linux/drivers/net/tun.c

2622 lines
60 KiB
C
Raw Normal View History

/*
* TUN - Universal TUN/TAP device driver.
* Copyright (C) 1999-2002 Maxim Krasnyansky <maxk@qualcomm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* $Id: tun.c,v 1.15 2002/03/01 02:44:24 maxk Exp $
*/
/*
* Changes:
*
* Mike Kershaw <dragorn@kismetwireless.net> 2005/08/14
* Add TUNSETLINK ioctl to set the link encapsulation
*
* Mark Smith <markzzzsmith@yahoo.com.au>
* Use eth_random_addr() for tap MAC address.
*
* Harald Roelle <harald.roelle@ifi.lmu.de> 2004/04/20
* Fixes in packet dropping, queue length setting and queue wakeup.
* Increased default tx queue length.
* Added ethtool API.
* Minor cleanups
*
* Daniel Podlejski <underley@underley.eu.org>
* Modifications for 2.3.99-pre5 kernel.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DRV_NAME "tun"
#define DRV_VERSION "1.6"
#define DRV_DESCRIPTION "Universal TUN/TAP device driver"
#define DRV_COPYRIGHT "(C) 1999-2004 Max Krasnyansky <maxk@qualcomm.com>"
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/miscdevice.h>
#include <linux/ethtool.h>
#include <linux/rtnetlink.h>
#include <linux/compat.h>
#include <linux/if.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/if_tun.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/nsproxy.h>
#include <linux/virtio_net.h>
#include <linux/rcupdate.h>
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-18 02:56:21 +08:00
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/rtnetlink.h>
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
#include <net/sock.h>
#include <linux/seq_file.h>
#include <linux/uio.h>
#include <linux/skb_array.h>
#include <linux/uaccess.h>
/* Uncomment to enable debugging */
/* #define TUN_DEBUG 1 */
#ifdef TUN_DEBUG
static int debug;
#define tun_debug(level, tun, fmt, args...) \
do { \
if (tun->debug) \
netdev_printk(level, tun->dev, fmt, ##args); \
} while (0)
#define DBG1(level, fmt, args...) \
do { \
if (debug == 2) \
printk(level fmt, ##args); \
} while (0)
#else
#define tun_debug(level, tun, fmt, args...) \
do { \
if (0) \
netdev_printk(level, tun->dev, fmt, ##args); \
} while (0)
#define DBG1(level, fmt, args...) \
do { \
if (0) \
printk(level fmt, ##args); \
} while (0)
#endif
/* TUN device flags */
/* IFF_ATTACH_QUEUE is never stored in device flags,
* overload it to mean fasync when stored there.
*/
#define TUN_FASYNC IFF_ATTACH_QUEUE
/* High bits in flags field are unused. */
#define TUN_VNET_LE 0x80000000
#define TUN_VNET_BE 0x40000000
#define TUN_FEATURES (IFF_NO_PI | IFF_ONE_QUEUE | IFF_VNET_HDR | \
IFF_MULTI_QUEUE)
#define GOODCOPY_LEN 128
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
#define FLT_EXACT_COUNT 8
struct tap_filter {
unsigned int count; /* Number of addrs. Zero means disabled */
u32 mask[2]; /* Mask of the hashed addrs */
unsigned char addr[FLT_EXACT_COUNT][ETH_ALEN];
};
/* MAX_TAP_QUEUES 256 is chosen to allow rx/tx queues to be equal
* to max number of VCPUs in guest. */
#define MAX_TAP_QUEUES 256
#define MAX_TAP_FLOWS 4096
#define TUN_FLOW_EXPIRE (3 * HZ)
struct tun_pcpu_stats {
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
struct u64_stats_sync syncp;
u32 rx_dropped;
u32 tx_dropped;
u32 rx_frame_errors;
};
/* A tun_file connects an open character device to a tuntap netdevice. It
* also contains all socket related structures (except sock_fprog and tap_filter)
* to serve as one transmit queue for tuntap device. The sock_fprog and
* tap_filter were kept in tun_struct since they were used for filtering for the
* netdevice not for a specific queue (at least I didn't see the requirement for
* this).
*
* RCU usage:
* The tun_file and tun_struct are loosely coupled, the pointer from one to the
* other can only be read while rcu_read_lock or rtnl_lock is held.
*/
struct tun_file {
struct sock sk;
struct socket socket;
struct socket_wq wq;
struct tun_struct __rcu *tun;
struct fasync_struct *fasync;
/* only used for fasnyc */
unsigned int flags;
union {
u16 queue_index;
unsigned int ifindex;
};
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
struct list_head next;
struct tun_struct *detached;
struct skb_array tx_array;
};
struct tun_flow_entry {
struct hlist_node hash_link;
struct rcu_head rcu;
struct tun_struct *tun;
u32 rxhash;
u32 rps_rxhash;
int queue_index;
unsigned long updated;
};
#define TUN_NUM_FLOW_ENTRIES 1024
/* Since the socket were moved to tun_file, to preserve the behavior of persist
* device, socket filter, sndbuf and vnet header size were restore when the
* file were attached to a persist device.
*/
struct tun_struct {
struct tun_file __rcu *tfiles[MAX_TAP_QUEUES];
unsigned int numqueues;
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
unsigned int flags;
kuid_t owner;
kgid_t group;
struct net_device *dev;
netdev_features_t set_features;
#define TUN_USER_FEATURES (NETIF_F_HW_CSUM|NETIF_F_TSO_ECN|NETIF_F_TSO| \
NETIF_F_TSO6|NETIF_F_UFO)
int align;
int vnet_hdr_sz;
int sndbuf;
struct tap_filter txflt;
struct sock_fprog fprog;
/* protected by rtnl lock */
bool filter_attached;
#ifdef TUN_DEBUG
int debug;
#endif
spinlock_t lock;
struct hlist_head flows[TUN_NUM_FLOW_ENTRIES];
struct timer_list flow_gc_timer;
unsigned long ageing_time;
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
unsigned int numdisabled;
struct list_head disabled;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
void *security;
u32 flow_count;
u32 rx_batched;
struct tun_pcpu_stats __percpu *pcpu_stats;
};
#ifdef CONFIG_TUN_VNET_CROSS_LE
static inline bool tun_legacy_is_little_endian(struct tun_struct *tun)
{
return tun->flags & TUN_VNET_BE ? false :
virtio_legacy_is_little_endian();
}
static long tun_get_vnet_be(struct tun_struct *tun, int __user *argp)
{
int be = !!(tun->flags & TUN_VNET_BE);
if (put_user(be, argp))
return -EFAULT;
return 0;
}
static long tun_set_vnet_be(struct tun_struct *tun, int __user *argp)
{
int be;
if (get_user(be, argp))
return -EFAULT;
if (be)
tun->flags |= TUN_VNET_BE;
else
tun->flags &= ~TUN_VNET_BE;
return 0;
}
#else
static inline bool tun_legacy_is_little_endian(struct tun_struct *tun)
{
return virtio_legacy_is_little_endian();
}
static long tun_get_vnet_be(struct tun_struct *tun, int __user *argp)
{
return -EINVAL;
}
static long tun_set_vnet_be(struct tun_struct *tun, int __user *argp)
{
return -EINVAL;
}
#endif /* CONFIG_TUN_VNET_CROSS_LE */
static inline bool tun_is_little_endian(struct tun_struct *tun)
{
return tun->flags & TUN_VNET_LE ||
tun_legacy_is_little_endian(tun);
}
static inline u16 tun16_to_cpu(struct tun_struct *tun, __virtio16 val)
{
return __virtio16_to_cpu(tun_is_little_endian(tun), val);
}
static inline __virtio16 cpu_to_tun16(struct tun_struct *tun, u16 val)
{
return __cpu_to_virtio16(tun_is_little_endian(tun), val);
}
static inline u32 tun_hashfn(u32 rxhash)
{
return rxhash & 0x3ff;
}
static struct tun_flow_entry *tun_flow_find(struct hlist_head *head, u32 rxhash)
{
struct tun_flow_entry *e;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry_rcu(e, head, hash_link) {
if (e->rxhash == rxhash)
return e;
}
return NULL;
}
static struct tun_flow_entry *tun_flow_create(struct tun_struct *tun,
struct hlist_head *head,
u32 rxhash, u16 queue_index)
{
struct tun_flow_entry *e = kmalloc(sizeof(*e), GFP_ATOMIC);
