linux/arch/arm64/include/asm/traps.h

124 lines
3.3 KiB
C
Raw Normal View History

/*
* Based on arch/arm/include/asm/traps.h
*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_TRAP_H
#define __ASM_TRAP_H
#include <linux/list.h>
#include <asm/esr.h>
#include <asm/sections.h>
struct pt_regs;
struct undef_hook {
struct list_head node;
u32 instr_mask;
u32 instr_val;
u64 pstate_mask;
u64 pstate_val;
int (*fn)(struct pt_regs *regs, u32 instr);
};
void register_undef_hook(struct undef_hook *hook);
void unregister_undef_hook(struct undef_hook *hook);
arm64/sve: Core task context handling This patch adds the core support for switching and managing the SVE architectural state of user tasks. Calls to the existing FPSIMD low-level save/restore functions are factored out as new functions task_fpsimd_{save,load}(), since SVE now dynamically may or may not need to be handled at these points depending on the kernel configuration, hardware features discovered at boot, and the runtime state of the task. To make these decisions as fast as possible, const cpucaps are used where feasible, via the system_supports_sve() helper. The SVE registers are only tracked for threads that have explicitly used SVE, indicated by the new thread flag TIF_SVE. Otherwise, the FPSIMD view of the architectural state is stored in thread.fpsimd_state as usual. When in use, the SVE registers are not stored directly in thread_struct due to their potentially large and variable size. Because the task_struct slab allocator must be configured very early during kernel boot, it is also tricky to configure it correctly to match the maximum vector length provided by the hardware, since this depends on examining secondary CPUs as well as the primary. Instead, a pointer sve_state in thread_struct points to a dynamically allocated buffer containing the SVE register data, and code is added to allocate and free this buffer at appropriate times. TIF_SVE is set when taking an SVE access trap from userspace, if suitable hardware support has been detected. This enables SVE for the thread: a subsequent return to userspace will disable the trap accordingly. If such a trap is taken without sufficient system- wide hardware support, SIGILL is sent to the thread instead as if an undefined instruction had been executed: this may happen if userspace tries to use SVE in a system where not all CPUs support it for example. The kernel will clear TIF_SVE and disable SVE for the thread whenever an explicit syscall is made by userspace. For backwards compatibility reasons and conformance with the spirit of the base AArch64 procedure call standard, the subset of the SVE register state that aliases the FPSIMD registers is still preserved across a syscall even if this happens. The remainder of the SVE register state logically becomes zero at syscall entry, though the actual zeroing work is currently deferred until the thread next tries to use SVE, causing another trap to the kernel. This implementation is suboptimal: in the future, the fastpath case may be optimised to zero the registers in-place and leave SVE enabled for the task, where beneficial. TIF_SVE is also cleared in the following slowpath cases, which are taken as reasonable hints that the task may no longer use SVE: * exec * fork and clone Code is added to sync data between thread.fpsimd_state and thread.sve_state whenever enabling/disabling SVE, in a manner consistent with the SVE architectural programmer's model. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Alex Bennée <alex.bennee@linaro.org> [will: added #include to fix allnoconfig build] [will: use enable_daif in do_sve_acc] Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-10-31 23:51:05 +08:00
void force_signal_inject(int signal, int code, struct pt_regs *regs,
unsigned long address);
void arm64_notify_segfault(struct pt_regs *regs, unsigned long addr);
/*
* Move regs->pc to next instruction and do necessary setup before it
* is executed.
