linux/fs/bcachefs/btree_cache.c

1355 lines
34 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bbpos.h"
#include "bkey_buf.h"
#include "btree_cache.h"
#include "btree_io.h"
#include "btree_iter.h"
#include "btree_locking.h"
#include "debug.h"
#include "errcode.h"
#include "error.h"
#include "journal.h"
#include "trace.h"
#include <linux/prefetch.h>
#include <linux/sched/mm.h>
#define BTREE_CACHE_NOT_FREED_INCREMENT(counter) \
do { \
if (shrinker_counter) \
bc->not_freed_##counter++; \
} while (0)
const char * const bch2_btree_node_flags[] = {
#define x(f) #f,
BTREE_FLAGS()
#undef x
NULL
};
void bch2_recalc_btree_reserve(struct bch_fs *c)
{
unsigned i, reserve = 16;
if (!c->btree_roots_known[0].b)
reserve += 8;
for (i = 0; i < btree_id_nr_alive(c); i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (r->b)
reserve += min_t(unsigned, 1, r->b->c.level) * 8;
}
c->btree_cache.reserve = reserve;
}
static inline unsigned btree_cache_can_free(struct btree_cache *bc)
{
return max_t(int, 0, bc->used - bc->reserve);
}
static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b)
{
if (b->c.lock.readers)
list_move(&b->list, &bc->freed_pcpu);
else
list_move(&b->list, &bc->freed_nonpcpu);
}
static void btree_node_data_free(struct bch_fs *c, struct btree *b)
{
struct btree_cache *bc = &c->btree_cache;
EBUG_ON(btree_node_write_in_flight(b));
bcachefs: Clear btree_node_just_written() when node reused or evicted This fixes the following bug: Journal reclaim attempts to flush a node, but races with the node being evicted from the btree node cache; when we lock the node, the data buffers have already been freed. We don't evict a node that's dirty, so calling btree_node_write() is fine - it's a noop - except that the btree_node_just_written bit causes bch2_btree_post_write_cleanup() to run (resorting the node), which then causes a null ptr deref. 00078 Unable to handle kernel NULL pointer dereference at virtual address 000000000000009e 00078 Mem abort info: 00078 ESR = 0x0000000096000005 00078 EC = 0x25: DABT (current EL), IL = 32 bits 00078 SET = 0, FnV = 0 00078 EA = 0, S1PTW = 0 00078 FSC = 0x05: level 1 translation fault 00078 Data abort info: 00078 ISV = 0, ISS = 0x00000005 00078 CM = 0, WnR = 0 00078 user pgtable: 4k pages, 39-bit VAs, pgdp=000000007ed64000 00078 [000000000000009e] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 00078 Internal error: Oops: 0000000096000005 [#1] SMP 00078 Modules linked in: 00078 CPU: 75 PID: 1170 Comm: stress-ng-utime Not tainted 6.3.0-ktest-g5ef5b466e77e #2078 00078 Hardware name: linux,dummy-virt (DT) 00078 pstate: 80001005 (Nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 00078 pc : btree_node_sort+0xc4/0x568 00078 lr : bch2_btree_post_write_cleanup+0x6c/0x1c0 00078 sp : ffffff803e30b350 00078 x29: ffffff803e30b350 x28: 0000000000000001 x27: ffffff80076e52a8 00078 x26: 0000000000000002 x25: 0000000000000000 x24: ffffffc00912e000 00078 x23: ffffff80076e52a8 x22: 0000000000000000 x21: ffffff80076e52bc 00078 x20: ffffff80076e5200 x19: 0000000000000000 x18: 0000000000000000 00078 x17: fffffffff8000000 x16: 0000000008000000 x15: 0000000008000000 00078 x14: 0000000000000002 x13: 0000000000000000 x12: 00000000000000a0 00078 x11: ffffff803e30b400 x10: ffffff803e30b408 x9 : 0000000000000001 00078 x8 : 0000000000000000 x7 : ffffff803e480000 x6 : 00000000000000a0 00078 x5 : 0000000000000088 x4 : 0000000000000000 x3 : 0000000000000010 00078 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff80076e52a8 00078 Call trace: 00078 btree_node_sort+0xc4/0x568 00078 bch2_btree_post_write_cleanup+0x6c/0x1c0 00078 bch2_btree_node_write+0x108/0x148 00078 __btree_node_flush+0x104/0x160 00078 bch2_btree_node_flush0+0x1c/0x30 00078 journal_flush_pins.constprop.0+0x184/0x2d0 00078 __bch2_journal_reclaim+0x4d4/0x508 00078 bch2_journal_reclaim+0x1c/0x30 00078 __bch2_journal_preres_get+0x244/0x268 00078 bch2_trans_journal_preres_get_cold+0xa4/0x180 00078 __bch2_trans_commit+0x61c/0x1bb0 00078 bch2_setattr_nonsize+0x254/0x318 00078 bch2_setattr+0x5c/0x78 00078 notify_change+0x2bc/0x408 00078 vfs_utimes+0x11c/0x218 00078 do_utimes+0x84/0x140 00078 __arm64_sys_utimensat+0x68/0xa8 00078 invoke_syscall.constprop.0+0x54/0xf0 00078 do_el0_svc+0x48/0xd8 00078 el0_svc+0x14/0x48 00078 el0t_64_sync_handler+0xb0/0xb8 00078 el0t_64_sync+0x14c/0x150 00078 Code: 8b050265 910020c6 8b060266 910060ac (79402cad) 00078 ---[ end trace 0000000000000000 ]--- Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-05-22 12:49:06 +08:00
clear_btree_node_just_written(b);
kvfree(b->data);
b->data = NULL;
#ifdef __KERNEL__
kvfree(b->aux_data);
#else
munmap(b->aux_data, btree_aux_data_bytes(b));
#endif
b->aux_data = NULL;
bc->used--;
btree_node_to_freedlist(bc, b);
}
static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg,
const void *obj)
{
const struct btree *b = obj;
const u64 *v = arg->key;
return b->hash_val == *v ? 0 : 1;
}
static const struct rhashtable_params bch_btree_cache_params = {
.head_offset = offsetof(struct btree, hash),
.key_offset = offsetof(struct btree, hash_val),
.key_len = sizeof(u64),
.obj_cmpfn = bch2_btree_cache_cmp_fn,
.automatic_shrinking = true,
};
static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp)
{
BUG_ON(b->data || b->aux_data);
b->data = kvmalloc(btree_buf_bytes(b), gfp);
if (!b->data)
return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
#ifdef __KERNEL__
b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp);
#else
b->aux_data = mmap(NULL, btree_aux_data_bytes(b),
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
if (b->aux_data == MAP_FAILED)
b->aux_data = NULL;
#endif
if (!b->aux_data) {
kvfree(b->data);
b->data = NULL;
return -BCH_ERR_ENOMEM_btree_node_mem_alloc;
}
return 0;
}
static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp)
{
struct btree *b;
b = kzalloc(sizeof(struct btree), gfp);
if (!b)
return NULL;
bkey_btree_ptr_init(&b->key);
INIT_LIST_HEAD(&b->list);
INIT_LIST_HEAD(&b->write_blocked);
b->byte_order = ilog2(c->opts.btree_node_size);
return b;
}
struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
b = __btree_node_mem_alloc(c, GFP_KERNEL);
if (!b)
return NULL;
if (btree_node_data_alloc(c, b, GFP_KERNEL)) {
kfree(b);
return NULL;
}
bch2_btree_lock_init(&b->c, 0);
bc->used++;
list_add(&b->list, &bc->freeable);
return b;
}
/* Btree in memory cache - hash table */
void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b)
{
int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params);
BUG_ON(ret);
