NULL);
if (property)
speed_set = be32_to_cpu(*property);
switch (speed_set) {
case 0:
priv->speed_set = AMD_XGBE_PHY_SPEEDSET_1000_10000;
break;
case 1:
priv->speed_set = AMD_XGBE_PHY_SPEEDSET_2500_10000;
break;
default:
dev_err(dev, "invalid amd,speed-set property\n");
ret = -EINVAL;
goto err_sir1;
}
priv->link = 1;
ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2);
if (ret < 0)
goto err_sir1;
if ((ret & MDIO_PCS_CTRL2_TYPE) == MDIO_PCS_CTRL2_10GBR)
priv->mode = AMD_XGBE_MODE_KR;
else
priv->mode = AMD_XGBE_MODE_KX;
mutex_init(&priv->an_mutex);
INIT_WORK(&priv->an_work, amd_xgbe_an_state_machine);
priv->an_workqueue = create_singlethread_workqueue(wq_name);
if (!priv->an_workqueue) {
ret = -ENOMEM;
goto err_sir1;
}
phydev->priv = priv;
kfree(wq_name);
of_dev_put(pdev);
return 0;
err_sir1:
devm_iounmap(dev, priv->sir1_regs);
devm_release_mem_region(dev, priv->sir1_res->start,
resource_size(priv->sir1_res));
err_sir0:
devm_iounmap(dev, priv->sir0_regs);
devm_release_mem_region(dev, priv->sir0_res->start,
resource_size(priv->sir0_res));
err_rxtx:
devm_iounmap(dev, priv->rxtx_regs);
devm_release_mem_region(dev, priv->rxtx_res->start,
resource_size(priv->rxtx_res));
err_priv:
devm_kfree(dev, priv);
err_name:
kfree(wq_name);
err_pdev:
of_dev_put(pdev);
return ret;
}
static void amd_xgbe_phy_remove(struct phy_device *phydev)
{
struct amd_xgbe_phy_priv *priv = phydev->priv;
struct device *dev = priv->dev;
/* Stop any in process auto-negotiation */
mutex_lock(&priv->an_mutex);
priv->an_state = AMD_XGBE_AN_EXIT;
mutex_unlock(&priv->an_mutex);
flush_workqueue(priv->an_workqueue);
destroy_workqueue(priv->an_workqueue);
/* Release resources */
devm_iounmap(dev, priv->sir1_regs);
devm_release_mem_region(dev, priv->sir1_res->start,
resource_size(priv->sir1_res));
devm_iounmap(dev, priv->sir0_regs);
devm_release_mem_region(dev, priv->sir0_res->start,
resource_size(priv->sir0_res));
devm_iounmap(dev, priv->rxtx_regs);
devm_release_mem_region(dev, priv->rxtx_res->start,
resource_size(priv->rxtx_res));
devm_kfree(dev, priv);
}
static int amd_xgbe_match_phy_device(struct phy_device *phydev)
{
return phydev->c45_ids.device_ids[MDIO_MMD_PCS] == XGBE_PHY_ID;
}
static struct phy_driver amd_xgbe_phy_driver[] = {
{
.phy_id = XGBE_PHY_ID,
.phy_id_mask = XGBE_PHY_MASK,
.name = "AMD XGBE PHY",
.features = 0,
.probe = amd_xgbe_phy_probe,
.remove = amd_xgbe_phy_remove,
.soft_reset = amd_xgbe_phy_soft_reset,
.config_init = amd_xgbe_phy_config_init,
.suspend = amd_xgbe_phy_suspend,
.resume = amd_xgbe_phy_resume,
.config_aneg = amd_xgbe_phy_config_aneg,
.aneg_done = amd_xgbe_phy_aneg_done,
.read_status = amd_xgbe_phy_read_status,
.match_phy_device = amd_xgbe_match_phy_device,
.driver = {
.owner = THIS_MODULE,
},
},
};
static int __init amd_xgbe_phy_init(void)
{
return phy_drivers_register(amd_xgbe_phy_driver,
ARRAY_SIZE(amd_xgbe_phy_driver));
}
static void __exit amd_xgbe_phy_exit(void)
{
phy_drivers_unregister(amd_xgbe_phy_driver,
ARRAY_SIZE(amd_xgbe_phy_driver));
}
module_init(amd_xgbe_phy_init);
module_exit(amd_xgbe_phy_exit);
static struct mdio_device_id __maybe_unused amd_xgbe_phy_ids[] = {
{ XGBE_PHY_ID, XGBE_PHY_MASK },
{ }
};
MODULE_DEVICE_TABLE(mdio, amd_xgbe_phy_ids);