linux/drivers/pnp/resource.c

692 lines
15 KiB
C
Raw Normal View History

/*
* resource.c - Contains functions for registering and analyzing resource information
*
* based on isapnp.c resource management (c) Jaroslav Kysela <perex@perex.cz>
* Copyright 2003 Adam Belay <ambx1@neo.rr.com>
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
* Copyright (C) 2008 Hewlett-Packard Development Company, L.P.
* Bjorn Helgaas <bjorn.helgaas@hp.com>
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/pnp.h>
#include "base.h"
static int pnp_reserve_irq[16] = {[0 ... 15] = -1 }; /* reserve (don't use) some IRQ */
static int pnp_reserve_dma[8] = {[0 ... 7] = -1 }; /* reserve (don't use) some DMA */
static int pnp_reserve_io[16] = {[0 ... 15] = -1 }; /* reserve (don't use) some I/O region */
static int pnp_reserve_mem[16] = {[0 ... 15] = -1 }; /* reserve (don't use) some memory region */
/*
* option registration
*/
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *pnp_build_option(struct pnp_dev *dev, unsigned long type,
unsigned int option_flags)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option = kzalloc(sizeof(struct pnp_option), GFP_KERNEL);
if (!option)
return NULL;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option->flags = option_flags;
option->type = type;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
list_add_tail(&option->list, &dev->options);
return option;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
int pnp_register_irq_resource(struct pnp_dev *dev, unsigned int option_flags,
pnp_irq_mask_t *map, unsigned char flags)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
struct pnp_irq *irq;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option = pnp_build_option(dev, IORESOURCE_IRQ, option_flags);
if (!option)
return -ENOMEM;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
irq = &option->u.irq;
irq->map = *map;
irq->flags = flags;
#ifdef CONFIG_PCI
{
int i;
for (i = 0; i < 16; i++)
if (test_bit(i, irq->map.bits))
pcibios_penalize_isa_irq(i, 0);
}
#endif
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dbg_pnp_show_option(dev, option);
return 0;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
int pnp_register_dma_resource(struct pnp_dev *dev, unsigned int option_flags,
unsigned char map, unsigned char flags)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
struct pnp_dma *dma;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option = pnp_build_option(dev, IORESOURCE_DMA, option_flags);
if (!option)
return -ENOMEM;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dma = &option->u.dma;
dma->map = map;
dma->flags = flags;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dbg_pnp_show_option(dev, option);
return 0;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
int pnp_register_port_resource(struct pnp_dev *dev, unsigned int option_flags,
resource_size_t min, resource_size_t max,
resource_size_t align, resource_size_t size,
unsigned char flags)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
struct pnp_port *port;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option = pnp_build_option(dev, IORESOURCE_IO, option_flags);
if (!option)
return -ENOMEM;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
port = &option->u.port;
port->min = min;
port->max = max;
port->align = align;
port->size = size;
port->flags = flags;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dbg_pnp_show_option(dev, option);
return 0;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
int pnp_register_mem_resource(struct pnp_dev *dev, unsigned int option_flags,
resource_size_t min, resource_size_t max,
resource_size_t align, resource_size_t size,
unsigned char flags)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
struct pnp_mem *mem;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
option = pnp_build_option(dev, IORESOURCE_MEM, option_flags);
if (!option)
return -ENOMEM;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
mem = &option->u.mem;