/* Cause future lookups for this node to fail: */
b->hash_val = 0;
if (b->c.btree_id < BTREE_ID_NR)
--bc->used_by_btree[b->c.btree_id];
}
int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b)
{
BUG_ON(b->hash_val);
b->hash_val = btree_ptr_hash_val(&b->key);
int ret = rhashtable_lookup_insert_fast(&bc->table, &b->hash,
bch_btree_cache_params);
if (!ret && b->c.btree_id < BTREE_ID_NR)
bc->used_by_btree[b->c.btree_id]++;
return ret;
}
int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b,
unsigned level, enum btree_id id)
{
int ret;
b->c.level = level;
b->c.btree_id = id;
mutex_lock(&bc->lock);
ret = __bch2_btree_node_hash_insert(bc, b);
if (!ret)
list_add_tail(&b->list, &bc->live);
mutex_unlock(&bc->lock);
return ret;
}
void bch2_btree_node_update_key_early(struct btree_trans *trans,
enum btree_id btree, unsigned level,
struct bkey_s_c old, struct bkey_i *new)
{
struct bch_fs *c = trans->c;
struct btree *b;
struct bkey_buf tmp;
int ret;
bch2_bkey_buf_init(&tmp);
bch2_bkey_buf_reassemble(&tmp, c, old);
b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true);
if (!IS_ERR_OR_NULL(b)) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, b);
bkey_copy(&b->key, new);
ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
six_unlock_read(&b->c.lock);
}
bch2_bkey_buf_exit(&tmp, c);
}
__flatten
static inline struct btree *btree_cache_find(struct btree_cache *bc,
const struct bkey_i *k)
{
u64 v = btree_ptr_hash_val(k);
return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params);
}
/*
* this version is for btree nodes that have already been freed (we're not
* reaping a real btree node)
*/
static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush, bool shrinker_counter)
{
struct btree_cache *bc = &c->btree_cache;
int ret = 0;
lockdep_assert_held(&bc->lock);
struct bbpos pos = BBPOS(b->c.btree_id, b->key.k.p);
u64 mask = b->c.level
? bc->pinned_nodes_interior_mask
: bc->pinned_nodes_leaf_mask;
if ((mask & BIT_ULL(b->c.btree_id)) &&
bbpos_cmp(bc->pinned_nodes_start, pos) < 0 &&
bbpos_cmp(bc->pinned_nodes_end, pos) >= 0)
return -BCH_ERR_ENOMEM_btree_node_reclaim;
wait_on_io:
if (b->flags & ((1U << BTREE_NODE_dirty)|
(1U << BTREE_NODE_read_in_flight)|
(1U << BTREE_NODE_write_in_flight))) {
if (!flush) {
if (btree_node_dirty(b))
BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
else if (btree_node_read_in_flight(b))
BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
else if (btree_node_write_in_flight(b))
BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
return -BCH_ERR_ENOMEM_btree_node_reclaim;
}
/* XXX: waiting on IO with btree cache lock held */
bch2_btree_node_wait_on_read(b);
bch2_btree_node_wait_on_write(b);
}
if (!six_trylock_intent(&b->c.lock)) {
BTREE_CACHE_NOT_FREED_INCREMENT(lock_intent);
return -BCH_ERR_ENOMEM_btree_node_reclaim;
}
if (!six_trylock_write(&b->c.lock)) {
BTREE_CACHE_NOT_FREED_INCREMENT(lock_write);
goto out_unlock_intent;
}
/* recheck under lock */
if (b->flags & ((1U << BTREE_NODE_read_in_flight)|
(1U << BTREE_NODE_write_in_flight))) {
if (!flush) {
if (btree_node_read_in_flight(b))
BTREE_CACHE_NOT_FREED_INCREMENT(read_in_flight);
else if (btree_node_write_in_flight(b))
BTREE_CACHE_NOT_FREED_INCREMENT(write_in_flight);
goto out_unlock;
}
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
if (btree_node_noevict(b)) {
BTREE_CACHE_NOT_FREED_INCREMENT(noevict);
goto out_unlock;
}
if (btree_node_write_blocked(b)) {
BTREE_CACHE_NOT_FREED_INCREMENT(write_blocked);
goto out_unlock;
}
if (btree_node_will_make_reachable(b)) {
BTREE_CACHE_NOT_FREED_INCREMENT(will_make_reachable);
goto out_unlock;
}
if (btree_node_dirty(b)) {
if (!flush) {
BTREE_CACHE_NOT_FREED_INCREMENT(dirty);
goto out_unlock;
}
/*
* Using the underscore version because we don't want to compact
* bsets after the write, since this node is about to be evicted
* - unless btree verify mode is enabled, since it runs out of
* the post write cleanup:
*/
if (bch2_verify_btree_ondisk)
bch2_btree_node_write(c, b, SIX_LOCK_intent,
BTREE_WRITE_cache_reclaim);
else
__bch2_btree_node_write(c, b,
BTREE_WRITE_cache_reclaim);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
out:
if (b->hash_val && !ret)
trace_and_count(c, btree_cache_reap, c, b);
return ret;
out_unlock:
six_unlock_write(&b->c.lock);
out_unlock_intent:
six_unlock_intent(&b->c.lock);
ret = -BCH_ERR_ENOMEM_btree_node_reclaim;
goto out;
}
static int btree_node_reclaim(struct bch_fs *c, struct btree *b, bool shrinker_counter)
{
return __btree_node_reclaim(c, b, false, shrinker_counter);
}
static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b)
{
return __btree_node_reclaim(c, b, true, false);
}
static unsigned long bch2_btree_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
struct bch_fs *c = shrink->private_data;
struct btree_cache *bc = &c->btree_cache;
struct btree *b, *t;
unsigned long nr = sc->nr_to_scan;
unsigned long can_free = 0;
unsigned long freed = 0;
unsigned long touched = 0;
unsigned i, flags;
unsigned long ret = SHRINK_STOP;
bool trigger_writes = atomic_read(&bc->dirty) + nr >=
bc->used * 3 / 4;
if (bch2_btree_shrinker_disabled)
return SHRINK_STOP;
mutex_lock(&bc->lock);
flags = memalloc_nofs_save();
/*
* It's _really_ critical that we don't free too many btree nodes - we
* have to always leave ourselves a reserve. The reserve is how we
* guarantee that allocating memory for a new btree node can always
* succeed, so that inserting keys into the btree can always succeed and
* IO can always make forward progress:
*/
can_free = btree_cache_can_free(bc);
nr = min_t(unsigned long, nr, can_free);
i = 0;
list_for_each_entry_safe(b, t, &bc->freeable, list) {
/*
* Leave a few nodes on the freeable list, so that a btree split
* won't have to hit the system allocator:
*/
if (++i <= 3)
continue;
touched++;
if (touched >= nr)
goto out;
if (!btree_node_reclaim(c, b, true)) {
btree_node_data_free(c, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
freed++;
bc->freed++;
}
}
restart:
list_for_each_entry_safe(b, t, &bc->live, list) {
touched++;
if (btree_node_accessed(b)) {
clear_btree_node_accessed(b);
bc->not_freed_access_bit++;
} else if (!btree_node_reclaim(c, b, true)) {
freed++;
btree_node_data_free(c, b);
bc->freed++;
bch2_btree_node_hash_remove(bc, b);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
if (freed == nr)
goto out_rotate;
} else if (trigger_writes &&
btree_node_dirty(b) &&
!btree_node_will_make_reachable(b) &&
!btree_node_write_blocked(b) &&
six_trylock_read(&b->c.lock)) {
