linux/sound/soc/sof/intel/hda-loader-skl.c

581 lines
16 KiB
C
Raw Normal View History

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2018-2022 Intel Corporation. All rights reserved.
//
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <sound/hdaudio_ext.h>
#include <sound/sof.h>
#include <sound/pcm_params.h>
#include "../sof-priv.h"
#include "../ops.h"
#include "hda.h"
#define HDA_SKL_WAIT_TIMEOUT 500 /* 500 msec */
#define HDA_SKL_CLDMA_MAX_BUFFER_SIZE (32 * PAGE_SIZE)
/* Stream Reset */
#define HDA_CL_SD_CTL_SRST_SHIFT 0
#define HDA_CL_SD_CTL_SRST(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_SRST_SHIFT)
/* Stream Run */
#define HDA_CL_SD_CTL_RUN_SHIFT 1
#define HDA_CL_SD_CTL_RUN(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_RUN_SHIFT)
/* Interrupt On Completion Enable */
#define HDA_CL_SD_CTL_IOCE_SHIFT 2
#define HDA_CL_SD_CTL_IOCE(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_IOCE_SHIFT)
/* FIFO Error Interrupt Enable */
#define HDA_CL_SD_CTL_FEIE_SHIFT 3
#define HDA_CL_SD_CTL_FEIE(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_FEIE_SHIFT)
/* Descriptor Error Interrupt Enable */
#define HDA_CL_SD_CTL_DEIE_SHIFT 4
#define HDA_CL_SD_CTL_DEIE(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_DEIE_SHIFT)
/* FIFO Limit Change */
#define HDA_CL_SD_CTL_FIFOLC_SHIFT 5
#define HDA_CL_SD_CTL_FIFOLC(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_FIFOLC_SHIFT)
/* Stripe Control */
#define HDA_CL_SD_CTL_STRIPE_SHIFT 16
#define HDA_CL_SD_CTL_STRIPE(x) (((x) & 0x3) << \
HDA_CL_SD_CTL_STRIPE_SHIFT)
/* Traffic Priority */
#define HDA_CL_SD_CTL_TP_SHIFT 18
#define HDA_CL_SD_CTL_TP(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_TP_SHIFT)
/* Bidirectional Direction Control */
#define HDA_CL_SD_CTL_DIR_SHIFT 19
#define HDA_CL_SD_CTL_DIR(x) (((x) & 0x1) << \
HDA_CL_SD_CTL_DIR_SHIFT)
/* Stream Number */
#define HDA_CL_SD_CTL_STRM_SHIFT 20
#define HDA_CL_SD_CTL_STRM(x) (((x) & 0xf) << \
HDA_CL_SD_CTL_STRM_SHIFT)
#define HDA_CL_SD_CTL_INT(x) \
(HDA_CL_SD_CTL_IOCE(x) | \
HDA_CL_SD_CTL_FEIE(x) | \
HDA_CL_SD_CTL_DEIE(x))
#define HDA_CL_SD_CTL_INT_MASK \
(HDA_CL_SD_CTL_IOCE(1) | \
HDA_CL_SD_CTL_FEIE(1) | \
HDA_CL_SD_CTL_DEIE(1))
#define DMA_ADDRESS_128_BITS_ALIGNMENT 7
#define BDL_ALIGN(x) ((x) >> DMA_ADDRESS_128_BITS_ALIGNMENT)
/* Buffer Descriptor List Lower Base Address */
#define HDA_CL_SD_BDLPLBA_SHIFT 7
#define HDA_CL_SD_BDLPLBA_MASK GENMASK(31, 7)
#define HDA_CL_SD_BDLPLBA(x) \
((BDL_ALIGN(lower_32_bits(x)) << HDA_CL_SD_BDLPLBA_SHIFT) & \
HDA_CL_SD_BDLPLBA_MASK)
/* Buffer Descriptor List Upper Base Address */
#define HDA_CL_SD_BDLPUBA(x) \
(upper_32_bits(x))
/* Software Position in Buffer Enable */
#define HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT 0
#define HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_MASK \
(1 << HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT)
#define HDA_CL_SPBFIFO_SPBFCCTL_SPIBE(x) \
(((x) << HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT) & \
HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_MASK)
#define HDA_CL_DMA_SD_INT_COMPLETE 0x4
static int cl_skl_cldma_setup_bdle(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab_data,
__le32 **bdlp, int size, int with_ioc)
{
phys_addr_t addr = virt_to_phys(dmab_data->area);
__le32 *bdl = *bdlp;
/*
* This code is simplified by using one fragment of physical memory and assuming
* all the code fits. This could be improved with scatter-gather but the firmware
* size is limited by DSP memory anyways
*/
bdl[0] = cpu_to_le32(lower_32_bits(addr));
bdl[1] = cpu_to_le32(upper_32_bits(addr));
bdl[2] = cpu_to_le32(size);
bdl[3] = (!with_ioc) ? 0 : cpu_to_le32(0x01);
return 1; /* one fragment */
}
static void cl_skl_cldma_stream_run(struct snd_sof_dev *sdev, bool enable)
{
int sd_offset = SOF_HDA_ADSP_LOADER_BASE;
unsigned char val;
int retries;
u32 run = enable ? 0x1 : 0;
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL,
HDA_CL_SD_CTL_RUN(1), HDA_CL_SD_CTL_RUN(run));
retries = 300;
do {
udelay(3);
/* waiting for hardware to report the stream Run bit set */
val = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL);
val &= HDA_CL_SD_CTL_RUN(1);
if (enable && val)
break;
else if (!enable && !val)
break;
} while (--retries);
if (retries == 0)
dev_err(sdev->dev, "%s: failed to set Run bit=%d enable=%d\n",
__func__, val, enable);
}
static void cl_skl_cldma_stream_clear(struct snd_sof_dev *sdev)
{
int sd_offset = SOF_HDA_ADSP_LOADER_BASE;
/* make sure Run bit is cleared before setting stream register */
cl_skl_cldma_stream_run(sdev, 0);
/* Disable the Interrupt On Completion, FIFO Error Interrupt,
* Descriptor Error Interrupt and set the cldma stream number to 0.