mem->min = min;
mem->max = max;
mem->align = align;
mem->size = size;
mem->flags = flags;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dbg_pnp_show_option(dev, option);
return 0;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
void pnp_free_options(struct pnp_dev *dev)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option, *tmp;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
list_for_each_entry_safe(option, tmp, &dev->options, list) {
list_del(&option->list);
kfree(option);
}
}
/*
* resource validity checking
*/
#define length(start, end) (*(end) - *(start) + 1)
/* Two ranges conflict if one doesn't end before the other starts */
#define ranged_conflict(starta, enda, startb, endb) \
!((*(enda) < *(startb)) || (*(endb) < *(starta)))
#define cannot_compare(flags) \
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
((flags) & IORESOURCE_DISABLED)
int pnp_check_port(struct pnp_dev *dev, struct resource *res)
{
int i;
struct pnp_dev *tdev;
struct resource *tres;
resource_size_t *port, *end, *tport, *tend;
port = &res->start;
end = &res->end;
/* if the resource doesn't exist, don't complain about it */
if (cannot_compare(res->flags))
return 1;
/* check if the resource is already in use, skip if the
* device is active because it itself may be in use */
if (!dev->active) {
if (__check_region(&ioport_resource, *port, length(port, end)))
return 0;
}
/* check if the resource is reserved */
for (i = 0; i < 8; i++) {
int rport = pnp_reserve_io[i << 1];
int rend = pnp_reserve_io[(i << 1) + 1] + rport - 1;
if (ranged_conflict(port, end, &rport, &rend))
return 0;
}
/* check for internal conflicts */
for (i = 0; (tres = pnp_get_resource(dev, IORESOURCE_IO, i)); i++) {
if (tres != res && tres->flags & IORESOURCE_IO) {
tport = &tres->start;
tend = &tres->end;
if (ranged_conflict(port, end, tport, tend))
return 0;
}
}
/* check for conflicts with other pnp devices */
pnp_for_each_dev(tdev) {
if (tdev == dev)
continue;
for (i = 0;
(tres = pnp_get_resource(tdev, IORESOURCE_IO, i));
i++) {
if (tres->flags & IORESOURCE_IO) {
if (cannot_compare(tres->flags))
continue;
tport = &tres->start;
tend = &tres->end;
if (ranged_conflict(port, end, tport, tend))
return 0;
}
}
}
return 1;
}
int pnp_check_mem(struct pnp_dev *dev, struct resource *res)
{
int i;
struct pnp_dev *tdev;
struct resource *tres;
resource_size_t *addr, *end, *taddr, *tend;
addr = &res->start;
end = &res->end;
/* if the resource doesn't exist, don't complain about it */
if (cannot_compare(res->flags))
return 1;
/* check if the resource is already in use, skip if the
* device is active because it itself may be in use */
if (!dev->active) {
if (check_mem_region(*addr, length(addr, end)))
return 0;
}
/* check if the resource is reserved */
for (i = 0; i < 8; i++) {
int raddr = pnp_reserve_mem[i << 1];
int rend = pnp_reserve_mem[(i << 1) + 1] + raddr - 1;
if (ranged_conflict(addr, end, &raddr, &rend))
return 0;
}
/* check for internal conflicts */
for (i = 0; (tres = pnp_get_resource(dev, IORESOURCE_MEM, i)); i++) {
if (tres != res && tres->flags & IORESOURCE_MEM) {
taddr = &tres->start;
tend = &tres->end;
if (ranged_conflict(addr, end, taddr, tend))
return 0;
}
}
/* check for conflicts with other pnp devices */
pnp_for_each_dev(tdev) {
if (tdev == dev)
continue;
for (i = 0;
(tres = pnp_get_resource(tdev, IORESOURCE_MEM, i));
i++) {
if (tres->flags & IORESOURCE_MEM) {
if (cannot_compare(tres->flags))
continue;
taddr = &tres->start;
tend = &tres->end;
if (ranged_conflict(addr, end, taddr, tend))
return 0;
}
}
}
return 1;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t pnp_test_handler(int irq, void *dev_id)
{
return IRQ_HANDLED;
}
#ifdef CONFIG_PCI
static int pci_dev_uses_irq(struct pnp_dev *pnp, struct pci_dev *pci,
unsigned int irq)
{
u32 class;
u8 progif;
if (pci->irq == irq) {
dev_dbg(&pnp->dev, "device %s using irq %d\n",
pci_name(pci), irq);
return 1;
}
/*
* See pci_setup_device() and ata_pci_sff_activate_host() for
* similar IDE legacy detection.