list_move(&bc->live, &b->list);
mutex_unlock(&bc->lock);
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
six_unlock_read(&b->c.lock);
if (touched >= nr)
goto out_nounlock;
mutex_lock(&bc->lock);
goto restart;
}
if (touched >= nr)
break;
}
out_rotate:
if (&t->list != &bc->live)
list_move_tail(&bc->live, &t->list);
out:
mutex_unlock(&bc->lock);
out_nounlock:
ret = freed;
memalloc_nofs_restore(flags);
trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret);
return ret;
}
static unsigned long bch2_btree_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
struct bch_fs *c = shrink->private_data;
struct btree_cache *bc = &c->btree_cache;
if (bch2_btree_shrinker_disabled)
return 0;
return btree_cache_can_free(bc);
}
void bch2_fs_btree_cache_exit(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
unsigned i, flags;
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
shrinker_free(bc->shrink);
/* vfree() can allocate memory: */
flags = memalloc_nofs_save();
mutex_lock(&bc->lock);
if (c->verify_data)
list_move(&c->verify_data->list, &bc->live);
kvfree(c->verify_ondisk);
for (i = 0; i < btree_id_nr_alive(c); i++) {
struct btree_root *r = bch2_btree_id_root(c, i);
if (r->b)
list_add(&r->b->list, &bc->live);
}
list_splice(&bc->freeable, &bc->live);
while (!list_empty(&bc->live)) {
b = list_first_entry(&bc->live, struct btree, list);
BUG_ON(btree_node_read_in_flight(b) ||
btree_node_write_in_flight(b));
btree_node_data_free(c, b);
}
BUG_ON(!bch2_journal_error(&c->journal) &&
atomic_read(&c->btree_cache.dirty));
list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu);
while (!list_empty(&bc->freed_nonpcpu)) {
b = list_first_entry(&bc->freed_nonpcpu, struct btree, list);
list_del(&b->list);
six_lock_exit(&b->c.lock);
kfree(b);
}
mutex_unlock(&bc->lock);
memalloc_nofs_restore(flags);
if (bc->table_init_done)
rhashtable_destroy(&bc->table);
}
int bch2_fs_btree_cache_init(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
struct shrinker *shrink;
unsigned i;
int ret = 0;
ret = rhashtable_init(&bc->table, &bch_btree_cache_params);
if (ret)
goto err;
bc->table_init_done = true;
bch2_recalc_btree_reserve(c);
for (i = 0; i < bc->reserve; i++)
if (!__bch2_btree_node_mem_alloc(c))
goto err;
list_splice_init(&bc->live, &bc->freeable);
mutex_init(&c->verify_lock);
Second bcachefs pull request for 6.7-rc1 Here's the second big bcachefs pull request. This brings your tree up to date with my master branch, which is what existing bcachefs users are currently running. All but the last few patches have been in linux-next, those being small fixes. Test results from my dashboard: https://evilpiepirate.org/~testdashboard/ci?commit=c7046ed0cf9bb33599aa7e72e7b67bba4be42d64 New features: - rebalance_work btree (and metadata version 1.3): the rebalance thread no longer has to scan to find extents that need processing - big scalability improvement. - sb_errors superblock section: this adds counters for each fsck error type, since filesystem creation, along with the date of the most recent error. It'll get us better bug reports (since users do not typically report errors that fsck was able to fix), and I might add telemetry for this in the future. Fixes include: - multiple snapshot deletion fixes - members_v2 fixups - deleted_inodes btree fixes - copygc thread no longer spins when a device is full but has no fragmented buckets (i.e. rebalance needs to move data around instead) - a fix for a memory reclaim issue with the btree key cache: we're now careful not to hold the srcu read lock that blocks key cache reclaim for too long - an early allocator locking fix, from Brian - endianness fixes, from Brian - CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y, a big performance improvement on multithreaded workloads -----BEGIN PGP SIGNATURE----- iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmVH9xYACgkQE6szbY3K bnahLRAAiNRZL73SQ+MW79o4yPqGwt0Eyy/mvoiGpZf1B8uXp0oZ55j2w3l887Uf LeM03mInAYCPdyp/d4vxqIr96j9BODmRRl8sEkkGdJDzokLG+22F0ovOe45KWTxL kBoNdng/O/oeOe/1K7taP3KzBvMx2nOF6oA+xfgyCjECMArAIXek0iocyEUR4Ywd vGKhLNn1k2c+94wacnDYwjjdcLBxoqxsFXlpu6V0BcaY+DX4J3aBaGmj75KEoCI0 VbBOzxrOO4QzJrzW2+hxZZWgGyvReCkBJvqfORfuPxiSbFobTim10MdfZOAMQA1U Xr1FTEpK1wMX0/pPVgZRqaOsttC+yc/SsfPNgSxybgHPbDlMLaakDHjvYssbKOYG urDWSMG5yCsktSLj95SXsvUFKZaZFD72SKBNdgdt/nZjwTHuNQ7IkdrMwIrCQ/PT Ifn50UrR/Ahd8RAd5tyNCPw6U9VfwnxACSNl2KA7ONKpvHb+gSt1JsJTDyz1+gN9 nFVrw1SHKQ6EIV6XhVon/5DEuRTzqoYGWoN08FHEUq9fBlvnVpmbJErCQMplOjz9 OQnAfpJH4YqkpXyjFAjP1V0An+RUn8QvDgXNqC9TyvCYuOliVFuil4y7/c+7oIQU NEoz+jVLenqsGOGAbduI4/Q567COojRgwEvbebSIxSImXuhCNj4= =Lo4N -----END PGP SIGNATURE----- Merge tag 'bcachefs-2023-11-5' of https://evilpiepirate.org/git/bcachefs Pull more bcachefs updates from Kent Overstreet: "Here's the second big bcachefs pull request. This brings your tree up to date with my master branch, which is what existing bcachefs users are currently running. New features: - rebalance_work btree (and metadata version 1.3): the rebalance thread no longer has to scan to find extents that need processing - big scalability improvement. - sb_errors superblock section: this adds counters for each fsck error type, since filesystem creation, along with the date of the most recent error. It'll get us better bug reports (since users do not typically report errors that fsck was able to fix), and I might add telemetry for this in the future. Fixes include: - multiple snapshot deletion fixes - members_v2 fixups - deleted_inodes btree fixes - copygc thread no longer spins when a device is full but has no fragmented buckets (i.e. rebalance needs to move data around instead) - a fix for a memory reclaim issue with the btree key cache: we're now careful not to hold the srcu read lock that blocks key cache reclaim for too long - an early allocator locking fix, from Brian - endianness fixes, from Brian - CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y, a big performance improvement on multithreaded workloads" * tag 'bcachefs-2023-11-5' of https://evilpiepirate.org/git/bcachefs: (70 commits) bcachefs: Improve stripe checksum error message bcachefs: Simplify, fix bch2_backpointer_get_key() bcachefs: kill thing_it_points_to arg to backpointer_not_found() bcachefs: bch2_ec_read_extent() now takes btree_trans bcachefs: bch2_stripe_to_text() now prints ptr gens bcachefs: Don't iterate over journal entries just for btree roots bcachefs: Break up bch2_journal_write() bcachefs: Replace ERANGE with private error codes bcachefs: bkey_copy() is no longer a macro bcachefs: x-macro-ify inode flags enum bcachefs: Convert bch2_fs_open() to darray bcachefs: Move __bch2_members_v2_get_mut to sb-members.h bcachefs: bch2_prt_datetime() bcachefs: CONFIG_BCACHEFS_DEBUG_TRANSACTIONS no longer defaults to y bcachefs: Add a comment for BTREE_INSERT_NOJOURNAL usage bcachefs: rebalance_work btree is not a snapshots btree bcachefs: Add missing printk newlines bcachefs: Fix recovery when forced to use JSET_NO_FLUSH journal entry bcachefs: .get_parent() should return an error pointer bcachefs: Fix bch2_delete_dead_inodes() ...