*/
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL,
HDA_CL_SD_CTL_INT_MASK, HDA_CL_SD_CTL_INT(0));
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL,
HDA_CL_SD_CTL_STRM(0xf), HDA_CL_SD_CTL_STRM(0));
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_BDLPL, HDA_CL_SD_BDLPLBA(0));
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_BDLPU, 0);
/* Set the Cyclic Buffer Length to 0. */
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CBL, 0);
/* Set the Last Valid Index. */
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_LVI, 0);
}
static void cl_skl_cldma_setup_spb(struct snd_sof_dev *sdev,
unsigned int size, bool enable)
{
int sd_offset = SOF_DSP_REG_CL_SPBFIFO;
if (enable)
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
HDA_CL_SPBFIFO_SPBFCCTL_SPIBE(1));
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SPBFIFO_SPIB, size);
}
static void cl_skl_cldma_set_intr(struct snd_sof_dev *sdev, bool enable)
{
u32 val = enable ? HDA_DSP_ADSPIC_CL_DMA : 0;
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC,
HDA_DSP_ADSPIC_CL_DMA, val);
}
static void cl_skl_cldma_cleanup_spb(struct snd_sof_dev *sdev)
{
int sd_offset = SOF_DSP_REG_CL_SPBFIFO;
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
HDA_CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
HDA_CL_SPBFIFO_SPBFCCTL_SPIBE(0));
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SPBFIFO_SPIB, 0);
}
static void cl_skl_cldma_setup_controller(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab_bdl,
unsigned int max_size, u32 count)
{
int sd_offset = SOF_HDA_ADSP_LOADER_BASE;
/* Clear the stream first and then set it. */
cl_skl_cldma_stream_clear(sdev);
/* setting the stream register */
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_BDLPL,
HDA_CL_SD_BDLPLBA(dmab_bdl->addr));
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_BDLPU,
HDA_CL_SD_BDLPUBA(dmab_bdl->addr));
/* Set the Cyclic Buffer Length. */
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CBL, max_size);
/* Set the Last Valid Index. */
snd_sof_dsp_write(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_LVI, count - 1);
/* Set the Interrupt On Completion, FIFO Error Interrupt,
* Descriptor Error Interrupt and the cldma stream number.
*/
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL,
HDA_CL_SD_CTL_INT_MASK, HDA_CL_SD_CTL_INT(1));
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_CTL,
HDA_CL_SD_CTL_STRM(0xf),
HDA_CL_SD_CTL_STRM(1));
}
static int cl_stream_prepare_skl(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab,
struct snd_dma_buffer *dmab_bdl)
{
unsigned int bufsize = HDA_SKL_CLDMA_MAX_BUFFER_SIZE;
__le32 *bdl;
int frags;
int ret;
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, bufsize, dmab);
if (ret < 0) {
dev_err(sdev->dev, "%s: failed to alloc fw buffer: %x\n", __func__, ret);
return ret;
}
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, sdev->dev, bufsize, dmab_bdl);
if (ret < 0) {
dev_err(sdev->dev, "%s: failed to alloc blde: %x\n", __func__, ret);
snd_dma_free_pages(dmab);
return ret;
}
bdl = (__le32 *)dmab_bdl->area;
frags = cl_skl_cldma_setup_bdle(sdev, dmab, &bdl, bufsize, 1);
cl_skl_cldma_setup_controller(sdev, dmab_bdl, bufsize, frags);
return ret;
}
static void cl_cleanup_skl(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab,
struct snd_dma_buffer *dmab_bdl)
{
cl_skl_cldma_cleanup_spb(sdev);
cl_skl_cldma_stream_clear(sdev);
snd_dma_free_pages(dmab);
snd_dma_free_pages(dmab_bdl);
}
static int cl_dsp_init_skl(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab,
struct snd_dma_buffer *dmab_bdl)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
unsigned int status;
u32 flags;
int ret;
/* check if the init_core is already enabled, if yes, reset and make it run,
* if not, powerdown and enable it again.