*/
pci_read_config_dword(pci, PCI_CLASS_REVISION, &class);
class >>= 8; /* discard revision ID */
progif = class & 0xff;
class >>= 8;
if (class == PCI_CLASS_STORAGE_IDE) {
/*
* Unless both channels are native-PCI mode only,
* treat the compatibility IRQs as busy.
*/
if ((progif & 0x5) != 0x5)
if (pci_get_legacy_ide_irq(pci, 0) == irq ||
pci_get_legacy_ide_irq(pci, 1) == irq) {
dev_dbg(&pnp->dev, "legacy IDE device %s "
"using irq %d\n", pci_name(pci), irq);
return 1;
}
}
return 0;
}
#endif
static int pci_uses_irq(struct pnp_dev *pnp, unsigned int irq)
{
#ifdef CONFIG_PCI
struct pci_dev *pci = NULL;
for_each_pci_dev(pci) {
if (pci_dev_uses_irq(pnp, pci, irq)) {
pci_dev_put(pci);
return 1;
}
}
#endif
return 0;
}
int pnp_check_irq(struct pnp_dev *dev, struct resource *res)
{
int i;
struct pnp_dev *tdev;
struct resource *tres;
resource_size_t *irq;
irq = &res->start;
/* if the resource doesn't exist, don't complain about it */
if (cannot_compare(res->flags))
return 1;
/* check if the resource is valid */
if (*irq < 0 || *irq > 15)
return 0;
/* check if the resource is reserved */
for (i = 0; i < 16; i++) {
if (pnp_reserve_irq[i] == *irq)
return 0;
}
/* check for internal conflicts */
for (i = 0; (tres = pnp_get_resource(dev, IORESOURCE_IRQ, i)); i++) {
if (tres != res && tres->flags & IORESOURCE_IRQ) {
if (tres->start == *irq)
return 0;
}
}
/* check if the resource is being used by a pci device */
if (pci_uses_irq(dev, *irq))
return 0;
/* check if the resource is already in use, skip if the
* device is active because it itself may be in use */
if (!dev->active) {
if (request_irq(*irq, pnp_test_handler,
IRQF_DISABLED | IRQF_PROBE_SHARED, "pnp", NULL))
return 0;
free_irq(*irq, NULL);
}
/* check for conflicts with other pnp devices */
pnp_for_each_dev(tdev) {
if (tdev == dev)
continue;
for (i = 0;
(tres = pnp_get_resource(tdev, IORESOURCE_IRQ, i));
i++) {
if (tres->flags & IORESOURCE_IRQ) {
if (cannot_compare(tres->flags))
continue;
if (tres->start == *irq)
return 0;
}
}
}
return 1;
}
int pnp_check_dma(struct pnp_dev *dev, struct resource *res)
{
#ifndef CONFIG_IA64
int i;
struct pnp_dev *tdev;
struct resource *tres;
resource_size_t *dma;
dma = &res->start;
/* if the resource doesn't exist, don't complain about it */
if (cannot_compare(res->flags))
return 1;
/* check if the resource is valid */
if (*dma < 0 || *dma == 4 || *dma > 7)
return 0;
/* check if the resource is reserved */
for (i = 0; i < 8; i++) {
if (pnp_reserve_dma[i] == *dma)
return 0;
}
/* check for internal conflicts */
for (i = 0; (tres = pnp_get_resource(dev, IORESOURCE_DMA, i)); i++) {
if (tres != res && tres->flags & IORESOURCE_DMA) {
if (tres->start == *dma)
return 0;
}
}
/* check if the resource is already in use, skip if the
* device is active because it itself may be in use */
if (!dev->active) {
if (request_dma(*dma, "pnp"))
return 0;
free_dma(*dma);
}
/* check for conflicts with other pnp devices */
pnp_for_each_dev(tdev) {
if (tdev == dev)
continue;
for (i = 0;
(tres = pnp_get_resource(tdev, IORESOURCE_DMA, i));
i++) {
if (tres->flags & IORESOURCE_DMA) {
if (cannot_compare(tres->flags))
continue;
if (tres->start == *dma)
return 0;
}
}
}
return 1;
#else
/* IA64 does not have legacy DMA */
