2013-12-12 23:32:47 +08:00
|
|
|
/*
|
|
|
|
* Performance event support for the System z CPU-measurement Sampling Facility
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2013
|
|
|
|
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License (version 2 only)
|
|
|
|
* as published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
#define KMSG_COMPONENT "cpum_sf"
|
|
|
|
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
#include <linux/perf_event.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/cpu_mf.h>
|
|
|
|
#include <asm/irq.h>
|
|
|
|
#include <asm/debug.h>
|
|
|
|
#include <asm/timex.h>
|
|
|
|
|
|
|
|
/* Minimum number of sample-data-block-tables:
|
|
|
|
* At least one table is required for the sampling buffer structure.
|
|
|
|
* A single table contains up to 511 pointers to sample-data-blocks.
|
|
|
|
*/
|
|
|
|
#define CPUM_SF_MIN_SDBT 1
|
|
|
|
|
|
|
|
/* Minimum number of sample-data-blocks:
|
|
|
|
* The minimum designates a single page for sample-data-block, i.e.,
|
|
|
|
* up to 126 sample-data-blocks with a size of 32 bytes (bsdes).
|
|
|
|
*/
|
|
|
|
#define CPUM_SF_MIN_SDB 126
|
|
|
|
|
|
|
|
/* Maximum number of sample-data-blocks:
|
|
|
|
* The maximum number designates approx. 256K per CPU including
|
|
|
|
* the given number of sample-data-blocks and taking the number
|
|
|
|
* of sample-data-block tables into account.
|
|
|
|
*
|
|
|
|
* Later, this number can be increased for extending the sampling
|
|
|
|
* buffer, for example, by factor 2 (512K) or 4 (1M).
|
|
|
|
*/
|
|
|
|
#define CPUM_SF_MAX_SDB 6471
|
|
|
|
|
|
|
|
struct sf_buffer {
|
|
|
|
unsigned long sdbt; /* Sample-data-block-table origin */
|
|
|
|
/* buffer characteristics (required for buffer increments) */
|
|
|
|
unsigned long num_sdb; /* Number of sample-data-blocks */
|
|
|
|
unsigned long tail; /* last sample-data-block-table */
|
|
|
|
};
|
|
|
|
|
|
|
|
struct cpu_hw_sf {
|
|
|
|
/* CPU-measurement sampling information block */
|
|
|
|
struct hws_qsi_info_block qsi;
|
|
|
|
struct hws_lsctl_request_block lsctl;
|
|
|
|
struct sf_buffer sfb; /* Sampling buffer */
|
|
|
|
unsigned int flags; /* Status flags */
|
|
|
|
struct perf_event *event; /* Scheduled perf event */
|
|
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
|
|
|
|
|
|
|
|
/* Debug feature */
|
|
|
|
static debug_info_t *sfdbg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sf_buffer_available() - Check for an allocated sampling buffer
|
|
|
|
*/
|
|
|
|
static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
|
|
|
|
{
|
|
|
|
return (cpuhw->sfb.sdbt) ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deallocate sampling facility buffer
|
|
|
|
*/
|
|
|
|
static void free_sampling_buffer(struct sf_buffer *sfb)
|
|
|
|
{
|
|
|
|
unsigned long sdbt, *curr;
|
|
|
|
|
|
|
|
if (!sfb->sdbt)
|
|
|
|
return;
|
|
|
|
|
|
|
|
sdbt = sfb->sdbt;
|
|
|
|
curr = (unsigned long *) sdbt;
|
|
|
|
|
|
|
|
/* we'll free the SDBT after all SDBs are processed... */
|
|
|
|
while (1) {
|
|
|
|
if (!*curr || !sdbt)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* watch for link entry reset if found */
|
|
|
|
if (is_link_entry(curr)) {
|
|
|
|
curr = get_next_sdbt(curr);
|
|
|
|
if (sdbt)
|
|
|
|
free_page(sdbt);
|
|
|
|
|
|
|
|
/* we are done if we reach the origin */
|
|
|
|
if ((unsigned long) curr == sfb->sdbt)
|
|
|
|
break;
|
|
|
|
else
|
|
|
|
sdbt = (unsigned long) curr;
|
|
|
|
} else {
|
|
|
|
/* process SDB pointer */
|
|
|
|
if (*curr) {
|
|
|
|
free_page(*curr);
|
|
|
|
curr++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
debug_sprintf_event(sfdbg, 5,
|
|
|
|
"free_sampling_buffer: freed sdbt=%0lx\n", sfb->sdbt);
|
|
|
|
memset(sfb, 0, sizeof(*sfb));
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* allocate_sampling_buffer() - allocate sampler memory
|
|
|
|
*
|
|
|
|
* Allocates and initializes a sampling buffer structure using the
|
|
|
|
* specified number of sample-data-blocks (SDB). For each allocation,
|
|
|
|
* a 4K page is used. The number of sample-data-block-tables (SDBT)
|
|
|
|
* are calculated from SDBs.
|
|
|
|
* Also set the ALERT_REQ mask in each SDBs trailer.
|
|
|
|
*
|
|
|
|
* Returns zero on success, non-zero otherwise.