*/
if (hda_dsp_core_is_enabled(sdev, chip->init_core_mask)) {
/* if enabled, reset it, and run the init_core. */
ret = hda_dsp_core_stall_reset(sdev, chip->init_core_mask);
if (ret < 0)
goto err;
ret = hda_dsp_core_run(sdev, chip->init_core_mask);
if (ret < 0) {
dev_err(sdev->dev, "%s: dsp core start failed %d\n", __func__, ret);
goto err;
}
} else {
/* if not enabled, power down it first and then powerup and run
* the init_core.
*/
ret = hda_dsp_core_reset_power_down(sdev, chip->init_core_mask);
if (ret < 0) {
dev_err(sdev->dev, "%s: dsp core0 disable fail: %d\n", __func__, ret);
goto err;
}
ret = hda_dsp_enable_core(sdev, chip->init_core_mask);
if (ret < 0) {
dev_err(sdev->dev, "%s: dsp core0 enable fail: %d\n", __func__, ret);
goto err;
}
}
/* prepare DMA for code loader stream */
ret = cl_stream_prepare_skl(sdev, dmab, dmab_bdl);
if (ret < 0) {
dev_err(sdev->dev, "%s: dma prepare fw loading err: %x\n", __func__, ret);
return ret;
}
/* enable the interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, HDA_DSP_REG_ADSPIC,
HDA_DSP_ADSPIC_IPC, HDA_DSP_ADSPIC_IPC);
/* enable IPC DONE interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl,
HDA_DSP_REG_HIPCCTL_DONE,
HDA_DSP_REG_HIPCCTL_DONE);
/* enable IPC BUSY interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR, chip->ipc_ctl,
HDA_DSP_REG_HIPCCTL_BUSY,
HDA_DSP_REG_HIPCCTL_BUSY);
/* polling the ROM init status information. */
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
chip->rom_status_reg, status,
(FSR_TO_STATE_CODE(status)
== FSR_STATE_INIT_DONE),
HDA_DSP_REG_POLL_INTERVAL_US,
chip->rom_init_timeout *
USEC_PER_MSEC);
if (ret < 0)
goto err;
return ret;
err:
flags = SOF_DBG_DUMP_PCI | SOF_DBG_DUMP_MBOX;
snd_sof_dsp_dbg_dump(sdev, "Boot failed\n", flags);
cl_cleanup_skl(sdev, dmab, dmab_bdl);
hda_dsp_core_reset_power_down(sdev, chip->init_core_mask);
return ret;
}
static void cl_skl_cldma_fill_buffer(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab,
unsigned int bufsize,
unsigned int copysize,
const void *curr_pos,
bool intr_enable)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
/* copy the image into the buffer with the maximum buffer size. */
unsigned int size = (bufsize == copysize) ? bufsize : copysize;
memcpy(dmab->area, curr_pos, size);
/* Set the wait condition for every load. */
hda->code_loading = 1;
/* Set the interrupt. */
if (intr_enable)
cl_skl_cldma_set_intr(sdev, true);
/* Set the SPB. */
cl_skl_cldma_setup_spb(sdev, size, true);
/* Trigger the code loading stream. */
cl_skl_cldma_stream_run(sdev, true);
}
static int cl_skl_cldma_wait_interruptible(struct snd_sof_dev *sdev,
bool intr_wait)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
int sd_offset = SOF_HDA_ADSP_LOADER_BASE;
u8 cl_dma_intr_status;
/*
* Wait for CLDMA interrupt to inform the binary segment transfer is
* complete.