return 0;
#endif
}
int pnp_resource_type(struct resource *res)
{
return res->flags & (IORESOURCE_IO | IORESOURCE_MEM |
IORESOURCE_IRQ | IORESOURCE_DMA);
}
struct resource *pnp_get_resource(struct pnp_dev *dev,
unsigned int type, unsigned int num)
{
struct pnp_resource *pnp_res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
struct resource *res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
list_for_each_entry(pnp_res, &dev->resources, list) {
res = &pnp_res->res;
if (pnp_resource_type(res) == type && num-- == 0)
return res;
}
return NULL;
}
EXPORT_SYMBOL(pnp_get_resource);
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
static struct pnp_resource *pnp_new_resource(struct pnp_dev *dev)
{
struct pnp_resource *pnp_res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_res = kzalloc(sizeof(struct pnp_resource), GFP_KERNEL);
if (!pnp_res)
return NULL;
list_add_tail(&pnp_res->list, &dev->resources);
return pnp_res;
}
struct pnp_resource *pnp_add_irq_resource(struct pnp_dev *dev, int irq,
int flags)
{
struct pnp_resource *pnp_res;
struct resource *res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_res = pnp_new_resource(dev);
if (!pnp_res) {
dev_err(&dev->dev, "can't add resource for IRQ %d\n", irq);
return NULL;
}
res = &pnp_res->res;
res->flags = IORESOURCE_IRQ | flags;
res->start = irq;
res->end = irq;
dev_dbg(&dev->dev, " add irq %d flags %#x\n", irq, flags);
return pnp_res;
}
struct pnp_resource *pnp_add_dma_resource(struct pnp_dev *dev, int dma,
int flags)
{
struct pnp_resource *pnp_res;
struct resource *res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_res = pnp_new_resource(dev);
if (!pnp_res) {
dev_err(&dev->dev, "can't add resource for DMA %d\n", dma);
return NULL;
}
res = &pnp_res->res;
res->flags = IORESOURCE_DMA | flags;
res->start = dma;
res->end = dma;
dev_dbg(&dev->dev, " add dma %d flags %#x\n", dma, flags);
return pnp_res;
}
struct pnp_resource *pnp_add_io_resource(struct pnp_dev *dev,
resource_size_t start,
resource_size_t end, int flags)
{
struct pnp_resource *pnp_res;
struct resource *res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_res = pnp_new_resource(dev);
if (!pnp_res) {
dev_err(&dev->dev, "can't add resource for IO %#llx-%#llx\n",
(unsigned long long) start,
(unsigned long long) end);
return NULL;
}
res = &pnp_res->res;
res->flags = IORESOURCE_IO | flags;
res->start = start;
res->end = end;
dev_dbg(&dev->dev, " add io %#llx-%#llx flags %#x\n",
(unsigned long long) start, (unsigned long long) end, flags);
return pnp_res;
}
struct pnp_resource *pnp_add_mem_resource(struct pnp_dev *dev,
resource_size_t start,
resource_size_t end, int flags)
{
struct pnp_resource *pnp_res;
struct resource *res;
PNP: replace pnp_resource_table with dynamically allocated resources PNP used to have a fixed-size pnp_resource_table for tracking the resources used by a device. This table often overflowed, so we've had to increase the table size, which wastes memory because most devices have very few resources. This patch replaces the table with a linked list of resources where the entries are allocated on demand. This removes messages like these: pnpacpi: exceeded the max number of IO resources 00:01: too many