|
|
|
|
*/
|
|
|
|
static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
|
|
|
|
{
|
|
|
|
int j, k, rc;
|
|
|
|
unsigned long *sdbt, *tail, *trailer;
|
|
|
|
unsigned long sdb;
|
|
|
|
unsigned long num_sdbt, sdb_per_table;
|
|
|
|
|
|
|
|
if (sfb->sdbt)
|
|
|
|
return -EINVAL;
|
|
|
|
sfb->num_sdb = 0;
|
|
|
|
|
|
|
|
/* Compute the number of required sample-data-block-tables (SDBT) */
|
|
|
|
num_sdbt = num_sdb / ((PAGE_SIZE - 8) / 8);
|
|
|
|
if (num_sdbt < CPUM_SF_MIN_SDBT)
|
|
|
|
num_sdbt = CPUM_SF_MIN_SDBT;
|
|
|
|
sdb_per_table = (PAGE_SIZE - 8) / 8;
|
|
|
|
|
|
|
|
debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: num_sdbt=%lu "
|
|
|
|
"num_sdb=%lu sdb_per_table=%lu\n",
|
|
|
|
num_sdbt, num_sdb, sdb_per_table);
|
|
|
|
sdbt = NULL;
|
|
|
|
tail = sdbt;
|
|
|
|
|
|
|
|
for (j = 0; j < num_sdbt; j++) {
|
|
|
|
sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
|
|
|
|
if (!sdbt) {
|
|
|
|
rc = -ENOMEM;
|
|
|
|
goto allocate_sdbt_error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* save origin of sample-data-block-table */
|
|
|
|
if (!sfb->sdbt)
|
|
|
|
sfb->sdbt = (unsigned long) sdbt;
|
|
|
|
|
|
|
|
/* link current page to tail of chain */
|
|
|
|
if (tail)
|
|
|
|
*tail = (unsigned long)(void *) sdbt + 1;
|
|
|
|
|
|
|
|
for (k = 0; k < num_sdb && k < sdb_per_table; k++) {
|
|
|
|
/* get and set SDB page */
|
|
|
|
sdb = get_zeroed_page(GFP_KERNEL);
|
|
|
|
if (!sdb) {
|
|
|
|
rc = -ENOMEM;
|
|
|
|
goto allocate_sdbt_error;
|
|
|
|
}
|
|
|
|
*sdbt = sdb;
|
|
|
|
trailer = trailer_entry_ptr(*sdbt);
|
|
|
|
*trailer = SDB_TE_ALERT_REQ_MASK;
|
|
|
|
sdbt++;
|
|
|
|
}
|
|
|
|
num_sdb -= k;
|
|
|
|
sfb->num_sdb += k; /* count allocated sdb's */
|
|
|
|
tail = sdbt;
|
|
|
|
}
|
|
|
|
|
|
|
|
rc = 0;
|
|
|
|
if (tail)
|
|
|
|
*tail = sfb->sdbt + 1;
|
|
|
|
sfb->tail = (unsigned long) (void *)tail;
|
|
|
|
|
|
|
|
allocate_sdbt_error:
|
|
|
|
if (rc)
|
|
|
|
free_sampling_buffer(sfb);
|
|
|
|
else
|
|
|
|
debug_sprintf_event(sfdbg, 4,
|
|
|
|
"alloc_sampling_buffer: tear=%0lx dear=%0lx\n",
|
|
|
|
sfb->sdbt, *(unsigned long *) sfb->sdbt);
|
|
|
|
return rc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int allocate_sdbt(struct cpu_hw_sf *cpuhw, const struct hw_perf_event *hwc)
|
|
|
|
{
|
|
|
|
unsigned long n_sdb, freq;
|
|
|
|
unsigned long factor;
|
|
|
|
|
|
|
|
/* Calculate sampling buffers using 4K pages
|
|
|
|
*
|
|
|
|
* 1. Use frequency as input. The samping buffer is designed for
|
|
|
|
* a complete second. This can be adjusted through the "factor"
|
|
|
|
* variable.
|
|
|
|
* In any case, alloc_sampling_buffer() sets the Alert Request
|
|
|
|
* Control indicator to trigger measurement-alert to harvest
|
|
|
|
* sample-data-blocks (sdb).
|
|
|
|
*
|
|
|
|
* 2. Compute the number of sample-data-blocks and ensure a minimum
|
|
|
|
* of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
|
|
|
|
* exceed CPUM_SF_MAX_SDB. See also the remarks for these
|
|
|
|
* symbolic constants.
|
|
|
|
*
|
|
|
|
* 3. Compute number of pages used for the sample-data-block-table
|
|
|
|
* and ensure a minimum of CPUM_SF_MIN_SDBT (at minimum one table
|
|
|
|
* to manage up to 511 sample-data-blocks).
|
|
|
|
*/
|
|
|
|
freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
|
|
|
|
factor = 1;
|
|
|
|
n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / cpuhw->qsi.bsdes));
|
|
|
|
if (n_sdb < CPUM_SF_MIN_SDB)
|
|
|
|
n_sdb = CPUM_SF_MIN_SDB;
|
|
|
|
|
|
|
|
/* Return if there is already a sampling buffer allocated.
|
|
|
|
* XXX Remove this later and check number of available and
|
|
|
|
* required sdb's and, if necessary, increase the sampling buffer.