if (e) {
tun_debug(KERN_INFO, tun, "create flow: hash %u index %u\n",
rxhash, queue_index);
e->updated = jiffies;
e->rxhash = rxhash;
e->rps_rxhash = 0;
e->queue_index = queue_index;
e->tun = tun;
hlist_add_head_rcu(&e->hash_link, head);
++tun->flow_count;
}
return e;
}
static void tun_flow_delete(struct tun_struct *tun, struct tun_flow_entry *e)
{
tun_debug(KERN_INFO, tun, "delete flow: hash %u index %u\n",
e->rxhash, e->queue_index);
hlist_del_rcu(&e->hash_link);
kfree_rcu(e, rcu);
--tun->flow_count;
}
static void tun_flow_flush(struct tun_struct *tun)
{
int i;
spin_lock_bh(&tun->lock);
for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) {
struct tun_flow_entry *e;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
struct hlist_node *n;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link)
tun_flow_delete(tun, e);
}
spin_unlock_bh(&tun->lock);
}
static void tun_flow_delete_by_queue(struct tun_struct *tun, u16 queue_index)
{
int i;
spin_lock_bh(&tun->lock);
for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) {
struct tun_flow_entry *e;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
struct hlist_node *n;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) {
if (e->queue_index == queue_index)
tun_flow_delete(tun, e);
}
}
spin_unlock_bh(&tun->lock);
}
static void tun_flow_cleanup(unsigned long data)
{
struct tun_struct *tun = (struct tun_struct *)data;
unsigned long delay = tun->ageing_time;
unsigned long next_timer = jiffies + delay;
unsigned long count = 0;
int i;
tun_debug(KERN_INFO, tun, "tun_flow_cleanup\n");
spin_lock_bh(&tun->lock);
for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++) {
struct tun_flow_entry *e;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
struct hlist_node *n;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 09:06:00 +08:00
hlist_for_each_entry_safe(e, n, &tun->flows[i], hash_link) {
unsigned long this_timer;
count++;
this_timer = e->updated + delay;
if (time_before_eq(this_timer, jiffies))
tun_flow_delete(tun, e);
else if (time_before(this_timer, next_timer))
next_timer = this_timer;
}
}
if (count)
mod_timer(&tun->flow_gc_timer, round_jiffies_up(next_timer));
spin_unlock_bh(&tun->lock);
}
tuntap: dont use skb after netif_rx_ni(skb) On Wed, 2012-12-12 at 23:16 -0500, Dave Jones wrote: > Since todays net merge, I see this when I start openvpn.. > > general protection fault: 0000 [#1] PREEMPT SMP > Modules linked in: ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack nf_conntrack ip6table_filter ip6_tables xfs iTCO_wdt iTCO_vendor_support snd_emu10k1 snd_util_mem snd_ac97_codec coretemp ac97_bus microcode snd_hwdep snd_seq pcspkr snd_pcm snd_page_alloc snd_timer lpc_ich i2c_i801 snd_rawmidi mfd_core snd_seq_device snd e1000e soundcore emu10k1_gp gameport i82975x_edac edac_core vhost_net tun macvtap macvlan kvm_intel kvm binfmt_misc nfsd auth_rpcgss nfs_acl lockd sunrpc btrfs libcrc32c zlib_deflate firewire_ohci sata_sil firewire_core crc_itu_t radeon i2c_algo_bit drm_kms_helper ttm drm i2c_core floppy > CPU 0 > Pid: 1381, comm: openvpn Not tainted 3.7.0+ #14 /D975XBX > RIP: 0010:[<ffffffff815b54a4>] [<ffffffff815b54a4>] skb_flow_dissect+0x314/0x3e0 > RSP: 0018:ffff88007d0d9c48 EFLAGS: 00010206 > RAX: 000000000000055d RBX: 6b6b6b6b6b6b6b4b RCX: 1471030a0180040a > RDX: 0000000000000005 RSI: 00000000ffffffe0 RDI: ffff8800ba83fa80 > RBP: ffff88007d0d9cb8 R08: 0000000000000000 R09: 0000000000000000 > R10: 0000000000000000 R11: 0000000000000101 R12: ffff8800ba83fa80 > R13: 0000000000000008 R14: ffff88007d0d9cc8 R15: ffff8800ba83fa80 > FS: 00007f6637104800(0000) GS:ffff8800bf600000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00007f563f5b01c4 CR3: 000000007d140000 CR4: 00000000000007f0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 > Process openvpn (pid: 1381, threadinfo ffff88007d0d8000, task ffff8800a540cd60) > Stack: > ffff8800ba83fa80 0000000000000296 0000000000000000 0000000000000000 > ffff88007d0d9cc8 ffffffff815bcff4 ffff88007d0d9ce8 ffffffff815b1831 > ffff88007d0d9ca8 00000000703f6364 ffff8800ba83fa80 0000000000000000 > Call Trace: > [<ffffffff815bcff4>] ? netif_rx+0x114/0x4c0 > [<ffffffff815b1831>] ? skb_copy_datagram_from_iovec+0x61/0x290 > [<ffffffff815b672a>] __skb_get_rxhash+0x1a/0xd0 > [<ffffffffa03b9538>] tun_get_user+0x418/0x810 [tun] > [<ffffffff8135f468>] ? delay_tsc+0x98/0xf0 > [<ffffffff8109605c>] ? __rcu_read_unlock+0x5c/0xa0 > [<ffffffffa03b9a41>] tun_chr_aio_write+0x81/0xb0 [tun] > [<ffffffff81145011>] ? __buffer_unlock_commit+0x41/0x50 > [<ffffffff811db917>] do_sync_write+0xa7/0xe0 > [<ffffffff811dc01f>] vfs_write+0xaf/0x190 > [<ffffffff811dc375>] sys_write+0x55/0xa0 > [<ffffffff81705540>] tracesys+0xdd/0xe2 > Code: 41 8b 44 24 68 41 2b 44 24 6c 01 de 29 f0 83 f8 03 0f 8e a0 00 00 00 48 63 de 49 03 9c 24 e0 00 00 00 48 85 db 0f 84 72 fe ff ff <8b> 03 41 89 46 08 b8 01 00 00 00 e9 43 fd ff ff 0f 1f 40 00 48 > RIP [<ffffffff815b54a4>] skb_flow_dissect+0x314/0x3e0 > RSP <ffff88007d0d9c48> > ---[ end trace 6d42c834c72c002e ]--- > > > Faulting instruction is > > 0: 8b 03 mov (%rbx),%eax > > rbx is slab poison (-20) so this looks like a use-after-free here... > > flow->ports = *ports; > 314: 8b 03 mov (%rbx),%eax > 316: 41 89 46 08 mov %eax,0x8(%r14) > > in the inlined skb_header_pointer in skb_flow_dissect > > Dave > commit 96442e4242 (tuntap: choose the txq based on rxq) added a use after free. Cache rxhash in a temp variable before calling netif_rx_ni() Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jason Wang <jasowang@redhat.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-13 03:22:57 +08:00
static void tun_flow_update(struct tun_struct *tun, u32 rxhash,
struct tun_file *tfile)
{
struct hlist_head *head;
struct tun_flow_entry *e;
unsigned long delay = tun->ageing_time;
u16 queue_index = tfile->queue_index;
if (!rxhash)
return;
else
head = &tun->flows[tun_hashfn(rxhash)];
rcu_read_lock();
/* We may get a very small possibility of OOO during switching, not
* worth to optimize.*/
if (tun->numqueues == 1 || tfile->detached)
goto unlock;
e = tun_flow_find(head, rxhash);
if (likely(e)) {
/* TODO: keep queueing to old queue until it's empty? */
e->queue_index = queue_index;
e->updated = jiffies;
sock_rps_record_flow_hash(e->rps_rxhash);
} else {
spin_lock_bh(&tun->lock);
if (!tun_flow_find(head, rxhash) &&
tun->flow_count < MAX_TAP_FLOWS)
tun_flow_create(tun, head, rxhash, queue_index);
if (!timer_pending(&tun->flow_gc_timer))
mod_timer(&tun->flow_gc_timer,
round_jiffies_up(jiffies + delay));
spin_unlock_bh(&tun->lock);
}
unlock:
rcu_read_unlock();
}
/**
* Save the hash received in the stack receive path and update the
* flow_hash table accordingly.
*/
static inline void tun_flow_save_rps_rxhash(struct tun_flow_entry *e, u32 hash)
{
if (unlikely(e->rps_rxhash != hash))
e->rps_rxhash = hash;
}
/* We try to identify a flow through its rxhash first. The reason that
* we do not check rxq no. is because some cards(e.g 82599), chooses
* the rxq based on the txq where the last packet of the flow comes. As
* the userspace application move between processors, we may get a
* different rxq no. here. If we could not get rxhash, then we would
* hope the rxq no. may help here.