I/O port resources References: http://bugzilla.kernel.org/show_bug.cgi?id=9535 http://bugzilla.kernel.org/show_bug.cgi?id=9740 http://lkml.org/lkml/2007/11/30/110 This patch also changes the way PNP uses the IORESOURCE_UNSET, IORESOURCE_AUTO, and IORESOURCE_DISABLED flags. Prior to this patch, the pnp_resource_table entries used the flags like this: IORESOURCE_UNSET This table entry is unused and available for use. When this flag is set, we shouldn't look at anything else in the resource structure. This flag is set when a resource table entry is initialized. IORESOURCE_AUTO This resource was assigned automatically by pnp_assign_{io,mem,etc}(). This flag is set when a resource table entry is initialized and cleared whenever we discover a resource setting by reading an ISAPNP config register, parsing a PNPBIOS resource data stream, parsing an ACPI _CRS list, or interpreting a sysfs "set" command. Resources marked IORESOURCE_AUTO are reinitialized and marked as IORESOURCE_UNSET by pnp_clean_resource_table() in these cases: - before we attempt to assign resources automatically, - if we fail to assign resources automatically, - after disabling a device IORESOURCE_DISABLED Set by pnp_assign_{io,mem,etc}() when automatic assignment fails. Also set by PNPBIOS and PNPACPI for: - invalid IRQs or GSI registration failures - invalid DMA channels - I/O ports above 0x10000 - mem ranges with negative length After this patch, there is no pnp_resource_table, and the resource list entries use the flags like this: IORESOURCE_UNSET This flag is no longer used in PNP. Instead of keeping IORESOURCE_UNSET entries in the resource list, we remove entries from the list and free them. IORESOURCE_AUTO No change in meaning: it still means the resource was assigned automatically by pnp_assign_{port,mem,etc}(), but these functions now set the bit explicitly. We still "clean" a device's resource list in the same places, but rather than reinitializing IORESOURCE_AUTO entries, we just remove them from the list. Note that IORESOURCE_AUTO entries are always at the end of the list, so removing them doesn't reorder other list entries. This is because non-IORESOURCE_AUTO entries are added by the ISAPNP, PNPBIOS, or PNPACPI "get resources" methods and by the sysfs "set" command. In each of these cases, we completely free the resource list first. IORESOURCE_DISABLED In addition to the cases where we used to set this flag, ISAPNP now adds an IORESOURCE_DISABLED resource when it reads a configuration register with a "disabled" value. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Andi Kleen <ak@linux.intel.com>
2008-06-28 06:56:57 +08:00
pnp_res = pnp_new_resource(dev);
if (!pnp_res) {
dev_err(&dev->dev, "can't add resource for MEM %#llx-%#llx\n",
(unsigned long long) start,
(unsigned long long) end);
return NULL;
}
res = &pnp_res->res;
res->flags = IORESOURCE_MEM | flags;
res->start = start;
res->end = end;
dev_dbg(&dev->dev, " add mem %#llx-%#llx flags %#x\n",
(unsigned long long) start, (unsigned long long) end, flags);
return pnp_res;
}
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
/*
* Determine whether the specified resource is a possible configuration
* for this device.