|
|
|
|
*/
|
|
|
|
if (sf_buffer_available(cpuhw))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
debug_sprintf_event(sfdbg, 3,
|
|
|
|
"allocate_sdbt: rate=%lu f=%lu sdb=%lu/%i cpuhw=%p\n",
|
|
|
|
SAMPL_RATE(hwc), freq, n_sdb, CPUM_SF_MAX_SDB, cpuhw);
|
|
|
|
|
|
|
|
return alloc_sampling_buffer(&cpuhw->sfb,
|
|
|
|
min_t(unsigned long, n_sdb, CPUM_SF_MAX_SDB));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Number of perf events counting hardware events */
|
|
|
|
static atomic_t num_events;
|
|
|
|
/* Used to avoid races in calling reserve/release_cpumf_hardware */
|
|
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sf_disable() - Switch off sampling facility
|
|
|
|
*/
|
|
|
|
static int sf_disable(void)
|
|
|
|
{
|
|
|
|
struct hws_lsctl_request_block sreq;
|
|
|
|
|
|
|
|
memset(&sreq, 0, sizeof(sreq));
|
|
|
|
return lsctl(&sreq);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define PMC_INIT 0
|
|
|
|
#define PMC_RELEASE 1
|
2013-12-12 23:52:48 +08:00
|
|
|
#define PMC_FAILURE 2
|
2013-12-12 23:32:47 +08:00
|
|
|
static void setup_pmc_cpu(void *flags)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
struct cpu_hw_sf *cpusf = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
switch (*((int *) flags)) {
|
|
|
|
case PMC_INIT:
|
|
|
|
memset(cpusf, 0, sizeof(*cpusf));
|
|
|
|
err = qsi(&cpusf->qsi);
|
|
|
|
if (err)
|
|
|
|
break;
|
|
|
|
cpusf->flags |= PMU_F_RESERVED;
|
|
|
|
err = sf_disable();
|
|
|
|
if (err)
|
|
|
|
pr_err("Switching off the sampling facility failed "
|
|
|
|
"with rc=%i\n", err);
|
|
|
|
debug_sprintf_event(sfdbg, 5,
|
|
|
|
"setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
|
|
|
|
break;
|
|
|
|
case PMC_RELEASE:
|
|
|
|
cpusf->flags &= ~PMU_F_RESERVED;
|
|
|
|
err = sf_disable();
|
|
|
|
if (err) {
|
|
|
|
pr_err("Switching off the sampling facility failed "
|
|
|
|
"with rc=%i\n", err);
|
|
|
|
} else {
|
|
|
|
if (cpusf->sfb.sdbt)
|
|
|
|
free_sampling_buffer(&cpusf->sfb);
|
|
|
|
}
|
|
|
|
debug_sprintf_event(sfdbg, 5,
|
|
|
|
"setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
|
|
|
|
break;
|
|
|
|
}
|
2013-12-12 23:52:48 +08:00
|
|
|
if (err)
|
|
|
|
*((int *) flags) |= PMC_FAILURE;
|
2013-12-12 23:32:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void release_pmc_hardware(void)
|
|
|
|
{
|
|
|
|
int flags = PMC_RELEASE;
|
|
|
|
|
|
|
|
irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
|
|
|
|
on_each_cpu(setup_pmc_cpu, &flags, 1);
|
2013-12-12 23:52:48 +08:00
|
|
|
perf_release_sampling();
|
2013-12-12 23:32:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int reserve_pmc_hardware(void)
|
|
|
|
{
|
|
|
|
int flags = PMC_INIT;
|
2013-12-12 23:52:48 +08:00
|
|
|
int err;
|
2013-12-12 23:32:47 +08:00
|
|
|
|
2013-12-12 23:52:48 +08:00
|
|
|
err = perf_reserve_sampling();
|
|
|
|
if (err)
|
|
|
|
return err;
|
2013-12-12 23:32:47 +08:00
|
|
|
on_each_cpu(setup_pmc_cpu, &flags, 1);
|
2013-12-12 23:52:48 +08:00
|
|
|
if (flags & PMC_FAILURE) {
|
|
|
|
release_pmc_hardware();
|
|
|
|
return -ENODEV;
|
|
|
|
}
|
2013-12-12 23:32:47 +08:00
|
|
|
irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
|
|
{
|
|
|
|
/* Release PMC if this is the last perf event */
|
|
|
|
if (!atomic_add_unless(&num_events, -1, 1)) {
|
|
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
|
|
if (atomic_dec_return(&num_events) == 0)
|
|
|
|
release_pmc_hardware();
|
|
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_init_period(struct hw_perf_event *hwc, u64 period)
|
|
|
|
{
|
|
|
|
hwc->sample_period = period;
|
|
|
|
hwc->last_period = hwc->sample_period;
|
|
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_reset_registers(struct hw_perf_event *hwc,
|
|
|
|
unsigned long sdbt_origin)
|
|
|
|
{
|
|
|
|
TEAR_REG(hwc) = sdbt_origin; /* (re)set to first sdb table */
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
|
|
|
|
unsigned long rate)
|
|
|
|
{
|
|
|
|
if (rate < si->min_sampl_rate)
|
|
|
|
return si->min_sampl_rate;
|
|
|
|
if (rate > si->max_sampl_rate)
|
|
|
|
return si->max_sampl_rate;
|
|
|
|
return rate;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __hw_perf_event_init(struct perf_event *event)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw;
|
|
|
|
struct hws_qsi_info_block si;
|
|
|
|
struct perf_event_attr *attr = &event->attr;
|
|
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
unsigned long rate;
|
|
|
|
int cpu, err;
|
|
|
|
|
|
|
|
/* Reserve CPU-measurement sampling facility */
|
|
|
|
err = 0;
|
|
|
|
if (!atomic_inc_not_zero(&num_events)) {
|
|
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
|
|
if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
|
|
|
|
err = -EBUSY;
|
|
|
|
else
|
|
|
|
atomic_inc(&num_events);
|
|
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
|
|
}
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
|
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Access per-CPU sampling information (query sampling info) */
|
|
|
|
/*
|
|
|
|
* The event->cpu value can be -1 to count on every CPU, for example,
|
|
|
|
* when attaching to a task. If this is specified, use the query
|
|
|
|
* sampling info from the current CPU, otherwise use event->cpu to
|
|
|
|
* retrieve the per-CPU information.