2023-11-08 03:38:38 +08:00
shrink = shrinker_alloc(0, "%s-btree_cache", c->name);
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
if (!shrink)
goto err;
Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series "Fixes and cleanups to compaction". - Joel Fernandes has a patchset ("Optimize mremap during mutual alignment within PMD") which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested. - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series "Do not try to access unaccepted memory" Adrian Hunter provides some fixups for the recently-added "unaccepted memory' feature. To increase the feature's checking coverage. "Plug a few gaps where RAM is exposed without checking if it is unaccepted memory". - In the series "cleanups for lockless slab shrink" Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code. - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series "use refcount+RCU method to implement lockless slab shrink". - David Hildenbrand contributes some maintenance work for the rmap code in the series "Anon rmap cleanups". - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series "mm: migrate: more folio conversion and unification". - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series "Add and use bdev_getblk()". - In the series "Use nth_page() in place of direct struct page manipulation" Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames. - In the series "mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO" has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use. - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code rationalization and folio conversions in the hugetlb code. - Yin Fengwei has improved mlock()'s handling of large folios in the series "support large folio for mlock" - In the series "Expose swapcache stat for memcg v1" Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2. - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named "MDWE without inheritance". - Kefeng Wang has provided the series "mm: convert numa balancing functions to use a folio" which does what it says. - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch makes is possible for a process to propagate KSM treatment across exec(). - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use "high bandwidth memory" in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named "memory tiering: calculate abstract distance based on ACPI HMAT" - In the series "Smart scanning mode for KSM" Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans. - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series "mm: memcg: fix tracking of pending stats updates values". - In the series "Implement IOCTL to get and optionally clear info about PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU. - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance" - a bunch of relatively minor maintenance tweaks to this code. - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series "Handle more faults under the VMA lock". Some rationalizations of the fault path became possible as a result. - In the series "mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups and folio conversions. - In the series "various improvements to the GUP interface" Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements. - Andrey Konovalov has sent along the series "kasan: assorted fixes and improvements" which does those things. - Some page allocator maintenance work from Kemeng Shi in the series "Two minor cleanups to break_down_buddy_pages". - In thes series "New selftest for mm" Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults. - In the series "Add folio_end_read" Matthew Wilcox provides cleanups and an optimization to the core pagecache code. - Nhat Pham has added memcg accounting for hugetlb memory in the series "hugetlb memcg accounting". - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series "Abstract vma_merge() and split_vma()". - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series "Fix page_owner's use of free timestamps". - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series "permit write-sealed memfd read-only shared mappings". - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series "Batch hugetlb vmemmap modification operations". - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series "Finish the create_empty_buffers() transition". - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series "mm: PCP high auto-tuning". - Roman Gushchin has contributed the patchset "mm: improve performance of accounted kernel memory allocations" which improves their performance by ~30% as measured by a micro-benchmark. - folio conversions from Kefeng Wang in the series "mm: convert page cpupid functions to folios". - Some kmemleak fixups in Liu Shixin's series "Some bugfix about kmemleak". - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series "handle memoryless nodes more appropriately". - khugepaged conversions from Vishal Moola in the series "Some khugepaged folio conversions". -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y FgeUPAD1oasg6CP+INZvCj34waNxwAc= =E+Y4 -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-11-03 13:38:47 +08:00
bc->shrink = shrink;
shrink->count_objects = bch2_btree_cache_count;
shrink->scan_objects = bch2_btree_cache_scan;
shrink->seeks = 4;
shrink->private_data = c;
shrinker_register(shrink);
return 0;
err:
return -BCH_ERR_ENOMEM_fs_btree_cache_init;
}
void bch2_fs_btree_cache_init_early(struct btree_cache *bc)
{
mutex_init(&bc->lock);
INIT_LIST_HEAD(&bc->live);
INIT_LIST_HEAD(&bc->freeable);
INIT_LIST_HEAD(&bc->freed_pcpu);
INIT_LIST_HEAD(&bc->freed_nonpcpu);
}
/*
* We can only have one thread cannibalizing other cached btree nodes at a time,
* or we'll deadlock. We use an open coded mutex to ensure that, which a
* cannibalize_bucket() will take. This means every time we unlock the root of
* the btree, we need to release this lock if we have it held.