*/
int pnp_possible_config(struct pnp_dev *dev, int type, resource_size_t start,
resource_size_t size)
{
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
struct pnp_option *option;
struct pnp_port *port;
struct pnp_mem *mem;
struct pnp_irq *irq;
struct pnp_dma *dma;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
list_for_each_entry(option, &dev->options, list) {
if (option->type != type)
continue;
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
switch (option->type) {
case IORESOURCE_IO:
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
port = &option->u.port;
if (port->min == start && port->size == size)
return 1;
break;
case IORESOURCE_MEM:
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
mem = &option->u.mem;
if (mem->min == start && mem->size == size)
return 1;
break;
case IORESOURCE_IRQ:
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
irq = &option->u.irq;
if (start < PNP_IRQ_NR &&
test_bit(start, irq->map.bits))
return 1;
break;
case IORESOURCE_DMA:
PNP: convert resource options to single linked list ISAPNP, PNPBIOS, and ACPI describe the "possible resource settings" of a device, i.e., the possibilities an OS bus driver has when it assigns I/O port, MMIO, and other resources to the device. PNP used to maintain this "possible resource setting" information in one independent option structure and a list of dependent option structures for each device. Each of these option structures had lists of I/O, memory, IRQ, and DMA resources, for example: dev independent options ind-io0 -> ind-io1 ... ind-mem0 -> ind-mem1 ... ... dependent option set 0 dep0-io0 -> dep0-io1 ... dep0-mem0 -> dep0-mem1 ... ... dependent option set 1 dep1-io0 -> dep1-io1 ... dep1-mem0 -> dep1-mem1 ... ... ... This data structure was designed for ISAPNP, where the OS configures device resource settings by writing directly to configuration registers. The OS can write the registers in arbitrary order much like it writes PCI BARs. However, for PNPBIOS and ACPI devices, the OS uses firmware interfaces that perform device configuration, and it is important to pass the desired settings to those interfaces in the correct order. The OS learns the correct order by using firmware interfaces that return the "current resource settings" and "possible resource settings," but the option structures above doesn't store the ordering information. This patch replaces the independent and dependent lists with a single list of options. For example, a device might have possible resource settings like this: dev options ind-io0 -> dep0-io0 -> dep1->io0 -> ind-io1 ... All the possible settings are in the same list, in the order they come from the firmware "possible resource settings" list. Each entry is tagged with an independent/dependent flag. Dependent entries also have a "set number" and an optional priority value. All dependent entries must be assigned from the same set. For example, the OS can use all the entries from dependent set 0, or all the entries from dependent set 1, but it cannot mix entries from set 0 with entries from set 1. Prior to this patch PNP didn't keep track of the order of this list, and it assigned all independent options first, then all dependent ones. Using the example above, that resulted in a "desired configuration" list like this: ind->io0 -> ind->io1 -> depN-io0 ... instead of the list the firmware expects, which looks like this: ind->io0 -> depN-io0 -> ind-io1 ... Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Acked-by: Rene Herman <rene.herman@gmail.com> Signed-off-by: Len Brown <len.brown@intel.com>
2008-06-28 06:57:17 +08:00
dma = &option->u.dma;
if (dma->map & (1 << start))
return 1;
break;
}
}
return 0;
}
EXPORT_SYMBOL(pnp_possible_config);
/* format is: pnp_reserve_irq=irq1[,irq2] .... */
static int __init pnp_setup_reserve_irq(char *str)
{
int i;
for (i = 0; i < 16; i++)
if (get_option(&str, &pnp_reserve_irq[i]) != 2)
break;
return 1;
}
__setup("pnp_reserve_irq=", pnp_setup_reserve_irq);
/* format is: pnp_reserve_dma=dma1[,dma2] .... */
static int __init pnp_setup_reserve_dma(char *str)
{
int i;
for (i = 0; i < 8; i++)
if (get_option(&str, &pnp_reserve_dma[i]) != 2)
break;
return 1;
}
__setup("pnp_reserve_dma=", pnp_setup_reserve_dma);
/* format is: pnp_reserve_io=io1,size1[,io2,size2] .... */
static int __init pnp_setup_reserve_io(char *str)
{
int i;
for (i = 0; i < 16; i++)
if (get_option(&str, &pnp_reserve_io[i]) != 2)
break;
return 1;
}
__setup("pnp_reserve_io=", pnp_setup_reserve_io);
/* format is: pnp_reserve_mem=mem1,size1[,mem2,size2] .... */
static int __init pnp_setup_reserve_mem(char *str)
{
int i;
for (i = 0; i < 16; i++)
if (get_option(&str, &pnp_reserve_mem[i]) != 2)
break;
return 1;
}
__setup("pnp_reserve_mem=", pnp_setup_reserve_mem);