|
|
|
|
* Later, cpuhw indicates whether to allocate sampling buffers for a
|
|
|
|
* particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
|
|
|
|
*/
|
|
|
|
memset(&si, 0, sizeof(si));
|
|
|
|
cpuhw = NULL;
|
|
|
|
if (event->cpu == -1)
|
|
|
|
qsi(&si);
|
|
|
|
else {
|
|
|
|
/* Event is pinned to a particular CPU, retrieve the per-CPU
|
|
|
|
* sampling structure for accessing the CPU-specific QSI.
|
|
|
|
*/
|
|
|
|
cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
|
|
|
|
si = cpuhw->qsi;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check sampling facility authorization and, if not authorized,
|
|
|
|
* fall back to other PMUs. It is safe to check any CPU because
|
|
|
|
* the authorization is identical for all configured CPUs.
|
|
|
|
*/
|
|
|
|
if (!si.as) {
|
|
|
|
err = -ENOENT;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The sampling information (si) contains information about the
|
|
|
|
* min/max sampling intervals and the CPU speed. So calculate the
|
|
|
|
* correct sampling interval and avoid the whole period adjust
|
|
|
|
* feedback loop.
|
|
|
|
*/
|
|
|
|
rate = 0;
|
|
|
|
if (attr->freq) {
|
|
|
|
rate = freq_to_sample_rate(&si, attr->sample_freq);
|
|
|
|
rate = hw_limit_rate(&si, rate);
|
|
|
|
attr->freq = 0;
|
|
|
|
attr->sample_period = rate;
|
|
|
|
} else {
|
|
|
|
/* The min/max sampling rates specifies the valid range
|
|
|
|
* of sample periods. If the specified sample period is
|
|
|
|
* out of range, limit the period to the range boundary.
|
|
|
|
*/
|
|
|
|
rate = hw_limit_rate(&si, hwc->sample_period);
|
|
|
|
|
|
|
|
/* The perf core maintains a maximum sample rate that is
|
|
|
|
* configurable through the sysctl interface. Ensure the
|
|
|
|
* sampling rate does not exceed this value. This also helps
|
|
|
|
* to avoid throttling when pushing samples with
|
|
|
|
* perf_event_overflow().
|
|
|
|
*/
|
|
|
|
if (sample_rate_to_freq(&si, rate) >
|
|
|
|
sysctl_perf_event_sample_rate) {
|
|
|
|
err = -EINVAL;
|
|
|
|
debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
SAMPL_RATE(hwc) = rate;
|
|
|
|
hw_init_period(hwc, SAMPL_RATE(hwc));
|
|
|
|
|
|
|
|
/* Allocate the per-CPU sampling buffer using the CPU information
|
|
|
|
* from the event. If the event is not pinned to a particular
|
|
|
|
* CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
|
|
|
|
* buffers for each online CPU.
|
|
|
|
*/
|
|
|
|
if (cpuhw)
|
|
|
|
/* Event is pinned to a particular CPU */
|
|
|
|
err = allocate_sdbt(cpuhw, hwc);
|
|
|
|
else {
|
|
|
|
/* Event is not pinned, allocate sampling buffer on
|
|
|
|
* each online CPU
|
|
|
|
*/
|
|
|
|
for_each_online_cpu(cpu) {
|
|
|
|
cpuhw = &per_cpu(cpu_hw_sf, cpu);
|
|
|
|
err = allocate_sdbt(cpuhw, hwc);
|
|
|
|
if (err)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int cpumsf_pmu_event_init(struct perf_event *event)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
2013-12-12 23:47:00 +08:00
|
|
|
/* No support for taken branch sampling */
|
|
|
|
if (has_branch_stack(event))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
|
|
|
switch (event->attr.type) {
|
|
|
|
case PERF_TYPE_RAW:
|
|
|
|
if (event->attr.config != PERF_EVENT_CPUM_SF)
|
|
|
|
return -ENOENT;
|
|
|
|
break;
|
|
|
|
case PERF_TYPE_HARDWARE:
|
|
|
|
/* Support sampling of CPU cycles in addition to the
|
|
|
|
* counter facility. However, the counter facility
|
|
|
|
* is more precise and, hence, restrict this PMU to
|
|
|
|
* sampling events only.