*/
void arm64_skip_faulting_instruction(struct pt_regs *regs, unsigned long size);
arm64: Add __exception_irq_entry definition for function graph The gic_handle_irq() is defined with __exception_irq_entry attribute. A single remaining work is to add its definition as ARM did. Below shows how function graph data is changed with these hunks. A prologue of an interrupt handler is drawn as follows. - current status 0) 0.208 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.313 us | rcu_irq_enter(); 0) 0.261 us | __local_bh_disable_ip(); - with this change 0) 0.625 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) ==========> | 0) | gic_handle_irq() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.885 us | rcu_irq_enter(); 0) 0.781 us | __local_bh_disable_ip(); An epilogue of an interrupt handler is recorded as follows. - current status 0) 0.261 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 0.521 us | rcu_eqs_enter_common.isra.46(); 0) 2.552 us | } 0) ! 322.448 us | } 0) ! 583.437 us | } 0) # 1656.041 us | } 0) # 1658.073 us | } - with this change 0) 0.677 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 1.770 us | rcu_eqs_enter_common.isra.46(); 0) 7.968 us | } 0) # 1803.541 us | } 0) # 2626.667 us | } 0) # 2632.969 us | } 0) <========== | 0) # 14425.00 us | } 0) # 14430.98 us | } Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Jungseok Lee <jungseoklee85@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-08-12 22:16:19 +08:00
static inline int __in_irqentry_text(unsigned long ptr)
{
return ptr >= (unsigned long)&__irqentry_text_start &&
ptr < (unsigned long)&__irqentry_text_end;
}
static inline int in_exception_text(unsigned long ptr)
{
arm64: Add __exception_irq_entry definition for function graph The gic_handle_irq() is defined with __exception_irq_entry attribute. A single remaining work is to add its definition as ARM did. Below shows how function graph data is changed with these hunks. A prologue of an interrupt handler is drawn as follows. - current status 0) 0.208 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.313 us | rcu_irq_enter(); 0) 0.261 us | __local_bh_disable_ip(); - with this change 0) 0.625 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) ==========> | 0) | gic_handle_irq() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.885 us | rcu_irq_enter(); 0) 0.781 us | __local_bh_disable_ip(); An epilogue of an interrupt handler is recorded as follows. - current status 0) 0.261 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 0.521 us | rcu_eqs_enter_common.isra.46(); 0) 2.552 us | } 0) ! 322.448 us | } 0) ! 583.437 us | } 0) # 1656.041 us | } 0) # 1658.073 us | } - with this change 0) 0.677 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 1.770 us | rcu_eqs_enter_common.isra.46(); 0) 7.968 us | } 0) # 1803.541 us | } 0) # 2626.667 us | } 0) # 2632.969 us | } 0) <========== | 0) # 14425.00 us | } 0) # 14430.98 us | } Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Jungseok Lee <jungseoklee85@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-08-12 22:16:19 +08:00
int in;
in = ptr >= (unsigned long)&__exception_text_start &&
ptr < (unsigned long)&__exception_text_end;
arm64: Add __exception_irq_entry definition for function graph The gic_handle_irq() is defined with __exception_irq_entry attribute. A single remaining work is to add its definition as ARM did. Below shows how function graph data is changed with these hunks. A prologue of an interrupt handler is drawn as follows. - current status 0) 0.208 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.313 us | rcu_irq_enter(); 0) 0.261 us | __local_bh_disable_ip(); - with this change 0) 0.625 us | cpuidle_not_available(); 0) | default_idle_call() { 0) | arch_cpu_idle() { 0) ==========> | 0) | gic_handle_irq() { 0) | __handle_domain_irq() { 0) | irq_enter() { 0) 0.885 us | rcu_irq_enter(); 0) 0.781 us | __local_bh_disable_ip(); An epilogue of an interrupt handler is recorded as follows. - current status 0) 0.261 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 0.521 us | rcu_eqs_enter_common.isra.46(); 0) 2.552 us | } 0) ! 322.448 us | } 0) ! 583.437 us | } 0) # 1656.041 us | } 0) # 1658.073 us | } - with this change 0) 0.677 us | idle_cpu(); 0) | rcu_irq_exit() { 0) 1.770 us | rcu_eqs_enter_common.isra.46(); 0) 7.968 us | } 0) # 1803.541 us | } 0) # 2626.667 us | } 0) # 2632.969 us | } 0) <========== | 0) # 14425.00 us | } 0) # 14430.98 us | } Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Rabin Vincent <rabin@rab.in> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Jungseok Lee <jungseoklee85@gmail.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-08-12 22:16:19 +08:00