*/
net: core: explicitly select a txq before doing l2 forwarding Currently, the tx queue were selected implicitly in ndo_dfwd_start_xmit(). The will cause several issues: - NETIF_F_LLTX were removed for macvlan, so txq lock were done for macvlan instead of lower device which misses the necessary txq synchronization for lower device such as txq stopping or frozen required by dev watchdog or control path. - dev_hard_start_xmit() was called with NULL txq which bypasses the net device watchdog. - dev_hard_start_xmit() does not check txq everywhere which will lead a crash when tso is disabled for lower device. Fix this by explicitly introducing a new param for .ndo_select_queue() for just selecting queues in the case of l2 forwarding offload. netdev_pick_tx() was also extended to accept this parameter and dev_queue_xmit_accel() was used to do l2 forwarding transmission. With this fixes, NETIF_F_LLTX could be preserved for macvlan and there's no need to check txq against NULL in dev_hard_start_xmit(). Also there's no need to keep a dedicated ndo_dfwd_start_xmit() and we can just reuse the code of dev_queue_xmit() to do the transmission. In the future, it was also required for macvtap l2 forwarding support since it provides a necessary synchronization method. Cc: John Fastabend <john.r.fastabend@intel.com> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: e1000-devel@lists.sourceforge.net Signed-off-by: Jason Wang <jasowang@redhat.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-01-10 16:18:26 +08:00
static u16 tun_select_queue(struct net_device *dev, struct sk_buff *skb,
void *accel_priv, select_queue_fallback_t fallback)
{
struct tun_struct *tun = netdev_priv(dev);
struct tun_flow_entry *e;
u32 txq = 0;
u32 numqueues = 0;
rcu_read_lock();
numqueues = ACCESS_ONCE(tun->numqueues);
txq = skb_get_hash(skb);
if (txq) {
e = tun_flow_find(&tun->flows[tun_hashfn(txq)], txq);
if (e) {
tun_flow_save_rps_rxhash(e, txq);
txq = e->queue_index;
} else
/* use multiply and shift instead of expensive divide */
txq = ((u64)txq * numqueues) >> 32;
} else if (likely(skb_rx_queue_recorded(skb))) {
txq = skb_get_rx_queue(skb);
while (unlikely(txq >= numqueues))
txq -= numqueues;
}
rcu_read_unlock();
return txq;
}
static inline bool tun_not_capable(struct tun_struct *tun)
{
const struct cred *cred = current_cred();
struct net *net = dev_net(tun->dev);
return ((uid_valid(tun->owner) && !uid_eq(cred->euid, tun->owner)) ||
(gid_valid(tun->group) && !in_egroup_p(tun->group))) &&
!ns_capable(net->user_ns, CAP_NET_ADMIN);
}
static void tun_set_real_num_queues(struct tun_struct *tun)
{
netif_set_real_num_tx_queues(tun->dev, tun->numqueues);
netif_set_real_num_rx_queues(tun->dev, tun->numqueues);
}
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
static void tun_disable_queue(struct tun_struct *tun, struct tun_file *tfile)
{
tfile->detached = tun;
list_add_tail(&tfile->next, &tun->disabled);
++tun->numdisabled;
}
static struct tun_struct *tun_enable_queue(struct tun_file *tfile)
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
{
struct tun_struct *tun = tfile->detached;
tfile->detached = NULL;
list_del_init(&tfile->next);
--tun->numdisabled;
return tun;
}
static void tun_queue_purge(struct tun_file *tfile)
{
struct sk_buff *skb;
while ((skb = skb_array_consume(&tfile->tx_array)) != NULL)
kfree_skb(skb);
skb_queue_purge(&tfile->sk.sk_write_queue);
skb_queue_purge(&tfile->sk.sk_error_queue);
}
static void __tun_detach(struct tun_file *tfile, bool clean)
{
struct tun_file *ntfile;
struct tun_struct *tun;
tun = rtnl_dereference(tfile->tun);
if (tun && !tfile->detached) {
u16 index = tfile->queue_index;
BUG_ON(index >= tun->numqueues);
rcu_assign_pointer(tun->tfiles[index],
tun->tfiles[tun->numqueues - 1]);
ntfile = rtnl_dereference(tun->tfiles[index]);
ntfile->queue_index = index;
--tun->numqueues;
if (clean) {
RCU_INIT_POINTER(tfile->tun, NULL);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
sock_put(&tfile->sk);
} else
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
tun_disable_queue(tun, tfile);
synchronize_net();
tun_flow_delete_by_queue(tun, tun->numqueues + 1);
/* Drop read queue */
tun_queue_purge(tfile);
tun_set_real_num_queues(tun);
} else if (tfile->detached && clean) {
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
tun = tun_enable_queue(tfile);
sock_put(&tfile->sk);
}
if (clean) {
if (tun && tun->numqueues == 0 && tun->numdisabled == 0) {
netif_carrier_off(tun->dev);
if (!(tun->flags & IFF_PERSIST) &&
tun->dev->reg_state == NETREG_REGISTERED)
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
unregister_netdevice(tun->dev);
}
if (tun)
skb_array_cleanup(&tfile->tx_array);
sock_put(&tfile->sk);
}
}
static void tun_detach(struct tun_file *tfile, bool clean)
{
rtnl_lock();
__tun_detach(tfile, clean);
rtnl_unlock();
}
static void tun_detach_all(struct net_device *dev)
{
struct tun_struct *tun = netdev_priv(dev);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
struct tun_file *tfile, *tmp;
int i, n = tun->numqueues;
for (i = 0; i < n; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
BUG_ON(!tfile);
tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN;
tfile->socket.sk->sk_data_ready(tfile->socket.sk);
RCU_INIT_POINTER(tfile->tun, NULL);
--tun->numqueues;
}
list_for_each_entry(tfile, &tun->disabled, next) {
tfile->socket.sk->sk_shutdown = RCV_SHUTDOWN;
tfile->socket.sk->sk_data_ready(tfile->socket.sk);
RCU_INIT_POINTER(tfile->tun, NULL);
}
BUG_ON(tun->numqueues != 0);
synchronize_net();
for (i = 0; i < n; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
/* Drop read queue */
tun_queue_purge(tfile);
sock_put(&tfile->sk);
}
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
list_for_each_entry_safe(tfile, tmp, &tun->disabled, next) {
tun_enable_queue(tfile);
tun_queue_purge(tfile);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
sock_put(&tfile->sk);
}
BUG_ON(tun->numdisabled != 0);
if (tun->flags & IFF_PERSIST)
module_put(THIS_MODULE);
}
static int tun_attach(struct tun_struct *tun, struct file *file, bool skip_filter)
{
struct tun_file *tfile = file->private_data;
struct net_device *dev = tun->dev;
int err;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
err = security_tun_dev_attach(tfile->socket.sk, tun->security);
if (err < 0)
goto out;
err = -EINVAL;
if (rtnl_dereference(tfile->tun) && !tfile->detached)
goto out;
err = -EBUSY;
if (!(tun->flags & IFF_MULTI_QUEUE) && tun->numqueues == 1)
goto out;
err = -E2BIG;
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
if (!tfile->detached &&
tun->numqueues + tun->numdisabled == MAX_TAP_QUEUES)
goto out;
err = 0;
/* Re-attach the filter to persist device */
if (!skip_filter && (tun->filter_attached == true)) {
lock_sock(tfile->socket.sk);
err = sk_attach_filter(&tun->fprog, tfile->socket.sk);
release_sock(tfile->socket.sk);
if (!err)
goto out;
}
if (!tfile->detached &&
skb_array_init(&tfile->tx_array, dev->tx_queue_len, GFP_KERNEL)) {
err = -ENOMEM;
goto out;
}
tfile->queue_index = tun->numqueues;
tfile->socket.sk->sk_shutdown &= ~RCV_SHUTDOWN;
rcu_assign_pointer(tfile->tun, tun);
rcu_assign_pointer(tun->tfiles[tun->numqueues], tfile);
tun->numqueues++;
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
if (tfile->detached)
tun_enable_queue(tfile);
else
sock_hold(&tfile->sk);
tun_set_real_num_queues(tun);
/* device is allowed to go away first, so no need to hold extra
* refcnt.