*/
void bch2_btree_cache_cannibalize_unlock(struct btree_trans *trans)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
if (bc->alloc_lock == current) {
trace_and_count(c, btree_cache_cannibalize_unlock, trans);
bc->alloc_lock = NULL;
closure_wake_up(&bc->alloc_wait);
}
}
int bch2_btree_cache_cannibalize_lock(struct btree_trans *trans, struct closure *cl)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct task_struct *old;
old = NULL;
if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current)
goto success;
if (!cl) {
trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock;
}
closure_wait(&bc->alloc_wait, cl);
/* Try again, after adding ourselves to waitlist */
old = NULL;
if (try_cmpxchg(&bc->alloc_lock, &old, current) || old == current) {
/* We raced */
closure_wake_up(&bc->alloc_wait);
goto success;
}
trace_and_count(c, btree_cache_cannibalize_lock_fail, trans);
return -BCH_ERR_btree_cache_cannibalize_lock_blocked;
success:
trace_and_count(c, btree_cache_cannibalize_lock, trans);
return 0;
}
static struct btree *btree_node_cannibalize(struct bch_fs *c)
{
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
list_for_each_entry_reverse(b, &bc->live, list)
if (!btree_node_reclaim(c, b, false))
return b;
while (1) {
list_for_each_entry_reverse(b, &bc->live, list)
if (!btree_node_write_and_reclaim(c, b))
return b;
/*
* Rare case: all nodes were intent-locked.
* Just busy-wait.
*/
WARN_ONCE(1, "btree cache cannibalize failed\n");
cond_resched();
}
}
struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct list_head *freed = pcpu_read_locks
? &bc->freed_pcpu
: &bc->freed_nonpcpu;
struct btree *b, *b2;
u64 start_time = local_clock();
unsigned flags;
flags = memalloc_nofs_save();
mutex_lock(&bc->lock);
/*
* We never free struct btree itself, just the memory that holds the on
* disk node. Check the freed list before allocating a new one:
*/
list_for_each_entry(b, freed, list)
if (!btree_node_reclaim(c, b, false)) {
list_del_init(&b->list);
goto got_node;
}
b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN);
if (!b) {
mutex_unlock(&bc->lock);
bch2_trans_unlock(trans);
b = __btree_node_mem_alloc(c, GFP_KERNEL);
if (!b)
goto err;
mutex_lock(&bc->lock);
}
bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0);
BUG_ON(!six_trylock_intent(&b->c.lock));
BUG_ON(!six_trylock_write(&b->c.lock));
got_node:
/*
* btree_free() doesn't free memory; it sticks the node on the end of
* the list. Check if there's any freed nodes there:
*/
list_for_each_entry(b2, &bc->freeable, list)
if (!btree_node_reclaim(c, b2, false)) {
swap(b->data, b2->data);
swap(b->aux_data, b2->aux_data);
btree_node_to_freedlist(bc, b2);
six_unlock_write(&b2->c.lock);
six_unlock_intent(&b2->c.lock);
goto got_mem;
}
mutex_unlock(&bc->lock);
if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) {
bch2_trans_unlock(trans);
if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN))
goto err;
}
mutex_lock(&bc->lock);
bc->used++;
got_mem:
mutex_unlock(&bc->lock);
BUG_ON(btree_node_hashed(b));
BUG_ON(btree_node_dirty(b));
BUG_ON(btree_node_write_in_flight(b));
out:
b->flags = 0;
b->written = 0;
b->nsets = 0;
b->sib_u64s[0] = 0;
b->sib_u64s[1] = 0;
b->whiteout_u64s = 0;
bch2_btree_keys_init(b);
set_btree_node_accessed(b);
bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc],
start_time);
memalloc_nofs_restore(flags);
return b;
err:
mutex_lock(&bc->lock);
/* Try to cannibalize another cached btree node: */
if (bc->alloc_lock == current) {
b2 = btree_node_cannibalize(c);
bcachefs: Clear btree_node_just_written() when node reused or evicted This fixes the following bug: Journal reclaim attempts to flush a node, but races with the node being evicted from the btree node cache; when we lock the node, the data buffers have already been freed. We don't evict a node that's dirty, so calling btree_node_write() is fine - it's a noop - except that the btree_node_just_written bit causes bch2_btree_post_write_cleanup() to run (resorting the node), which then causes a null ptr deref. 00078 Unable to handle kernel NULL pointer dereference at virtual address 000000000000009e 00078 Mem abort info: 00078 ESR = 0x0000000096000005 00078 EC = 0x25: DABT (current EL), IL = 32 bits 00078 SET = 0, FnV = 0 00078 EA = 0, S1PTW = 0 00078 FSC = 0x05: level 1 translation fault 00078 Data abort info: 00078 ISV = 0, ISS = 0x00000005 00078 CM = 0, WnR = 0 00078 user pgtable: 4k pages, 39-bit VAs, pgdp=000000007ed64000 00078 [000000000000009e] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 00078 Internal error: Oops: 0000000096000005 [#1] SMP 00078 Modules linked in: 00078 CPU: 75 PID: 1170 Comm: stress-ng-utime Not tainted 6.3.0-ktest-g5ef5b466e77e #2078 00078 Hardware name: linux,dummy-virt (DT) 00078 pstate: 80001005 (Nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 00078 pc : btree_node_sort+0xc4/0x568 00078 lr : bch2_btree_post_write_cleanup+0x6c/0x1c0 00078 sp : ffffff803e30b350 00078 x29: ffffff803e30b350 x28: 0000000000000001 x27: ffffff80076e52a8 00078 x26: 0000000000000002 x25: 0000000000000000 x24: ffffffc00912e000 00078 x23: ffffff80076e52a8 x22: 0000000000000000 x21: ffffff80076e52bc 00078 x20: ffffff80076e5200 x19: 0000000000000000 x18: 0000000000000000 00078 x17: fffffffff8000000 x16: 0000000008000000 x15: 0000000008000000 00078 x14: 0000000000000002 