mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-05 01:54:09 +08:00
197 lines
4.3 KiB
C
197 lines
4.3 KiB
C
|
#include <linux/kernel.h>
|
||
|
#include <linux/syscalls.h>
|
||
|
#include <linux/fdtable.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/cache.h>
|
||
|
#include <linux/bug.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/kcmp.h>
|
||
|
|
||
|
#include <asm/unistd.h>
|
||
|
|
||
|
/*
|
||
|
* We don't expose the real in-memory order of objects for security reasons.
|
||
|
* But still the comparison results should be suitable for sorting. So we
|
||
|
* obfuscate kernel pointers values and compare the production instead.
|
||
|
*
|
||
|
* The obfuscation is done in two steps. First we xor the kernel pointer with
|
||
|
* a random value, which puts pointer into a new position in a reordered space.
|
||
|
* Secondly we multiply the xor production with a large odd random number to
|
||
|
* permute its bits even more (the odd multiplier guarantees that the product
|
||
|
* is unique ever after the high bits are truncated, since any odd number is
|
||
|
* relative prime to 2^n).
|
||
|
*
|
||
|
* Note also that the obfuscation itself is invisible to userspace and if needed
|
||
|
* it can be changed to an alternate scheme.
|
||
|
*/
|
||
|
static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
|
||
|
|
||
|
static long kptr_obfuscate(long v, int type)
|
||
|
{
|
||
|
return (v ^ cookies[type][0]) * cookies[type][1];
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* 0 - equal, i.e. v1 = v2
|
||
|
* 1 - less than, i.e. v1 < v2
|
||
|
* 2 - greater than, i.e. v1 > v2
|
||
|
* 3 - not equal but ordering unavailable (reserved for future)
|
||
|
*/
|
||
|
static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
|
||
|
{
|
||
|
long ret;
|
||
|
|
||
|
ret = kptr_obfuscate((long)v1, type) - kptr_obfuscate((long)v2, type);
|
||
|
|
||
|
return (ret < 0) | ((ret > 0) << 1);
|
||
|
}
|
||
|
|
||
|
/* The caller must have pinned the task */
|
||
|
static struct file *
|
||
|
get_file_raw_ptr(struct task_struct *task, unsigned int idx)
|
||
|
{
|
||
|
struct file *file = NULL;
|
||
|
|
||
|
task_lock(task);
|
||
|
rcu_read_lock();
|
||
|
|
||
|
if (task->files)
|
||
|
file = fcheck_files(task->files, idx);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
task_unlock(task);
|
||
|
|
||
|
return file;
|
||
|
}
|
||
|
|
||
|
static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
|
||
|
{
|
||
|
if (likely(m2 != m1))
|
||
|
mutex_unlock(m2);
|
||
|
mutex_unlock(m1);
|
||
|
}
|
||
|
|
||
|
static int kcmp_lock(struct mutex *m1, struct mutex *m2)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
if (m2 > m1)
|
||
|
swap(m1, m2);
|
||
|
|
||
|
err = mutex_lock_killable(m1);
|
||
|
if (!err && likely(m1 != m2)) {
|
||
|
err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
|
||
|
if (err)
|
||
|
mutex_unlock(m1);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
|
||
|
unsigned long, idx1, unsigned long, idx2)
|
||
|
{
|
||
|
struct task_struct *task1, *task2;
|
||
|
int ret;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
|
||
|
/*
|
||
|
* Tasks are looked up in caller's PID namespace only.
|
||
|
*/
|
||
|
task1 = find_task_by_vpid(pid1);
|
||
|
task2 = find_task_by_vpid(pid2);
|
||
|
if (!task1 || !task2)
|
||
|
goto err_no_task;
|
||
|
|
||
|
get_task_struct(task1);
|
||
|
get_task_struct(task2);
|
||
|
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
/*
|
||
|
* One should have enough rights to inspect task details.
|
||
|
*/
|
||
|
ret = kcmp_lock(&task1->signal->cred_guard_mutex,
|
||
|
&task2->signal->cred_guard_mutex);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
if (!ptrace_may_access(task1, PTRACE_MODE_READ) ||
|
||
|
!ptrace_may_access(task2, PTRACE_MODE_READ)) {
|
||
|
ret = -EPERM;
|
||
|
goto err_unlock;
|
||
|
}
|
||
|
|
||
|
switch (type) {
|
||
|
case KCMP_FILE: {
|
||
|
struct file *filp1, *filp2;
|
||
|
|
||
|
filp1 = get_file_raw_ptr(task1, idx1);
|
||
|
filp2 = get_file_raw_ptr(task2, idx2);
|
||
|
|
||
|
if (filp1 && filp2)
|
||
|
ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
|
||
|
else
|
||
|
ret = -EBADF;
|
||
|
break;
|
||
|
}
|
||
|
case KCMP_VM:
|
||
|
ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
|
||
|
break;
|
||
|
case KCMP_FILES:
|
||
|
ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
|
||
|
break;
|
||
|
case KCMP_FS:
|
||
|
ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
|
||
|
break;
|
||
|
case KCMP_SIGHAND:
|
||
|
ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
|
||
|
break;
|
||
|
case KCMP_IO:
|
||
|
ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
|
||
|
break;
|
||
|
case KCMP_SYSVSEM:
|
||
|
#ifdef CONFIG_SYSVIPC
|
||
|
ret = kcmp_ptr(task1->sysvsem.undo_list,
|
||
|
task2->sysvsem.undo_list,
|
||
|
KCMP_SYSVSEM);
|
||
|
#else
|
||
|
ret = -EOPNOTSUPP;
|
||
|
#endif
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
err_unlock:
|
||
|
kcmp_unlock(&task1->signal->cred_guard_mutex,
|
||
|
&task2->signal->cred_guard_mutex);
|
||
|
err:
|
||
|
put_task_struct(task1);
|
||
|
put_task_struct(task2);
|
||
|
|
||
|
return ret;
|
||
|
|
||
|
err_no_task:
|
||
|
rcu_read_unlock();
|
||
|
return -ESRCH;
|
||
|
}
|
||
|
|
||
|
static __init int kcmp_cookies_init(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
get_random_bytes(cookies, sizeof(cookies));
|
||
|
|
||
|
for (i = 0; i < KCMP_TYPES; i++)
|
||
|
cookies[i][1] |= (~(~0UL >> 1) | 1);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
arch_initcall(kcmp_cookies_init);
|