*/
out:
return err;
}
static struct tun_struct *__tun_get(struct tun_file *tfile)
{
struct tun_struct *tun;
rcu_read_lock();
tun = rcu_dereference(tfile->tun);
if (tun)
dev_hold(tun->dev);
rcu_read_unlock();
return tun;
}
static struct tun_struct *tun_get(struct file *file)
{
return __tun_get(file->private_data);
}
static void tun_put(struct tun_struct *tun)
{
dev_put(tun->dev);
}
/* TAP filtering */
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
static void addr_hash_set(u32 *mask, const u8 *addr)
{
int n = ether_crc(ETH_ALEN, addr) >> 26;
mask[n >> 5] |= (1 << (n & 31));
}
static unsigned int addr_hash_test(const u32 *mask, const u8 *addr)
{
int n = ether_crc(ETH_ALEN, addr) >> 26;
return mask[n >> 5] & (1 << (n & 31));
}
static int update_filter(struct tap_filter *filter, void __user *arg)
{
struct { u8 u[ETH_ALEN]; } *addr;
struct tun_filter uf;
int err, alen, n, nexact;
if (copy_from_user(&uf, arg, sizeof(uf)))
return -EFAULT;
if (!uf.count) {
/* Disabled */
filter->count = 0;
return 0;
}
alen = ETH_ALEN * uf.count;
addr = memdup_user(arg + sizeof(uf), alen);
if (IS_ERR(addr))
return PTR_ERR(addr);
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
/* The filter is updated without holding any locks. Which is
* perfectly safe. We disable it first and in the worst
* case we'll accept a few undesired packets. */
filter->count = 0;
wmb();
/* Use first set of addresses as an exact filter */
for (n = 0; n < uf.count && n < FLT_EXACT_COUNT; n++)
memcpy(filter->addr[n], addr[n].u, ETH_ALEN);
nexact = n;
/* Remaining multicast addresses are hashed,
* unicast will leave the filter disabled. */
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
memset(filter->mask, 0, sizeof(filter->mask));
for (; n < uf.count; n++) {
if (!is_multicast_ether_addr(addr[n].u)) {
err = 0; /* no filter */
goto free_addr;
}
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
addr_hash_set(filter->mask, addr[n].u);
}
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
/* For ALLMULTI just set the mask to all ones.
* This overrides the mask populated above. */
if ((uf.flags & TUN_FLT_ALLMULTI))
memset(filter->mask, ~0, sizeof(filter->mask));
/* Now enable the filter */
wmb();
filter->count = nexact;
/* Return the number of exact filters */
err = nexact;
free_addr:
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
kfree(addr);
return err;
}
/* Returns: 0 - drop, !=0 - accept */
static int run_filter(struct tap_filter *filter, const struct sk_buff *skb)
{
/* Cannot use eth_hdr(skb) here because skb_mac_hdr() is incorrect
* at this point. */
struct ethhdr *eh = (struct ethhdr *) skb->data;
int i;
/* Exact match */
for (i = 0; i < filter->count; i++)
if (ether_addr_equal(eh->h_dest, filter->addr[i]))
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
return 1;
/* Inexact match (multicast only) */
if (is_multicast_ether_addr(eh->h_dest))
return addr_hash_test(filter->mask, eh->h_dest);
return 0;
}
/*
* Checks whether the packet is accepted or not.
* Returns: 0 - drop, !=0 - accept
*/
static int check_filter(struct tap_filter *filter, const struct sk_buff *skb)
{
if (!filter->count)
return 1;
return run_filter(filter, skb);
}
/* Network device part of the driver */
static const struct ethtool_ops tun_ethtool_ops;
/* Net device detach from fd. */
static void tun_net_uninit(struct net_device *dev)
{
tun_detach_all(dev);
}
/* Net device open. */
static int tun_net_open(struct net_device *dev)
{
netif_tx_start_all_queues(dev);
return 0;
}
/* Net device close. */
static int tun_net_close(struct net_device *dev)
{
netif_tx_stop_all_queues(dev);
return 0;
}
/* Net device start xmit */
static netdev_tx_t tun_net_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct tun_struct *tun = netdev_priv(dev);
int txq = skb->queue_mapping;
struct tun_file *tfile;
u32 numqueues = 0;
rcu_read_lock();
tfile = rcu_dereference(tun->tfiles[txq]);
numqueues = ACCESS_ONCE(tun->numqueues);
/* Drop packet if interface is not attached */
if (txq >= numqueues)
goto drop;
#ifdef CONFIG_RPS
if (numqueues == 1 && static_key_false(&rps_needed)) {
/* Select queue was not called for the skbuff, so we extract the
* RPS hash and save it into the flow_table here.
*/
__u32 rxhash;
rxhash = skb_get_hash(skb);
if (rxhash) {
struct tun_flow_entry *e;
e = tun_flow_find(&tun->flows[tun_hashfn(rxhash)],
rxhash);
if (e)
tun_flow_save_rps_rxhash(e, rxhash);
}
}
#endif
tun_debug(KERN_INFO, tun, "tun_net_xmit %d\n", skb->len);
BUG_ON(!tfile);
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
/* Drop if the filter does not like it.
* This is a noop if the filter is disabled.
* Filter can be enabled only for the TAP devices. */
if (!check_filter(&tun->txflt, skb))
goto drop;
if (tfile->socket.sk->sk_filter &&
sk_filter(tfile->socket.sk, skb))
goto drop;
if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
goto drop;
skb_tx_timestamp(skb);
/* Orphan the skb - required as we might hang on to it
* for indefinite time.
*/
skb_orphan(skb);
tun: add a missing nf_reset() in tun_net_xmit() Dave reported following crash : general protection fault: 0000 [#1] SMP CPU 2 Pid: 25407, comm: qemu-kvm Not tainted 3.7.9-205.fc18.x86_64 #1 Hewlett-Packard HP Z400 Workstation/0B4Ch RIP: 0010:[<ffffffffa0399bd5>] [<ffffffffa0399bd5>] destroy_conntrack+0x35/0x120 [nf_conntrack] RSP: 0018:ffff880276913d78 EFLAGS: 00010206 RAX: 50626b6b7876376c RBX: ffff88026e530d68 RCX: ffff88028d158e00 RDX: ffff88026d0d5470 RSI: 0000000000000011 RDI: 0000000000000002 RBP: ffff880276913d88 R08: 0000000000000000 R09: ffff880295002900 R10: 0000000000000000 R11: 0000000000000003 R12: ffffffff81ca3b40 R13: ffffffff8151a8e0 R14: ffff880270875000 R15: 0000000000000002 FS: 00007ff3bce38a00(0000) GS:ffff88029fc40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007fd1430bd000 CR3: 000000027042b000 CR4: 00000000000027e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process qemu-kvm (pid: 25407, threadinfo ffff880276912000, task ffff88028c369720) Stack: ffff880156f59100 ffff880156f59100 ffff880276913d98 ffffffff815534f7 ffff880276913db8 ffffffff8151a74b ffff880270875000 ffff880156f59100 ffff880276913dd8 ffffffff8151a5a6 ffff880276913dd8 ffff88026d0d5470 Call Trace: [<ffffffff815534f7>] nf_conntrack_destroy+0x17/0x20 [<ffffffff8151a74b>] skb_release_head_state+0x7b/0x100 [<ffffffff8151a5a6>] __kfree_skb+0x16/0xa0 [<ffffffff8151a666>] kfree_skb+0x36/0xa0 [<ffffffff8151a8e0>] skb_queue_purge+0x20/0x40 [<ffffffffa02205f7>] __tun_detach+0x117/0x140 [tun] [<ffffffffa022184c>] tun_chr_close+0x3c/0xd0 [tun] [<ffffffff8119669c>] __fput+0xec/0x240 [<ffffffff811967fe>] ____fput+0xe/0x10 [<ffffffff8107eb27>] task_work_run+0xa7/0xe0 [<ffffffff810149e1>] do_notify_resume+0x71/0xb0 [<ffffffff81640152>] int_signal+0x12/0x17 Code: 00 00 04 48 89 e5 41 54 53 48 89 fb 4c 8b a7 e8 00 00 00 0f 85 de 00 00 00 0f b6 73 3e 0f b7 7b 2a e8 10 40 00 00 48 85 c0 74 0e <48> 8b 40 28 48 85 c0 74 05 48 89 df ff d0 48 c7 c7 08 6a 3a a0 RIP [<ffffffffa0399bd5>] destroy_conntrack+0x35/0x120 [nf_conntrack] RSP <ffff880276913d78> This is because tun_net_xmit() needs to call nf_reset() before queuing skb into receive_queue Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-06 19:02:37 +08:00
nf_reset(skb);
if (skb_array_produce(&tfile->tx_array, skb))
goto drop;
/* Notify and wake up reader process */
if (tfile->flags & TUN_FASYNC)
kill_fasync(&tfile->fasync, SIGIO, POLL_IN);
tfile->socket.sk->sk_data_ready(tfile->socket.sk);
rcu_read_unlock();
return NETDEV_TX_OK;
drop:
this_cpu_inc(tun->pcpu_stats->tx_dropped);
skb_tx_error(skb);
kfree_skb(skb);
rcu_read_unlock();
return NET_XMIT_DROP;
}
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
static void tun_net_mclist(struct net_device *dev)
{
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
/*
* This callback is supposed to deal with mc filter in
* _rx_ path and has nothing to do with the _tx_ path.