|
|
|
|
*/
|
|
|
|
if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
|
|
|
|
return -ENOENT;
|
|
|
|
if (!is_sampling_event(event))
|
|
|
|
return -ENOENT;
|
|
|
|
break;
|
|
|
|
default:
|
2013-12-12 23:32:47 +08:00
|
|
|
return -ENOENT;
|
2013-12-12 23:47:00 +08:00
|
|
|
}
|
2013-12-12 23:32:47 +08:00
|
|
|
|
|
|
|
if (event->cpu >= nr_cpumask_bits ||
|
|
|
|
(event->cpu >= 0 && !cpu_online(event->cpu)))
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
err = __hw_perf_event_init(event);
|
|
|
|
if (unlikely(err))
|
|
|
|
if (event->destroy)
|
|
|
|
event->destroy(event);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpumsf_pmu_enable(struct pmu *pmu)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (cpuhw->flags & PMU_F_ENABLED)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (cpuhw->flags & PMU_F_ERR_MASK)
|
|
|
|
return;
|
|
|
|
|
|
|
|
cpuhw->flags |= PMU_F_ENABLED;
|
|
|
|
barrier();
|
|
|
|
|
|
|
|
err = lsctl(&cpuhw->lsctl);
|
|
|
|
if (err) {
|
|
|
|
cpuhw->flags &= ~PMU_F_ENABLED;
|
|
|
|
pr_err("Loading sampling controls failed: op=%i err=%i\n",
|
|
|
|
1, err);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i tear=%p dear=%p\n",
|
|
|
|
cpuhw->lsctl.es, cpuhw->lsctl.cs,
|
|
|
|
(void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpumsf_pmu_disable(struct pmu *pmu)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
struct hws_lsctl_request_block inactive;
|
|
|
|
struct hws_qsi_info_block si;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!(cpuhw->flags & PMU_F_ENABLED))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (cpuhw->flags & PMU_F_ERR_MASK)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Switch off sampling activation control */
|
|
|
|
inactive = cpuhw->lsctl;
|
|
|
|
inactive.cs = 0;
|
|
|
|
|
|
|
|
err = lsctl(&inactive);
|
|
|
|
if (err) {
|
|
|
|
pr_err("Loading sampling controls failed: op=%i err=%i\n",
|
|
|
|
2, err);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Save state of TEAR and DEAR register contents */
|
|
|
|
if (!qsi(&si)) {
|
|
|
|
/* TEAR/DEAR values are valid only if the sampling facility is
|
|
|
|
* enabled. Note that cpumsf_pmu_disable() might be called even
|
|
|
|
* for a disabled sampling facility because cpumsf_pmu_enable()
|
|
|
|
* controls the enable/disable state.
|
|
|
|
*/
|
|
|
|
if (si.es) {
|
|
|
|
cpuhw->lsctl.tear = si.tear;
|
|
|
|
cpuhw->lsctl.dear = si.dear;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
|
|
|
|
"qsi() failed with err=%i\n", err);
|
|
|
|
|
|
|
|
cpuhw->flags &= ~PMU_F_ENABLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* perf_push_sample() - Push samples to perf
|
|
|
|
* @event: The perf event
|
|
|
|
* @sample: Hardware sample data
|
|
|
|
*
|
|
|
|
* Use the hardware sample data to create perf event sample. The sample
|
|
|
|
* is the pushed to the event subsystem and the function checks for
|
|
|
|
* possible event overflows. If an event overflow occurs, the PMU is
|
|
|
|
* stopped.
|
|
|
|
*
|
|
|
|
* Return non-zero if an event overflow occurred.
|
|
|
|
*/
|
|
|
|
static int perf_push_sample(struct perf_event *event,
|
|
|
|
struct hws_data_entry *sample)
|
|
|
|
{
|
|
|
|
int overflow;
|
|
|
|
struct pt_regs regs;
|
|
|
|
struct perf_sample_data data;
|
|
|
|
|
|
|
|
/* Skip samples that are invalid or for which the instruction address
|
|
|
|
* is not predictable. For the latter, the wait-state bit is set.