x13: 0000000000000000 x12: 00000000000000a0 00078 x11: ffffff803e30b400 x10: ffffff803e30b408 x9 : 0000000000000001 00078 x8 : 0000000000000000 x7 : ffffff803e480000 x6 : 00000000000000a0 00078 x5 : 0000000000000088 x4 : 0000000000000000 x3 : 0000000000000010 00078 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffffff80076e52a8 00078 Call trace: 00078 btree_node_sort+0xc4/0x568 00078 bch2_btree_post_write_cleanup+0x6c/0x1c0 00078 bch2_btree_node_write+0x108/0x148 00078 __btree_node_flush+0x104/0x160 00078 bch2_btree_node_flush0+0x1c/0x30 00078 journal_flush_pins.constprop.0+0x184/0x2d0 00078 __bch2_journal_reclaim+0x4d4/0x508 00078 bch2_journal_reclaim+0x1c/0x30 00078 __bch2_journal_preres_get+0x244/0x268 00078 bch2_trans_journal_preres_get_cold+0xa4/0x180 00078 __bch2_trans_commit+0x61c/0x1bb0 00078 bch2_setattr_nonsize+0x254/0x318 00078 bch2_setattr+0x5c/0x78 00078 notify_change+0x2bc/0x408 00078 vfs_utimes+0x11c/0x218 00078 do_utimes+0x84/0x140 00078 __arm64_sys_utimensat+0x68/0xa8 00078 invoke_syscall.constprop.0+0x54/0xf0 00078 do_el0_svc+0x48/0xd8 00078 el0_svc+0x14/0x48 00078 el0t_64_sync_handler+0xb0/0xb8 00078 el0t_64_sync+0x14c/0x150 00078 Code: 8b050265 910020c6 8b060266 910060ac (79402cad) 00078 ---[ end trace 0000000000000000 ]--- Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-05-22 12:49:06 +08:00
clear_btree_node_just_written(b2);
bch2_btree_node_hash_remove(bc, b2);
if (b) {
swap(b->data, b2->data);
swap(b->aux_data, b2->aux_data);
btree_node_to_freedlist(bc, b2);
six_unlock_write(&b2->c.lock);
six_unlock_intent(&b2->c.lock);
} else {
b = b2;
list_del_init(&b->list);
}
mutex_unlock(&bc->lock);
trace_and_count(c, btree_cache_cannibalize, trans);
goto out;
}
mutex_unlock(&bc->lock);
memalloc_nofs_restore(flags);
return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc);
}
/* Slowpath, don't want it inlined into btree_iter_traverse() */
static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans,
struct btree_path *path,
const struct bkey_i *k,
enum btree_id btree_id,
unsigned level,
enum six_lock_type lock_type,
bool sync)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
if (unlikely(level >= BTREE_MAX_DEPTH)) {
int ret = bch2_fs_topology_error(c, "attempting to get btree node at level %u, >= max depth %u",
level, BTREE_MAX_DEPTH);
return ERR_PTR(ret);
}
if (unlikely(!bkey_is_btree_ptr(&k->k))) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
int ret = bch2_fs_topology_error(c, "attempting to get btree node with non-btree key %s", buf.buf);
printbuf_exit(&buf);
return ERR_PTR(ret);
}
if (unlikely(k->k.u64s > BKEY_BTREE_PTR_U64s_MAX)) {
struct printbuf buf = PRINTBUF;
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k));
int ret = bch2_fs_topology_error(c, "attempting to get btree node with too big key %s", buf.buf);
printbuf_exit(&buf);
return ERR_PTR(ret);
}
/*
* Parent node must be locked, else we could read in a btree node that's
* been freed:
*/
if (path && !bch2_btree_node_relock(trans, path, level + 1)) {
trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock));
}
b = bch2_btree_node_mem_alloc(trans, level != 0);
if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) {
if (!path)
return b;
trans->memory_allocation_failure = true;
trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail));
}
if (IS_ERR(b))
return b;
bkey_copy(&b->key, k);
if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) {
/* raced with another fill: */
/* mark as unhashed... */
b->hash_val = 0;
mutex_lock(&bc->lock);
list_add(&b->list, &bc->freeable);
mutex_unlock(&bc->lock);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
return NULL;
}
set_btree_node_read_in_flight(b);
six_unlock_write(&b->c.lock);
if (path) {
u32 seq = six_lock_seq(&b->c.lock);
/* Unlock before doing IO: */
six_unlock_intent(&b->c.lock);
bch2_trans_unlock_noassert(trans);
bch2_btree_node_read(trans, b, sync);
if (!sync)
return NULL;
if (!six_relock_type(&b->c.lock, lock_type, seq))
b = NULL;
} else {
bch2_btree_node_read(trans, b, sync);
if (lock_type == SIX_LOCK_read)
six_lock_downgrade(&b->c.lock);
}
return b;
}
static noinline void btree_bad_header(struct bch_fs *c, struct btree *b)
{
struct printbuf buf = PRINTBUF;
if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations)
return;
prt_printf(&buf,
"btree node header doesn't match ptr\n"
"btree %s level %u\n"
"ptr: ",
bch2_btree_id_str(b->c.btree_id), b->c.level);
bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
prt_printf(&buf, "\nheader: btree %s level %llu\n"
"min ",
bch2_btree_id_str(BTREE_NODE_ID(b->data)),
BTREE_NODE_LEVEL(b->data));
bch2_bpos_to_text(&buf, b->data->min_key);
prt_printf(&buf, "\nmax ");
bch2_bpos_to_text(&buf, b->data->max_key);
bch2_fs_topology_error(c, "%s", buf.buf);
printbuf_exit(&buf);
}
static inline void btree_check_header(struct bch_fs *c, struct btree *b)
{
if (b->c.btree_id != BTREE_NODE_ID(b->data) ||
b->c.level != BTREE_NODE_LEVEL(b->data) ||
!bpos_eq(b->data->max_key, b->key.k.p) ||
(b->key.k.type == KEY_TYPE_btree_ptr_v2 &&
!bpos_eq(b->data->min_key,
bkey_i_to_btree_ptr_v2(&b->key)->v.min_key)))
btree_bad_header(c, b);
}
static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
const struct bkey_i *k, unsigned level,
enum six_lock_type lock_type,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