* In rx path we always accept everything userspace gives us.
*/
}
static netdev_features_t tun_net_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct tun_struct *tun = netdev_priv(dev);
return (features & tun->set_features) | (features & ~TUN_USER_FEATURES);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void tun_poll_controller(struct net_device *dev)
{
/*
* Tun only receives frames when:
* 1) the char device endpoint gets data from user space
* 2) the tun socket gets a sendmsg call from user space
* Since both of those are synchronous operations, we are guaranteed
* never to have pending data when we poll for it
* so there is nothing to do here but return.
* We need this though so netpoll recognizes us as an interface that
* supports polling, which enables bridge devices in virt setups to
* still use netconsole
*/
return;
}
#endif
static void tun_set_headroom(struct net_device *dev, int new_hr)
{
struct tun_struct *tun = netdev_priv(dev);
if (new_hr < NET_SKB_PAD)
new_hr = NET_SKB_PAD;
tun->align = new_hr;
}
static void
tun_net_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
u32 rx_dropped = 0, tx_dropped = 0, rx_frame_errors = 0;
struct tun_struct *tun = netdev_priv(dev);
struct tun_pcpu_stats *p;
int i;
for_each_possible_cpu(i) {
u64 rxpackets, rxbytes, txpackets, txbytes;
unsigned int start;
p = per_cpu_ptr(tun->pcpu_stats, i);
do {
start = u64_stats_fetch_begin(&p->syncp);
rxpackets = p->rx_packets;
rxbytes = p->rx_bytes;
txpackets = p->tx_packets;
txbytes = p->tx_bytes;
} while (u64_stats_fetch_retry(&p->syncp, start));
stats->rx_packets += rxpackets;
stats->rx_bytes += rxbytes;
stats->tx_packets += txpackets;
stats->tx_bytes += txbytes;
/* u32 counters */
rx_dropped += p->rx_dropped;
rx_frame_errors += p->rx_frame_errors;
tx_dropped += p->tx_dropped;
}
stats->rx_dropped = rx_dropped;
stats->rx_frame_errors = rx_frame_errors;
stats->tx_dropped = tx_dropped;
}
static const struct net_device_ops tun_netdev_ops = {
.ndo_uninit = tun_net_uninit,
.ndo_open = tun_net_open,
.ndo_stop = tun_net_close,
.ndo_start_xmit = tun_net_xmit,
.ndo_fix_features = tun_net_fix_features,
.ndo_select_queue = tun_select_queue,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tun_poll_controller,
#endif
.ndo_set_rx_headroom = tun_set_headroom,
.ndo_get_stats64 = tun_net_get_stats64,
};
static const struct net_device_ops tap_netdev_ops = {
.ndo_uninit = tun_net_uninit,
.ndo_open = tun_net_open,
.ndo_stop = tun_net_close,
.ndo_start_xmit = tun_net_xmit,
.ndo_fix_features = tun_net_fix_features,
.ndo_set_rx_mode = tun_net_mclist,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_select_queue = tun_select_queue,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = tun_poll_controller,
#endif
.ndo_features_check = passthru_features_check,
.ndo_set_rx_headroom = tun_set_headroom,
.ndo_get_stats64 = tun_net_get_stats64,
};
static void tun_flow_init(struct tun_struct *tun)
{
int i;
for (i = 0; i < TUN_NUM_FLOW_ENTRIES; i++)
INIT_HLIST_HEAD(&tun->flows[i]);
tun->ageing_time = TUN_FLOW_EXPIRE;
setup_timer(&tun->flow_gc_timer, tun_flow_cleanup, (unsigned long)tun);
mod_timer(&tun->flow_gc_timer,
round_jiffies_up(jiffies + tun->ageing_time));
}
static void tun_flow_uninit(struct tun_struct *tun)
{
del_timer_sync(&tun->flow_gc_timer);
tun_flow_flush(tun);
}
net: use core MTU range checking in core net infra geneve: - Merge __geneve_change_mtu back into geneve_change_mtu, set max_mtu - This one isn't quite as straight-forward as others, could use some closer inspection and testing macvlan: - set min/max_mtu tun: - set min/max_mtu, remove tun_net_change_mtu vxlan: - Merge __vxlan_change_mtu back into vxlan_change_mtu - Set max_mtu to IP_MAX_MTU and retain dynamic MTU range checks in change_mtu function - This one is also not as straight-forward and could use closer inspection and testing from vxlan folks bridge: - set max_mtu of IP_MAX_MTU and retain dynamic MTU range checks in change_mtu function openvswitch: - set min/max_mtu, remove internal_dev_change_mtu - note: max_mtu wasn't checked previously, it's been set to 65535, which is the largest possible size supported sch_teql: - set min/max_mtu (note: max_mtu previously unchecked, used max of 65535) macsec: - min_mtu = 0, max_mtu = 65535 macvlan: - min_mtu = 0, max_mtu = 65535 ntb_netdev: - min_mtu = 0, max_mtu = 65535 veth: - min_mtu = 68, max_mtu = 65535 8021q: - min_mtu = 0, max_mtu = 65535 CC: netdev@vger.kernel.org CC: Nicolas Dichtel <nicolas.dichtel@6wind.com> CC: Hannes Frederic Sowa <hannes@stressinduktion.org> CC: Tom Herbert <tom@herbertland.com> CC: Daniel Borkmann <daniel@iogearbox.net> CC: Alexander Duyck <alexander.h.duyck@intel.com> CC: Paolo Abeni <pabeni@redhat.com> CC: Jiri Benc <jbenc@redhat.com> CC: WANG Cong <xiyou.wangcong@gmail.com> CC: Roopa Prabhu <roopa@cumulusnetworks.com> CC: Pravin B Shelar <pshelar@ovn.org> CC: Sabrina Dubroca <sd@queasysnail.net> CC: Patrick McHardy <kaber@trash.net> CC: Stephen Hemminger <stephen@networkplumber.org> CC: Pravin Shelar <pshelar@nicira.com> CC: Maxim Krasnyansky <maxk@qti.qualcomm.com> Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-21 01:55:20 +08:00
#define MIN_MTU 68
#define MAX_MTU 65535
/* Initialize net device. */
static void tun_net_init(struct net_device *dev)
{
struct tun_struct *tun = netdev_priv(dev);
switch (tun->flags & TUN_TYPE_MASK) {
case IFF_TUN:
dev->netdev_ops = &tun_netdev_ops;
/* Point-to-Point TUN Device */
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->mtu = 1500;
/* Zero header length */
dev->type = ARPHRD_NONE;
dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
break;
case IFF_TAP:
dev->netdev_ops = &tap_netdev_ops;
/* Ethernet TAP Device */
ether_setup(dev);
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
eth_hw_addr_random(dev);
break;
}
net: use core MTU range checking in core net infra geneve: - Merge __geneve_change_mtu back into geneve_change_mtu, set max_mtu - This one isn't quite as straight-forward as others, could use some closer inspection and testing macvlan: - set min/max_mtu tun: - set min/max_mtu, remove tun_net_change_mtu vxlan: - Merge __vxlan_change_mtu back into vxlan_change_mtu - Set max_mtu to IP_MAX_MTU and retain dynamic MTU range checks in change_mtu function - This one is also not as straight-forward and could use closer inspection and testing from vxlan folks bridge: - set max_mtu of IP_MAX_MTU and retain dynamic MTU range checks in change_mtu function openvswitch: - set min/max_mtu, remove internal_dev_change_mtu - note: max_mtu wasn't checked previously, it's been set to 65535, which is the largest possible size supported sch_teql: - set min/max_mtu (note: max_mtu previously unchecked, used max of 65535) macsec: - min_mtu = 0, max_mtu = 65535 macvlan: - min_mtu = 0, max_mtu = 65535 ntb_netdev: - min_mtu = 0, max_mtu = 65535 veth: - min_mtu = 68, max_mtu = 65535 8021q: - min_mtu = 0, max_mtu = 65535 CC: netdev@vger.kernel.org CC: Nicolas Dichtel <nicolas.dichtel@6wind.com> CC: Hannes Frederic Sowa <hannes@stressinduktion.org> CC: Tom Herbert <tom@herbertland.com> CC: Daniel Borkmann <daniel@iogearbox.net> CC: Alexander Duyck <alexander.h.duyck@intel.com> CC: Paolo Abeni <pabeni@redhat.com> CC: Jiri Benc <jbenc@redhat.com> CC: WANG Cong <xiyou.wangcong@gmail.com> CC: Roopa Prabhu <roopa@cumulusnetworks.com> CC: Pravin B Shelar <pshelar@ovn.org> CC: Sabrina Dubroca <sd@queasysnail.net> CC: Patrick McHardy <kaber@trash.net> CC: Stephen Hemminger <stephen@networkplumber.org> CC: Pravin Shelar <pshelar@nicira.com> CC: Maxim Krasnyansky <maxk@qti.qualcomm.com> Signed-off-by: Jarod Wilson <jarod@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-21 01:55:20 +08:00
dev->min_mtu = MIN_MTU;
dev->max_mtu = MAX_MTU - dev->hard_header_len;
}
/* Character device part */
/* Poll */
static unsigned int tun_chr_poll(struct file *file, poll_table *wait)
{
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
unsigned int mask = 0;
if (!tun)
return POLLERR;
sk = tfile->socket.sk;
tun_debug(KERN_INFO, tun, "tun_chr_poll\n");
poll_wait(file, sk_sleep(sk), wait);
if (!skb_array_empty(&tfile->tx_array))
mask |= POLLIN | POLLRDNORM;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
if (sock_writeable(sk) ||
(!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags) &&
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
sock_writeable(sk)))
mask |= POLLOUT | POLLWRNORM;
if (tun->dev->reg_state != NETREG_REGISTERED)
mask = POLLERR;
tun_put(tun);
return mask;
}
/* prepad is the amount to reserve at front. len is length after that.