|
|
|
|
*/
|
|
|
|
if (sample->I || sample->W)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
|
|
|
|
memset(®s, 0, sizeof(regs));
|
|
|
|
regs.psw.addr = sample->ia;
|
|
|
|
if (sample->T)
|
|
|
|
regs.psw.mask |= PSW_MASK_DAT;
|
|
|
|
if (sample->W)
|
|
|
|
regs.psw.mask |= PSW_MASK_WAIT;
|
|
|
|
if (sample->P)
|
|
|
|
regs.psw.mask |= PSW_MASK_PSTATE;
|
|
|
|
switch (sample->AS) {
|
|
|
|
case 0x0:
|
|
|
|
regs.psw.mask |= PSW_ASC_PRIMARY;
|
|
|
|
break;
|
|
|
|
case 0x1:
|
|
|
|
regs.psw.mask |= PSW_ASC_ACCREG;
|
|
|
|
break;
|
|
|
|
case 0x2:
|
|
|
|
regs.psw.mask |= PSW_ASC_SECONDARY;
|
|
|
|
break;
|
|
|
|
case 0x3:
|
|
|
|
regs.psw.mask |= PSW_ASC_HOME;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
overflow = 0;
|
|
|
|
if (perf_event_overflow(event, &data, ®s)) {
|
|
|
|
overflow = 1;
|
|
|
|
event->pmu->stop(event, 0);
|
|
|
|
debug_sprintf_event(sfdbg, 4, "perf_push_sample: PMU stopped"
|
|
|
|
" because of an event overflow\n");
|
|
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
|
|
|
|
return overflow;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void perf_event_count_update(struct perf_event *event, u64 count)
|
|
|
|
{
|
|
|
|
local64_add(count, &event->count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* hw_collect_samples() - Walk through a sample-data-block and collect samples
|
|
|
|
* @event: The perf event
|
|
|
|
* @sdbt: Sample-data-block table
|
|
|
|
* @overflow: Event overflow counter
|
|
|
|
*
|
|
|
|
* Walks through a sample-data-block and collects hardware sample-data that is
|
|
|
|
* pushed to the perf event subsystem. The overflow reports the number of
|
|
|
|
* samples that has been discarded due to an event overflow.
|
|
|
|
*/
|
|
|
|
static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
|
|
|
|
unsigned long long *overflow)
|
|
|
|
{
|
|
|
|
struct hws_data_entry *sample;
|
|
|
|
unsigned long *trailer;
|
|
|
|
|
|
|
|
trailer = trailer_entry_ptr(*sdbt);
|
|
|
|
sample = (struct hws_data_entry *) *sdbt;
|
|
|
|
while ((unsigned long *) sample < trailer) {
|
|
|
|
/* Check for an empty sample */
|
|
|
|
if (!sample->def)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Update perf event period */
|
|
|
|
perf_event_count_update(event, SAMPL_RATE(&event->hw));
|
|
|
|
|
|
|
|
/* Check for basic sampling mode */
|
|
|
|
if (sample->def == 0x0001) {
|
|
|
|
/* If an event overflow occurred, the PMU is stopped to
|
|
|
|
* throttle event delivery. Remaining sample data is
|
|
|
|
* discarded.
|
|
|
|
*/
|
|
|
|
if (!*overflow)
|
|
|
|
*overflow = perf_push_sample(event, sample);
|
|
|
|
else
|
|
|
|
/* Count discarded samples */
|
|
|
|
*overflow += 1;
|
|
|
|
} else
|
|
|
|
/* Sample slot is not yet written or other record */
|
|
|
|
debug_sprintf_event(sfdbg, 5, "hw_collect_samples: "
|
|
|
|
"Unknown sample data entry format:"
|
|
|
|
" %i\n", sample->def);
|
|
|
|
|
|
|
|
/* Reset sample slot and advance to next sample */
|
|
|
|
sample->def = 0;
|
|
|
|
sample++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* hw_perf_event_update() - Process sampling buffer
|
|
|
|
* @event: The perf event
|
|
|
|
* @flush_all: Flag to also flush partially filled sample-data-blocks
|
|
|
|
*
|
|
|
|
* Processes the sampling buffer and create perf event samples.
|
|
|
|
* The sampling buffer position are retrieved and saved in the TEAR_REG
|
|
|
|
* register of the specified perf event.
|
|
|
|
*
|
|
|
|
* Only full sample-data-blocks are processed. Specify the flash_all flag
|
|
|
|
* to also walk through partially filled sample-data-blocks.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
static void hw_perf_event_update(struct perf_event *event, int flush_all)
|
|
|
|
{
|
|
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
struct hws_trailer_entry *te;
|
|
|
|
unsigned long *sdbt;
|
|
|
|
unsigned long long event_overflow, sampl_overflow;
|
|
|
|
int done;
|
|
|
|
|
|
|
|
sdbt = (unsigned long *) TEAR_REG(hwc);
|
|
|
|
done = event_overflow = sampl_overflow = 0;
|
|
|
|
while (!done) {
|
|
|
|
/* Get the trailer entry of the sample-data-block */
|
|
|
|
te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
|
|
|
|
|
|
|
|
/* Leave loop if no more work to do (block full indicator) */
|
|
|
|
if (!te->f) {
|
|
|
|
done = 1;
|
|
|
|
if (!flush_all)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check sample overflow count */
|
|
|
|
if (te->overflow) {
|
|
|
|
/* Increment sample overflow counter */
|
|
|
|
sampl_overflow += te->overflow;
|
|
|
|
|
|
|
|
/* XXX: If an sample overflow occurs, increase the
|
|
|
|
* sampling buffer. Set a "realloc" flag because
|
|
|
|
* the sampler must be re-enabled for changing
|
|
|
|
* the sample-data-block-table content.