return in ? : __in_irqentry_text(ptr);
}
arm64: unwind: reference pt_regs via embedded stack frame As it turns out, the unwind code is slightly broken, and probably has been for a while. The problem is in the dumping of the exception stack, which is intended to dump the contents of the pt_regs struct at each level in the call stack where an exception was taken and routed to a routine marked as __exception (which means its stack frame is right below the pt_regs struct on the stack). 'Right below the pt_regs struct' is ill defined, though: the unwind code assigns 'frame pointer + 0x10' to the .sp member of the stackframe struct at each level, and dump_backtrace() happily dereferences that as the pt_regs pointer when encountering an __exception routine. However, the actual size of the stack frame created by this routine (which could be one of many __exception routines we have in the kernel) is not known, and so frame.sp is pretty useless to figure out where struct pt_regs really is. So it seems the only way to ensure that we can find our struct pt_regs when walking the stack frames is to put it at a known fixed offset of the stack frame pointer that is passed to such __exception routines. The simplest way to do that is to put it inside pt_regs itself, which is the main change implemented by this patch. As a bonus, doing this allows us to get rid of a fair amount of cruft related to walking from one stack to the other, which is especially nice since we intend to introduce yet another stack for overflow handling once we add support for vmapped stacks. It also fixes an inconsistency where we only add a stack frame pointing to ELR_EL1 if we are executing from the IRQ stack but not when we are executing from the task stack. To consistly identify exceptions regs even in the presence of exceptions taken from entry code, we must check whether the next frame was created by entry text, rather than whether the current frame was crated by exception text. To avoid backtracing using PCs that fall in the idmap, or are controlled by userspace, we must explcitly zero the FP and LR in startup paths, and must ensure that the frame embedded in pt_regs is zeroed upon entry from EL0. To avoid these NULL entries showin in the backtrace, unwind_frame() is updated to avoid them. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [Mark: compare current frame against .entry.text, avoid bogus PCs] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
2017-07-23 01:45:33 +08:00
static inline int in_entry_text(unsigned long ptr)
{
return ptr >= (unsigned long)&__entry_text_start &&
ptr < (unsigned long)&__entry_text_end;
}
/*
* CPUs with the RAS extensions have an Implementation-Defined-Syndrome bit
* to indicate whether this ESR has a RAS encoding. CPUs without this feature
* have a ISS-Valid bit in the same position.
* If this bit is set, we know its not a RAS SError.
* If its clear, we need to know if the CPU supports RAS. Uncategorized RAS
* errors share the same encoding as an all-zeros encoding from a CPU that
* doesn't support RAS.
*/
static inline bool arm64_is_ras_serror(u32 esr)
{
WARN_ON(preemptible());
if (esr & ESR_ELx_IDS)
return false;
if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN))
return true;
else
return false;
}
/*
* Return the AET bits from a RAS SError's ESR.
*
* It is implementation defined whether Uncategorized errors are containable.
* We treat them as Uncontainable.
* Non-RAS SError's are reported as Uncontained/Uncategorized.
*/
static inline u32 arm64_ras_serror_get_severity(u32 esr)
{
u32 aet = esr & ESR_ELx_AET;
if (!arm64_is_ras_serror(esr)) {
/* Not a RAS error, we can't interpret the ESR. */
return ESR_ELx_AET_UC;
}
/*
* AET is RES0 if 'the value returned in the DFSC field is not
* [ESR_ELx_FSC_SERROR]'
*/
if ((esr & ESR_ELx_FSC) != ESR_ELx_FSC_SERROR) {
/* No severity information : Uncategorized */
return ESR_ELx_AET_UC;
}
return aet;
}
bool arm64_is_fatal_ras_serror(struct pt_regs *regs, unsigned int esr);
void __noreturn arm64_serror_panic(struct pt_regs *regs, u32 esr);
#endif