* linear is a hint as to how much to copy (usually headers). */
static struct sk_buff *tun_alloc_skb(struct tun_file *tfile,
size_t prepad, size_t len,
size_t linear, int noblock)
{
struct sock *sk = tfile->socket.sk;
struct sk_buff *skb;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
int err;
/* Under a page? Don't bother with paged skb. */
if (prepad + len < PAGE_SIZE || !linear)
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
linear = len;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
&err, 0);
if (!skb)
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
return ERR_PTR(err);
skb_reserve(skb, prepad);
skb_put(skb, linear);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
skb->data_len = len - linear;
skb->len += len - linear;
return skb;
}
static void tun_rx_batched(struct tun_struct *tun, struct tun_file *tfile,
struct sk_buff *skb, int more)
{
struct sk_buff_head *queue = &tfile->sk.sk_write_queue;
struct sk_buff_head process_queue;
u32 rx_batched = tun->rx_batched;
bool rcv = false;
if (!rx_batched || (!more && skb_queue_empty(queue))) {
local_bh_disable();
netif_receive_skb(skb);
local_bh_enable();
return;
}
spin_lock(&queue->lock);
if (!more || skb_queue_len(queue) == rx_batched) {
__skb_queue_head_init(&process_queue);
skb_queue_splice_tail_init(queue, &process_queue);
rcv = true;
} else {
__skb_queue_tail(queue, skb);
}
spin_unlock(&queue->lock);
if (rcv) {
struct sk_buff *nskb;
local_bh_disable();
while ((nskb = __skb_dequeue(&process_queue)))
netif_receive_skb(nskb);
netif_receive_skb(skb);
local_bh_enable();
}
}
/* Get packet from user space buffer */
static ssize_t tun_get_user(struct tun_struct *tun, struct tun_file *tfile,
void *msg_control, struct iov_iter *from,
int noblock, bool more)
{
struct tun_pi pi = { 0, cpu_to_be16(ETH_P_IP) };
struct sk_buff *skb;
size_t total_len = iov_iter_count(from);
size_t len = total_len, align = tun->align, linear;
struct virtio_net_hdr gso = { 0 };
struct tun_pcpu_stats *stats;
int good_linear;
int copylen;
bool zerocopy = false;
int err;
tuntap: dont use skb after netif_rx_ni(skb) On Wed, 2012-12-12 at 23:16 -0500, Dave Jones wrote: > Since todays net merge, I see this when I start openvpn.. > > general protection fault: 0000 [#1] PREEMPT SMP > Modules linked in: ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack nf_conntrack ip6table_filter ip6_tables xfs iTCO_wdt iTCO_vendor_support snd_emu10k1 snd_util_mem snd_ac97_codec coretemp ac97_bus microcode snd_hwdep snd_seq pcspkr snd_pcm snd_page_alloc snd_timer lpc_ich i2c_i801 snd_rawmidi mfd_core snd_seq_device snd e1000e soundcore emu10k1_gp gameport i82975x_edac edac_core vhost_net tun macvtap macvlan kvm_intel kvm binfmt_misc nfsd auth_rpcgss nfs_acl lockd sunrpc btrfs libcrc32c zlib_deflate firewire_ohci sata_sil firewire_core crc_itu_t radeon i2c_algo_bit drm_kms_helper ttm drm i2c_core floppy > CPU 0 > Pid: 1381, comm: openvpn Not tainted 3.7.0+ #14 /D975XBX > RIP: 0010:[<ffffffff815b54a4>] [<ffffffff815b54a4>] skb_flow_dissect+0x314/0x3e0 > RSP: 0018:ffff88007d0d9c48 EFLAGS: 00010206 > RAX: 000000000000055d RBX: 6b6b6b6b6b6b6b4b RCX: 1471030a0180040a > RDX: 0000000000000005 RSI: 00000000ffffffe0 RDI: ffff8800ba83fa80 > RBP: ffff88007d0d9cb8 R08: 0000000000000000 R09: 0000000000000000 > R10: 0000000000000000 R11: 0000000000000101 R12: ffff8800ba83fa80 > R13: 0000000000000008 R14: ffff88007d0d9cc8 R15: ffff8800ba83fa80 > FS: 00007f6637104800(0000) GS:ffff8800bf600000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00007f563f5b01c4 CR3: 000000007d140000 CR4: 00000000000007f0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 > Process openvpn (pid: 1381, threadinfo ffff88007d0d8000, task ffff8800a540cd60) > Stack: > ffff8800ba83fa80 0000000000000296 0000000000000000 0000000000000000 > ffff88007d0d9cc8 ffffffff815bcff4 ffff88007d0d9ce8 ffffffff815b1831 > ffff88007d0d9ca8 00000000703f6364 ffff8800ba83fa80 0000000000000000 > Call Trace: > [<ffffffff815bcff4>] ? netif_rx+0x114/0x4c0 > [<ffffffff815b1831>] ? skb_copy_datagram_from_iovec+0x61/0x290 > [<ffffffff815b672a>] __skb_get_rxhash+0x1a/0xd0 > [<ffffffffa03b9538>] tun_get_user+0x418/0x810 [tun] > [<ffffffff8135f468>] ? delay_tsc+0x98/0xf0 > [<ffffffff8109605c>] ? __rcu_read_unlock+0x5c/0xa0 > [<ffffffffa03b9a41>] tun_chr_aio_write+0x81/0xb0 [tun] > [<ffffffff81145011>] ? __buffer_unlock_commit+0x41/0x50 > [<ffffffff811db917>] do_sync_write+0xa7/0xe0 > [<ffffffff811dc01f>] vfs_write+0xaf/0x190 > [<ffffffff811dc375>] sys_write+0x55/0xa0 > [<ffffffff81705540>] tracesys+0xdd/0xe2 > Code: 41 8b 44 24 68 41 2b 44 24 6c 01 de 29 f0 83 f8 03 0f 8e a0 00 00 00 48 63 de 49 03 9c 24 e0 00 00 00 48 85 db 0f 84 72 fe ff ff <8b> 03 41 89 46 08 b8 01 00 00 00 e9 43 fd ff ff 0f 1f 40 00 48 > RIP [<ffffffff815b54a4>] skb_flow_dissect+0x314/0x3e0 > RSP <ffff88007d0d9c48> > ---[ end trace 6d42c834c72c002e ]--- > > > Faulting instruction is > > 0: 8b 03 mov (%rbx),%eax > > rbx is slab poison (-20) so this looks like a use-after-free here... > > flow->ports = *ports; > 314: 8b 03 mov (%rbx),%eax > 316: 41 89 46 08 mov %eax,0x8(%r14) > > in the inlined skb_header_pointer in skb_flow_dissect > > Dave > commit 96442e4242 (tuntap: choose the txq based on rxq) added a use after free. Cache rxhash in a temp variable before calling netif_rx_ni() Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Jason Wang <jasowang@redhat.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-13 03:22:57 +08:00
u32 rxhash;
if (!(tun->dev->flags & IFF_UP))
return -EIO;
if (!(tun->flags & IFF_NO_PI)) {
if (len < sizeof(pi))
return -EINVAL;
len -= sizeof(pi);
if (!copy_from_iter_full(&pi, sizeof(pi), from))
return -EFAULT;
}
if (tun->flags & IFF_VNET_HDR) {
if (len < tun->vnet_hdr_sz)
return -EINVAL;
len -= tun->vnet_hdr_sz;
if (!copy_from_iter_full(&gso, sizeof(gso), from))
return -EFAULT;
if ((gso.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
tun16_to_cpu(tun, gso.csum_start) + tun16_to_cpu(tun, gso.csum_offset) + 2 > tun16_to_cpu(tun, gso.hdr_len))
gso.hdr_len = cpu_to_tun16(tun, tun16_to_cpu(tun, gso.csum_start) + tun16_to_cpu(tun, gso.csum_offset) + 2);
if (tun16_to_cpu(tun, gso.hdr_len) > len)
return -EINVAL;
iov_iter_advance(from, tun->vnet_hdr_sz - sizeof(gso));
}
if ((tun->flags & TUN_TYPE_MASK) == IFF_TAP) {
align += NET_IP_ALIGN;
if (unlikely(len < ETH_HLEN ||
(gso.hdr_len && tun16_to_cpu(tun, gso.hdr_len) < ETH_HLEN)))
return -EINVAL;
}
good_linear = SKB_MAX_HEAD(align);
if (msg_control) {
struct iov_iter i = *from;
/* There are 256 bytes to be copied in skb, so there is
* enough room for skb expand head in case it is used.