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Timestamps are valid for full sample-data-blocks only */
|
|
|
|
debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
|
|
|
|
"overflow=%llu timestamp=0x%llx\n",
|
|
|
|
sdbt, te->overflow,
|
|
|
|
(te->f) ? te->timestamp : 0ULL);
|
|
|
|
|
|
|
|
/* Collect all samples from a single sample-data-block and
|
|
|
|
* flag if an (perf) event overflow happened. If so, the PMU
|
|
|
|
* is stopped and remaining samples will be discarded.
|
|
|
|
*/
|
|
|
|
hw_collect_samples(event, sdbt, &event_overflow);
|
|
|
|
|
|
|
|
/* Reset trailer */
|
|
|
|
xchg(&te->overflow, 0);
|
|
|
|
xchg((unsigned char *) te, 0x40);
|
|
|
|
|
|
|
|
/* Advance to next sample-data-block */
|
|
|
|
sdbt++;
|
|
|
|
if (is_link_entry(sdbt))
|
|
|
|
sdbt = get_next_sdbt(sdbt);
|
|
|
|
|
|
|
|
/* Update event hardware registers */
|
|
|
|
TEAR_REG(hwc) = (unsigned long) sdbt;
|
|
|
|
|
|
|
|
/* Stop processing sample-data if all samples of the current
|
|
|
|
* sample-data-block were flushed even if it was not full.
|
|
|
|
*/
|
|
|
|
if (flush_all && done)
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* If an event overflow happened, discard samples by
|
|
|
|
* processing any remaining sample-data-blocks.
|
|
|
|
*/
|
|
|
|
if (event_overflow)
|
|
|
|
flush_all = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sampl_overflow || event_overflow)
|
|
|
|
debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
|
|
|
|
"overflow stats: sample=%llu event=%llu\n",
|
|
|
|
sampl_overflow, event_overflow);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpumsf_pmu_read(struct perf_event *event)
|
|
|
|
{
|
|
|
|
/* Nothing to do ... updates are interrupt-driven */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Activate sampling control.
|
|
|
|
* Next call of pmu_enable() starts sampling.
|
|
|
|
*/
|
|
|
|
static void cpumsf_pmu_start(struct perf_event *event, int flags)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
|
|
|
|
if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
|
|
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
event->hw.state = 0;
|
|
|
|
cpuhw->lsctl.cs = 1;
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Deactivate sampling control.
|
|
|
|
* Next call of pmu_enable() stops sampling.
|
|
|
|
*/
|
|
|
|
static void cpumsf_pmu_stop(struct perf_event *event, int flags)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
|
|
|
|
if (event->hw.state & PERF_HES_STOPPED)
|
|
|
|
return;
|
|
|
|
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
cpuhw->lsctl.cs = 0;
|
|
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
|
|
|
|
|
|
if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
|
|
|
|
hw_perf_event_update(event, 1);
|
|
|
|
event->hw.state |= PERF_HES_UPTODATE;
|
|
|
|
}
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int cpumsf_pmu_add(struct perf_event *event, int flags)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (cpuhw->flags & PMU_F_IN_USE)
|
|
|
|
return -EAGAIN;
|
|
|
|
|
|
|
|
if (!cpuhw->sfb.sdbt)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
err = 0;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
|
|
|
|
event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
|
|
|
|
|
|
/* Set up sampling controls. Always program the sampling register
|
|
|
|
* using the SDB-table start. Reset TEAR_REG event hardware register
|
|
|
|
* that is used by hw_perf_event_update() to store the sampling buffer
|
|
|
|
* position after samples have been flushed.
|
|
|
|
*/
|
|
|
|
cpuhw->lsctl.s = 0;
|
|
|
|
cpuhw->lsctl.h = 1;
|
|
|
|
cpuhw->lsctl.tear = cpuhw->sfb.sdbt;
|
|
|
|
cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
|
|
|
|
cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
|
|
|
|
hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
|
|
|
|
|
|
|
|
/* Ensure sampling functions are in the disabled state. If disabled,
|
|
|
|
* switch on sampling enable control. */
|
|
|
|
if (WARN_ON_ONCE(cpuhw->lsctl.es == 1)) {
|
|
|
|
err = -EAGAIN;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
cpuhw->lsctl.es = 1;
|
|
|
|
|
|
|
|
/* Set in_use flag and store event */
|
|
|
|
event->hw.idx = 0; /* only one sampling event per CPU supported */
|
|
|
|
cpuhw->event = event;
|
|
|
|
cpuhw->flags |= PMU_F_IN_USE;
|
|
|
|
|
|
|
|
if (flags & PERF_EF_START)
|
|
|
|
cpumsf_pmu_start(event, PERF_EF_RELOAD);
|
|
|
|
out:
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void cpumsf_pmu_del(struct perf_event *event, int flags)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
cpumsf_pmu_stop(event, PERF_EF_UPDATE);
|
|
|
|
|
|
|
|
cpuhw->lsctl.es = 0;
|
|
|
|
cpuhw->flags &= ~PMU_F_IN_USE;
|
|
|
|
cpuhw->event = NULL;
|
|
|
|
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int cpumsf_pmu_event_idx(struct perf_event *event)