bool need_relock = false;
int ret;
EBUG_ON(level >= BTREE_MAX_DEPTH);
retry:
b = btree_cache_find(bc, k);
if (unlikely(!b)) {
/*
* We must have the parent locked to call bch2_btree_node_fill(),
* else we could read in a btree node from disk that's been
* freed:
*/
b = bch2_btree_node_fill(trans, path, k, path->btree_id,
level, lock_type, true);
need_relock = true;
/* We raced and found the btree node in the cache */
if (!b)
goto retry;
if (IS_ERR(b))
return b;
} else {
if (btree_node_read_locked(path, level + 1))
btree_node_unlock(trans, path, level + 1);
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ERR_PTR(ret);
BUG_ON(ret);
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
b->c.level != level ||
race_fault())) {
six_unlock_type(&b->c.lock, lock_type);
if (bch2_btree_node_relock(trans, path, level + 1))
goto retry;
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
}
/* avoid atomic set bit if it's not needed: */
if (!btree_node_accessed(b))
set_btree_node_accessed(b);
}
if (unlikely(btree_node_read_in_flight(b))) {
u32 seq = six_lock_seq(&b->c.lock);
six_unlock_type(&b->c.lock, lock_type);
bch2_trans_unlock(trans);
need_relock = true;
bch2_btree_node_wait_on_read(b);
/*
* should_be_locked is not set on this path yet, so we need to
* relock it specifically:
*/
if (!six_relock_type(&b->c.lock, lock_type, seq))
goto retry;
}
if (unlikely(need_relock)) {
ret = bch2_trans_relock(trans) ?:
bch2_btree_path_relock_intent(trans, path);
if (ret) {
six_unlock_type(&b->c.lock, lock_type);
return ERR_PTR(ret);
}
}
prefetch(b->aux_data);
for_each_bset(b, t) {
void *p = (u64 *) b->aux_data + t->aux_data_offset;
prefetch(p + L1_CACHE_BYTES * 0);
prefetch(p + L1_CACHE_BYTES * 1);
prefetch(p + L1_CACHE_BYTES * 2);
}
if (unlikely(btree_node_read_error(b))) {
six_unlock_type(&b->c.lock, lock_type);
return ERR_PTR(-BCH_ERR_btree_node_read_error);
}
EBUG_ON(b->c.btree_id != path->btree_id);
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
btree_check_header(c, b);
return b;
}
/**
* bch2_btree_node_get - find a btree node in the cache and lock it, reading it
* in from disk if necessary.
*
* @trans: btree transaction object
* @path: btree_path being traversed
* @k: pointer to btree node (generally KEY_TYPE_btree_ptr_v2)
* @level: level of btree node being looked up (0 == leaf node)
* @lock_type: SIX_LOCK_read or SIX_LOCK_intent
* @trace_ip: ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek())
*
* The btree node will have either a read or a write lock held, depending on
* the @write parameter.
*
* Returns: btree node or ERR_PTR()
*/
struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path,
const struct bkey_i *k, unsigned level,
enum six_lock_type lock_type,
unsigned long trace_ip)
{
struct bch_fs *c = trans->c;
struct btree *b;
int ret;
EBUG_ON(level >= BTREE_MAX_DEPTH);
b = btree_node_mem_ptr(k);
/*
* Check b->hash_val _before_ calling btree_node_lock() - this might not
* be the node we want anymore, and trying to lock the wrong node could
* cause an unneccessary transaction restart:
*/
if (unlikely(!c->opts.btree_node_mem_ptr_optimization ||
!b ||
b->hash_val != btree_ptr_hash_val(k)))
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
if (btree_node_read_locked(path, level + 1))
btree_node_unlock(trans, path, level + 1);
ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ERR_PTR(ret);
BUG_ON(ret);
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
b->c.level != level ||
race_fault())) {
six_unlock_type(&b->c.lock, lock_type);
if (bch2_btree_node_relock(trans, path, level + 1))
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path);
return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused));
}
if (unlikely(btree_node_read_in_flight(b))) {
six_unlock_type(&b->c.lock, lock_type);
return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip);
}
prefetch(b->aux_data);
for_each_bset(b, t) {
void *p = (u64 *) b->aux_data + t->aux_data_offset;
prefetch(p + L1_CACHE_BYTES * 0);
prefetch(p + L1_CACHE_BYTES * 1);
prefetch(p + L1_CACHE_BYTES * 2);
}
/* avoid atomic set bit if it's not needed: */
if (!btree_node_accessed(b))
set_btree_node_accessed(b);
if (unlikely(btree_node_read_error(b))) {
six_unlock_type(&b->c.lock, lock_type);
return ERR_PTR(-BCH_ERR_btree_node_read_error);
}
EBUG_ON(b->c.btree_id != path->btree_id);
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
btree_check_header(c, b);
return b;
}
struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans,
const struct bkey_i *k,
enum btree_id btree_id,
unsigned level,
bool nofill)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
int ret;
EBUG_ON(level >= BTREE_MAX_DEPTH);
if (c->opts.btree_node_mem_ptr_optimization) {
b = btree_node_mem_ptr(k);
if (b)
goto lock_node;
}
retry:
b = btree_cache_find(bc, k);
if (unlikely(!b)) {
if (nofill)
goto out;
b = bch2_btree_node_fill(trans, NULL, k, btree_id,
level, SIX_LOCK_read, true);
/* We raced and found the btree node in the cache */
if (!b)
goto retry;
if (IS_ERR(b) &&
!bch2_btree_cache_cannibalize_lock(trans, NULL))
goto retry;
if (IS_ERR(b))
goto out;
} else {
lock_node:
ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_);
if (bch2_err_matches(ret, BCH_ERR_transaction_restart))
return ERR_PTR(ret);
BUG_ON(ret);
if (unlikely(b->hash_val != btree_ptr_hash_val(k) ||
b->c.btree_id != btree_id ||