* The rest of the buffer is mapped from userspace.
*/
copylen = gso.hdr_len ? tun16_to_cpu(tun, gso.hdr_len) : GOODCOPY_LEN;
if (copylen > good_linear)
copylen = good_linear;
linear = copylen;
iov_iter_advance(&i, copylen);
if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS)
zerocopy = true;
}
if (!zerocopy) {
copylen = len;
if (tun16_to_cpu(tun, gso.hdr_len) > good_linear)
linear = good_linear;
else
linear = tun16_to_cpu(tun, gso.hdr_len);
}
skb = tun_alloc_skb(tfile, align, copylen, linear, noblock);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
if (IS_ERR(skb)) {
if (PTR_ERR(skb) != -EAGAIN)
this_cpu_inc(tun->pcpu_stats->rx_dropped);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
return PTR_ERR(skb);
}
if (zerocopy)
err = zerocopy_sg_from_iter(skb, from);
else
err = skb_copy_datagram_from_iter(skb, 0, from, len);
if (err) {
this_cpu_inc(tun->pcpu_stats->rx_dropped);
kfree_skb(skb);
return -EFAULT;
}
if (virtio_net_hdr_to_skb(skb, &gso, tun_is_little_endian(tun))) {
this_cpu_inc(tun->pcpu_stats->rx_frame_errors);
kfree_skb(skb);
return -EINVAL;
}
switch (tun->flags & TUN_TYPE_MASK) {
case IFF_TUN:
if (tun->flags & IFF_NO_PI) {
switch (skb->data[0] & 0xf0) {
case 0x40:
pi.proto = htons(ETH_P_IP);
break;
case 0x60:
pi.proto = htons(ETH_P_IPV6);
break;
default:
this_cpu_inc(tun->pcpu_stats->rx_dropped);
kfree_skb(skb);
return -EINVAL;
}
}
skb_reset_mac_header(skb);
skb->protocol = pi.proto;
skb->dev = tun->dev;
break;
case IFF_TAP:
skb->protocol = eth_type_trans(skb, tun->dev);
break;
}
/* copy skb_ubuf_info for callback when skb has no error */
if (zerocopy) {
skb_shinfo(skb)->destructor_arg = msg_control;
skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY;
skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
} else if (msg_control) {
struct ubuf_info *uarg = msg_control;
uarg->callback(uarg, false);
}
skb_reset_network_header(skb);
skb_probe_transport_header(skb, 0);
rxhash = skb_get_hash(skb);
#ifndef CONFIG_4KSTACKS
tun_rx_batched(tun, tfile, skb, more);
#else
netif_rx_ni(skb);
#endif
stats = get_cpu_ptr(tun->pcpu_stats);
u64_stats_update_begin(&stats->syncp);
stats->rx_packets++;
stats->rx_bytes += len;
u64_stats_update_end(&stats->syncp);
put_cpu_ptr(stats);
tun_flow_update(tun, rxhash, tfile);
return total_len;
}
static ssize_t tun_chr_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
struct file *file = iocb->ki_filp;
struct tun_struct *tun = tun_get(file);
struct tun_file *tfile = file->private_data;
ssize_t result;
if (!tun)
return -EBADFD;
result = tun_get_user(tun, tfile, NULL, from,
file->f_flags & O_NONBLOCK, false);
tun_put(tun);
return result;
}
/* Put packet to the user space buffer */
static ssize_t tun_put_user(struct tun_struct *tun,
struct tun_file *tfile,
struct sk_buff *skb,
struct iov_iter *iter)
{
struct tun_pi pi = { 0, skb->protocol };
struct tun_pcpu_stats *stats;
ssize_t total;
int vlan_offset = 0;
int vlan_hlen = 0;
int vnet_hdr_sz = 0;
if (skb_vlan_tag_present(skb))
vlan_hlen = VLAN_HLEN;
if (tun->flags & IFF_VNET_HDR)
vnet_hdr_sz = tun->vnet_hdr_sz;
total = skb->len + vlan_hlen + vnet_hdr_sz;
if (!(tun->flags & IFF_NO_PI)) {
if (iov_iter_count(iter) < sizeof(pi))
return -EINVAL;
total += sizeof(pi);
if (iov_iter_count(iter) < total) {
/* Packet will be striped */
pi.flags |= TUN_PKT_STRIP;
}
if (copy_to_iter(&pi, sizeof(pi), iter) != sizeof(pi))
return -EFAULT;
}
if (vnet_hdr_sz) {
struct virtio_net_hdr gso;
if (iov_iter_count(iter) < vnet_hdr_sz)
return -EINVAL;
if (virtio_net_hdr_from_skb(skb, &gso,
tun_is_little_endian(tun), true)) {
struct skb_shared_info *sinfo = skb_shinfo(skb);
pr_err("unexpected GSO type: "
"0x%x, gso_size %d, hdr_len %d\n",
sinfo->gso_type, tun16_to_cpu(tun, gso.gso_size),
tun16_to_cpu(tun, gso.hdr_len));
print_hex_dump(KERN_ERR, "tun: ",
DUMP_PREFIX_NONE,
16, 1, skb->head,
min((int)tun16_to_cpu(tun, gso.hdr_len), 64), true);
WARN_ON_ONCE(1);
return -EINVAL;
}
if (copy_to_iter(&gso, sizeof(gso), iter) != sizeof(gso))
return -EFAULT;
iov_iter_advance(iter, vnet_hdr_sz - sizeof(gso));
}
if (vlan_hlen) {
int ret;
struct {
__be16 h_vlan_proto;
__be16 h_vlan_TCI;
} veth;
veth.h_vlan_proto = skb->vlan_proto;
veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb));
vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto);
ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset);
if (ret || !iov_iter_count(iter))
goto done;
ret = copy_to_iter(&veth, sizeof(veth), iter);
if (ret != sizeof(veth) || !iov_iter_count(iter))
goto done;
}
skb_copy_datagram_iter(skb, vlan_offset, iter, skb->len - vlan_offset);
done:
/* caller is in process context, */
stats = get_cpu_ptr(tun->pcpu_stats);
u64_stats_update_begin(&stats->syncp);
stats->tx_packets++;
stats->tx_bytes += skb->len + vlan_hlen;
u64_stats_update_end(&stats->syncp);
put_cpu_ptr(tun->pcpu_stats);
return total;
}
static struct sk_buff *tun_ring_recv(struct tun_file *tfile, int noblock,
int *err)
{
DECLARE_WAITQUEUE(wait, current);
struct sk_buff *skb = NULL;
int error = 0;
skb = skb_array_consume(&tfile->tx_array);
if (skb)
goto out;
if (noblock) {
error = -EAGAIN;
goto out;
}
add_wait_queue(&tfile->wq.wait, &wait);
current->state = TASK_INTERRUPTIBLE;
while (1) {
skb = skb_array_consume(&tfile->tx_array);
if (skb)
break;
if (signal_pending(current)) {
error = -ERESTARTSYS;
break;
}
if (tfile->socket.sk->sk_shutdown & RCV_SHUTDOWN) {
error = -EFAULT;
break;
}
schedule();
}
current->state = TASK_RUNNING;
remove_wait_queue(&tfile->wq.wait, &wait);
out:
*err = error;
return skb;
}
static ssize_t tun_do_read(struct tun_struct *tun, struct tun_file *tfile,
struct iov_iter *to,
int noblock)
{
struct sk_buff *skb;
ssize_t ret;
int err;
tun_debug(KERN_INFO, tun, "tun_do_read\n");
if (!iov_iter_count(to))
return 0;
/* Read frames from ring */
skb = tun_ring_recv(tfile, noblock, &err);
if (!skb)
return err;
ret = tun_put_user(tun, tfile, skb, to);
if (unlikely(ret < 0))
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
kfree_skb(skb);
else
consume_skb(skb);
return ret;
}
static ssize_t tun_chr_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
ssize_t len = iov_iter_count(to), ret;
if (!tun)
return -EBADFD;
ret = tun_do_read(tun, tfile, to, file->f_flags & O_NONBLOCK);
ret = min_t(ssize_t, ret, len);