*/
if (!wait_event_timeout(hda->waitq, !hda->code_loading,
msecs_to_jiffies(HDA_SKL_WAIT_TIMEOUT))) {
dev_err(sdev->dev, "cldma copy timeout\n");
dev_err(sdev->dev, "ROM code=%#x: FW status=%#x\n",
snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_ROM_ERROR),
snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg));
return -EIO;
}
/* now check DMA interrupt status */
cl_dma_intr_status = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
sd_offset + SOF_HDA_ADSP_REG_CL_SD_STS);
if (!(cl_dma_intr_status & HDA_CL_DMA_SD_INT_COMPLETE)) {
dev_err(sdev->dev, "cldma copy failed\n");
return -EIO;
}
dev_dbg(sdev->dev, "cldma buffer copy complete\n");
return 0;
}
static int
cl_skl_cldma_copy_to_buf(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab,
const void *bin,
u32 total_size, u32 bufsize)
{
unsigned int bytes_left = total_size;
const void *curr_pos = bin;
int ret;
if (total_size <= 0)
return -EINVAL;
while (bytes_left > 0) {
if (bytes_left > bufsize) {
dev_dbg(sdev->dev, "cldma copy %#x bytes\n", bufsize);
cl_skl_cldma_fill_buffer(sdev, dmab, bufsize, bufsize, curr_pos, true);
ret = cl_skl_cldma_wait_interruptible(sdev, false);
if (ret < 0) {
dev_err(sdev->dev, "%s: fw failed to load. %#x bytes remaining\n",
__func__, bytes_left);
return ret;
}
bytes_left -= bufsize;
curr_pos += bufsize;
} else {
dev_dbg(sdev->dev, "cldma copy %#x bytes\n", bytes_left);
cl_skl_cldma_set_intr(sdev, false);
cl_skl_cldma_fill_buffer(sdev, dmab, bufsize, bytes_left, curr_pos, false);
return 0;
}
}
return bytes_left;
}
static int cl_copy_fw_skl(struct snd_sof_dev *sdev,
struct snd_dma_buffer *dmab)
{
struct snd_sof_pdata *plat_data = sdev->pdata;
const struct firmware *fw = plat_data->fw;
struct firmware stripped_firmware;
unsigned int bufsize = HDA_SKL_CLDMA_MAX_BUFFER_SIZE;
int ret;
stripped_firmware.data = plat_data->fw->data + plat_data->fw_offset;
stripped_firmware.size = plat_data->fw->size - plat_data->fw_offset;
dev_dbg(sdev->dev, "firmware size: %#zx buffer size %#x\n", fw->size, bufsize);
ret = cl_skl_cldma_copy_to_buf(sdev, dmab, stripped_firmware.data,
stripped_firmware.size, bufsize);
if (ret < 0)
dev_err(sdev->dev, "%s: fw copy failed %d\n", __func__, ret);
return ret;
}
int hda_dsp_cl_boot_firmware_skl(struct snd_sof_dev *sdev)
{
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
const struct sof_intel_dsp_desc *chip = hda->desc;
struct snd_dma_buffer dmab_bdl;
struct snd_dma_buffer dmab;
unsigned int reg;
u32 flags;
int ret;
ret = cl_dsp_init_skl(sdev, &dmab, &dmab_bdl);
/* retry enabling core and ROM load. seemed to help */
if (ret < 0) {
ret = cl_dsp_init_skl(sdev, &dmab, &dmab_bdl);
if (ret < 0) {
dev_err(sdev->dev, "Error code=%#x: FW status=%#x\n",
snd_sof_dsp_read(sdev, HDA_DSP_BAR, HDA_DSP_SRAM_REG_ROM_ERROR),
snd_sof_dsp_read(sdev, HDA_DSP_BAR, chip->rom_status_reg));
dev_err(sdev->dev, "Core En/ROM load fail:%d\n", ret);
return ret;
}
}
dev_dbg(sdev->dev, "ROM init successful\n");
/* at this point DSP ROM has been initialized and should be ready for
* code loading and firmware boot
*/
ret = cl_copy_fw_skl(sdev, &dmab);
if (ret < 0) {
dev_err(sdev->dev, "%s: load firmware failed : %d\n", __func__, ret);
goto err;
}
ret = snd_sof_dsp_read_poll_timeout(sdev, HDA_DSP_BAR,
chip->rom_status_reg, reg,
(FSR_TO_STATE_CODE(reg)
== FSR_STATE_ROM_BASEFW_ENTERED),
HDA_DSP_REG_POLL_INTERVAL_US,
HDA_DSP_BASEFW_TIMEOUT_US);
dev_dbg(sdev->dev, "Firmware download successful, booting...\n");
cl_skl_cldma_stream_run(sdev, false);
cl_cleanup_skl(sdev, &dmab, &dmab_bdl);
if (!ret)
return chip->init_core_mask;
return ret;
err:
flags = SOF_DBG_DUMP_PCI | SOF_DBG_DUMP_MBOX;
snd_sof_dsp_dbg_dump(sdev, "Boot failed\n", flags);
/* power down DSP */
hda_dsp_core_reset_power_down(sdev, chip->init_core_mask);
cl_skl_cldma_stream_run(sdev, false);
cl_cleanup_skl(sdev, &dmab, &dmab_bdl);
dev_err(sdev->dev, "%s: load fw failed err: %d\n", __func__, ret);
return ret;
}