b->c.level != level)) {
six_unlock_read(&b->c.lock);
goto retry;
}
}
/* XXX: waiting on IO with btree locks held: */
__bch2_btree_node_wait_on_read(b);
prefetch(b->aux_data);
for_each_bset(b, t) {
void *p = (u64 *) b->aux_data + t->aux_data_offset;
prefetch(p + L1_CACHE_BYTES * 0);
prefetch(p + L1_CACHE_BYTES * 1);
prefetch(p + L1_CACHE_BYTES * 2);
}
/* avoid atomic set bit if it's not needed: */
if (!btree_node_accessed(b))
set_btree_node_accessed(b);
if (unlikely(btree_node_read_error(b))) {
six_unlock_read(&b->c.lock);
b = ERR_PTR(-BCH_ERR_btree_node_read_error);
goto out;
}
EBUG_ON(b->c.btree_id != btree_id);
EBUG_ON(BTREE_NODE_LEVEL(b->data) != level);
btree_check_header(c, b);
out:
bch2_btree_cache_cannibalize_unlock(trans);
return b;
}
int bch2_btree_node_prefetch(struct btree_trans *trans,
struct btree_path *path,
const struct bkey_i *k,
enum btree_id btree_id, unsigned level)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
BUG_ON(path && !btree_node_locked(path, level + 1));
BUG_ON(level >= BTREE_MAX_DEPTH);
struct btree *b = btree_cache_find(bc, k);
if (b)
return 0;
b = bch2_btree_node_fill(trans, path, k, btree_id,
level, SIX_LOCK_read, false);
if (!IS_ERR_OR_NULL(b))
six_unlock_read(&b->c.lock);
return bch2_trans_relock(trans) ?: PTR_ERR_OR_ZERO(b);
}
void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k)
{
struct bch_fs *c = trans->c;
struct btree_cache *bc = &c->btree_cache;
struct btree *b;
b = btree_cache_find(bc, k);
if (!b)
return;
BUG_ON(b == btree_node_root(trans->c, b));
wait_on_io:
/* not allowed to wait on io with btree locks held: */
/* XXX we're called from btree_gc which will be holding other btree
* nodes locked
*/
__bch2_btree_node_wait_on_read(b);
__bch2_btree_node_wait_on_write(b);
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
if (unlikely(b->hash_val != btree_ptr_hash_val(k)))
goto out;
if (btree_node_dirty(b)) {
__bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim);
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
goto wait_on_io;
}
BUG_ON(btree_node_dirty(b));
mutex_lock(&bc->lock);
btree_node_data_free(c, b);
bch2_btree_node_hash_remove(bc, b);
mutex_unlock(&bc->lock);
out:
six_unlock_write(&b->c.lock);
six_unlock_intent(&b->c.lock);
}
const char *bch2_btree_id_str(enum btree_id btree)
{
return btree < BTREE_ID_NR ? __bch2_btree_ids[btree] : "(unknown)";
}
void bch2_btree_id_to_text(struct printbuf *out, enum btree_id btree)
{
if (btree < BTREE_ID_NR)
prt_str(out, __bch2_btree_ids[btree]);
else
prt_printf(out, "(unknown btree %u)", btree);
}
void bch2_btree_pos_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
{
prt_printf(out, "%s level %u/%u\n ",
bch2_btree_id_str(b->c.btree_id),
b->c.level,
bch2_btree_id_root(c, b->c.btree_id)->level);
bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key));
}
void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, const struct btree *b)
{
struct bset_stats stats;
memset(&stats, 0, sizeof(stats));
bch2_btree_keys_stats(b, &stats);
prt_printf(out, "l %u ", b->c.level);
bch2_bpos_to_text(out, b->data->min_key);
prt_printf(out, " - ");
bch2_bpos_to_text(out, b->data->max_key);
prt_printf(out, ":\n"
" ptrs: ");
bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key));
prt_newline(out);
prt_printf(out,
" format: ");
bch2_bkey_format_to_text(out, &b->format);
prt_printf(out,
" unpack fn len: %u\n"
" bytes used %zu/%zu (%zu%% full)\n"
" sib u64s: %u, %u (merge threshold %u)\n"
" nr packed keys %u\n"
" nr unpacked keys %u\n"
" floats %zu\n"
" failed unpacked %zu\n",
b->unpack_fn_len,
b->nr.live_u64s * sizeof(u64),
btree_buf_bytes(b) - sizeof(struct btree_node),
b->nr.live_u64s * 100 / btree_max_u64s(c),
b->sib_u64s[0],
b->sib_u64s[1],
c->btree_foreground_merge_threshold,
b->nr.packed_keys,
b->nr.unpacked_keys,
stats.floats,
stats.failed);
}
static void prt_btree_cache_line(struct printbuf *out, const struct bch_fs *c,
const char *label, unsigned nr)
{
prt_printf(out, "%s\t", label);
prt_human_readable_u64(out, nr * c->opts.btree_node_size);
prt_printf(out, " (%u)\n", nr);
}
void bch2_btree_cache_to_text(struct printbuf *out, const struct btree_cache *bc)
{
struct bch_fs *c = container_of(bc, struct bch_fs, btree_cache);
if (!out->nr_tabstops)
printbuf_tabstop_push(out, 32);
prt_btree_cache_line(out, c, "total:", bc->used);
prt_btree_cache_line(out, c, "nr dirty:", atomic_read(&bc->dirty));
prt_printf(out, "cannibalize lock:\t%p\n", bc->alloc_lock);
prt_newline(out);
for (unsigned i = 0; i < ARRAY_SIZE(bc->used_by_btree); i++)
prt_btree_cache_line(out, c, bch2_btree_id_str(i), bc->used_by_btree[i]);
prt_newline(out);
prt_printf(out, "freed:\t%u\n", bc->freed);
prt_printf(out, "not freed:\n");
prt_printf(out, " dirty\t%u\n", bc->not_freed_dirty);
prt_printf(out, " write in flight\t%u\n", bc->not_freed_write_in_flight);
prt_printf(out, " read in flight\t%u\n", bc->not_freed_read_in_flight);
prt_printf(out, " lock intent failed\t%u\n", bc->not_freed_lock_intent);
prt_printf(out, " lock write failed\t%u\n", bc->not_freed_lock_write);
prt_printf(out, " access bit\t%u\n", bc->not_freed_access_bit);
prt_printf(out, " no evict failed\t%u\n", bc->not_freed_noevict);
prt_printf(out, " write blocked\t%u\n", bc->not_freed_write_blocked);
prt_printf(out, " will make reachable\t%u\n", bc->not_freed_will_make_reachable);
}