|
|
|
|
{
|
|
|
|
return event->hw.idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
|
|
|
|
|
|
|
|
static struct attribute *cpumsf_pmu_events_attr[] = {
|
|
|
|
CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-63");
|
|
|
|
|
|
|
|
static struct attribute *cpumsf_pmu_format_attr[] = {
|
|
|
|
&format_attr_event.attr,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct attribute_group cpumsf_pmu_events_group = {
|
|
|
|
.name = "events",
|
|
|
|
.attrs = cpumsf_pmu_events_attr,
|
|
|
|
};
|
|
|
|
static struct attribute_group cpumsf_pmu_format_group = {
|
|
|
|
.name = "format",
|
|
|
|
.attrs = cpumsf_pmu_format_attr,
|
|
|
|
};
|
|
|
|
static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
|
|
|
|
&cpumsf_pmu_events_group,
|
|
|
|
&cpumsf_pmu_format_group,
|
|
|
|
NULL,
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct pmu cpumf_sampling = {
|
|
|
|
.pmu_enable = cpumsf_pmu_enable,
|
|
|
|
.pmu_disable = cpumsf_pmu_disable,
|
|
|
|
|
|
|
|
.event_init = cpumsf_pmu_event_init,
|
|
|
|
.add = cpumsf_pmu_add,
|
|
|
|
.del = cpumsf_pmu_del,
|
|
|
|
|
|
|
|
.start = cpumsf_pmu_start,
|
|
|
|
.stop = cpumsf_pmu_stop,
|
|
|
|
.read = cpumsf_pmu_read,
|
|
|
|
|
|
|
|
.event_idx = cpumsf_pmu_event_idx,
|
|
|
|
.attr_groups = cpumsf_pmu_attr_groups,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void cpumf_measurement_alert(struct ext_code ext_code,
|
|
|
|
unsigned int alert, unsigned long unused)
|
|
|
|
{
|
|
|
|
struct cpu_hw_sf *cpuhw;
|
|
|
|
|
|
|
|
if (!(alert & CPU_MF_INT_SF_MASK))
|
|
|
|
return;
|
|
|
|
inc_irq_stat(IRQEXT_CMS);
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_sf);
|
|
|
|
|
|
|
|
/* Measurement alerts are shared and might happen when the PMU
|
|
|
|
* is not reserved. Ignore these alerts in this case. */
|
|
|
|
if (!(cpuhw->flags & PMU_F_RESERVED))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* The processing below must take care of multiple alert events that
|
|
|
|
* might be indicated concurrently. */
|
|
|
|
|
|
|
|
/* Program alert request */
|
|
|
|
if (alert & CPU_MF_INT_SF_PRA) {
|
|
|
|
if (cpuhw->flags & PMU_F_IN_USE)
|
|
|
|
hw_perf_event_update(cpuhw->event, 0);
|
|
|
|
else
|
|
|
|
WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Report measurement alerts only for non-PRA codes */
|
|
|
|
if (alert != CPU_MF_INT_SF_PRA)
|
|
|
|
debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
|
|
|
|
|
|
|
|
/* Sampling authorization change request */
|
|
|
|
if (alert & CPU_MF_INT_SF_SACA)
|
|
|
|
qsi(&cpuhw->qsi);
|
|
|
|
|
|
|
|
/* Loss of sample data due to high-priority machine activities */
|
|
|
|
if (alert & CPU_MF_INT_SF_LSDA) {
|
|
|
|
pr_err("Sample data was lost\n");
|
|
|
|
cpuhw->flags |= PMU_F_ERR_LSDA;
|
|
|
|
sf_disable();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Invalid sampling buffer entry */
|
|
|
|
if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
|
|
|
|
pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
|
|
|
|
alert);
|
|
|
|
cpuhw->flags |= PMU_F_ERR_IBE;
|
|
|
|
sf_disable();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __cpuinit cpumf_pmu_notifier(struct notifier_block *self,
|
|
|
|
unsigned long action, void *hcpu)
|
|
|
|
{
|
|
|
|
unsigned int cpu = (long) hcpu;
|
|
|
|
int flags;
|
|
|
|
|
|
|
|
/* Ignore the notification if no events are scheduled on the PMU.
|
|
|
|
* This might be racy...
|
|
|
|
*/
|
|
|
|
if (!atomic_read(&num_events))
|
|
|
|
return NOTIFY_OK;
|
|
|
|
|
|
|
|
switch (action & ~CPU_TASKS_FROZEN) {
|
|
|
|
case CPU_ONLINE:
|
|
|
|
case CPU_ONLINE_FROZEN:
|
|
|
|
flags = PMC_INIT;
|
|
|
|
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
|
|
|
|
break;
|
|
|
|
case CPU_DOWN_PREPARE:
|
|
|
|
flags = PMC_RELEASE;
|
|
|
|
smp_call_function_single(cpu, setup_pmc_cpu, &flags, 1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NOTIFY_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init init_cpum_sampling_pmu(void)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (!cpum_sf_avail())
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
|
|
|
|
if (!sfdbg)
|
|
|
|
pr_err("Registering for s390dbf failed\n");
|
|
|
|
debug_register_view(sfdbg, &debug_sprintf_view);
|
|
|
|
|
|
|
|
err = register_external_interrupt(0x1407, cpumf_measurement_alert);
|
|
|
|
if (err) {
|
|
|
|
pr_err("Failed to register for CPU-measurement alerts\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
|
|
|
|
if (err) {
|
|
|
|
pr_err("Failed to register cpum_sf pmu\n");
|
|
|
|
unregister_external_interrupt(0x1407, cpumf_measurement_alert);
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
perf_cpu_notifier(cpumf_pmu_notifier);
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
arch_initcall(init_cpum_sampling_pmu);
|