if (ret > 0)
iocb->ki_pos = ret;
tun_put(tun);
return ret;
}
static void tun_free_netdev(struct net_device *dev)
{
struct tun_struct *tun = netdev_priv(dev);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
BUG_ON(!(list_empty(&tun->disabled)));
free_percpu(tun->pcpu_stats);
tun_flow_uninit(tun);
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
security_tun_dev_free_security(tun->security);
free_netdev(dev);
}
static void tun_setup(struct net_device *dev)
{
struct tun_struct *tun = netdev_priv(dev);
tun->owner = INVALID_UID;
tun->group = INVALID_GID;
dev->ethtool_ops = &tun_ethtool_ops;
dev->destructor = tun_free_netdev;
/* We prefer our own queue length */
dev->tx_queue_len = TUN_READQ_SIZE;
}
/* Trivial set of netlink ops to allow deleting tun or tap
* device with netlink.
*/
static int tun_validate(struct nlattr *tb[], struct nlattr *data[])
{
return -EINVAL;
}
static struct rtnl_link_ops tun_link_ops __read_mostly = {
.kind = DRV_NAME,
.priv_size = sizeof(struct tun_struct),
.setup = tun_setup,
.validate = tun_validate,
};
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
static void tun_sock_write_space(struct sock *sk)
{
struct tun_file *tfile;
net: sock_def_readable() and friends RCU conversion sk_callback_lock rwlock actually protects sk->sk_sleep pointer, so we need two atomic operations (and associated dirtying) per incoming packet. RCU conversion is pretty much needed : 1) Add a new structure, called "struct socket_wq" to hold all fields that will need rcu_read_lock() protection (currently: a wait_queue_head_t and a struct fasync_struct pointer). [Future patch will add a list anchor for wakeup coalescing] 2) Attach one of such structure to each "struct socket" created in sock_alloc_inode(). 3) Respect RCU grace period when freeing a "struct socket_wq" 4) Change sk_sleep pointer in "struct sock" by sk_wq, pointer to "struct socket_wq" 5) Change sk_sleep() function to use new sk->sk_wq instead of sk->sk_sleep 6) Change sk_has_sleeper() to wq_has_sleeper() that must be used inside a rcu_read_lock() section. 7) Change all sk_has_sleeper() callers to : - Use rcu_read_lock() instead of read_lock(&sk->sk_callback_lock) - Use wq_has_sleeper() to eventually wakeup tasks. - Use rcu_read_unlock() instead of read_unlock(&sk->sk_callback_lock) 8) sock_wake_async() is modified to use rcu protection as well. 9) Exceptions : macvtap, drivers/net/tun.c, af_unix use integrated "struct socket_wq" instead of dynamically allocated ones. They dont need rcu freeing. Some cleanups or followups are probably needed, (possible sk_callback_lock conversion to a spinlock for example...). Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-29 19:01:49 +08:00
wait_queue_head_t *wqueue;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
if (!sock_writeable(sk))
return;
if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags))
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
return;
net: sock_def_readable() and friends RCU conversion sk_callback_lock rwlock actually protects sk->sk_sleep pointer, so we need two atomic operations (and associated dirtying) per incoming packet. RCU conversion is pretty much needed : 1) Add a new structure, called "struct socket_wq" to hold all fields that will need rcu_read_lock() protection (currently: a wait_queue_head_t and a struct fasync_struct pointer). [Future patch will add a list anchor for wakeup coalescing] 2) Attach one of such structure to each "struct socket" created in sock_alloc_inode(). 3) Respect RCU grace period when freeing a "struct socket_wq" 4) Change sk_sleep pointer in "struct sock" by sk_wq, pointer to "struct socket_wq" 5) Change sk_sleep() function to use new sk->sk_wq instead of sk->sk_sleep 6) Change sk_has_sleeper() to wq_has_sleeper() that must be used inside a rcu_read_lock() section. 7) Change all sk_has_sleeper() callers to : - Use rcu_read_lock() instead of read_lock(&sk->sk_callback_lock) - Use wq_has_sleeper() to eventually wakeup tasks. - Use rcu_read_unlock() instead of read_unlock(&sk->sk_callback_lock) 8) sock_wake_async() is modified to use rcu protection as well. 9) Exceptions : macvtap, drivers/net/tun.c, af_unix use integrated "struct socket_wq" instead of dynamically allocated ones. They dont need rcu freeing. Some cleanups or followups are probably needed, (possible sk_callback_lock conversion to a spinlock for example...). Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-29 19:01:49 +08:00
wqueue = sk_sleep(sk);
if (wqueue && waitqueue_active(wqueue))
wake_up_interruptible_sync_poll(wqueue, POLLOUT |
POLLWRNORM | POLLWRBAND);
tfile = container_of(sk, struct tun_file, sk);
kill_fasync(&tfile->fasync, SIGIO, POLL_OUT);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
}
static int tun_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
{
int ret;
struct tun_file *tfile = container_of(sock, struct tun_file, socket);
struct tun_struct *tun = __tun_get(tfile);
if (!tun)
return -EBADFD;
ret = tun_get_user(tun, tfile, m->msg_control, &m->msg_iter,
m->msg_flags & MSG_DONTWAIT,
m->msg_flags & MSG_MORE);
tun_put(tun);
return ret;
}
static int tun_recvmsg(struct socket *sock, struct msghdr *m, size_t total_len,
int flags)
{
struct tun_file *tfile = container_of(sock, struct tun_file, socket);
struct tun_struct *tun = __tun_get(tfile);
int ret;
if (!tun)
return -EBADFD;
if (flags & ~(MSG_DONTWAIT|MSG_TRUNC|MSG_ERRQUEUE)) {
ret = -EINVAL;
goto out;
}
if (flags & MSG_ERRQUEUE) {
ret = sock_recv_errqueue(sock->sk, m, total_len,
SOL_PACKET, TUN_TX_TIMESTAMP);
goto out;
}
ret = tun_do_read(tun, tfile, &m->msg_iter, flags & MSG_DONTWAIT);
if (ret > (ssize_t)total_len) {
m->msg_flags |= MSG_TRUNC;
ret = flags & MSG_TRUNC ? ret : total_len;
}
out:
tun_put(tun);
return ret;
}
static int tun_peek_len(struct socket *sock)
{
struct tun_file *tfile = container_of(sock, struct tun_file, socket);
struct tun_struct *tun;
int ret = 0;
tun = __tun_get(tfile);
if (!tun)
return 0;
ret = skb_array_peek_len(&tfile->tx_array);
tun_put(tun);
return ret;
}
/* Ops structure to mimic raw sockets with tun */
static const struct proto_ops tun_socket_ops = {
.peek_len = tun_peek_len,
.sendmsg = tun_sendmsg,
.recvmsg = tun_recvmsg,
};
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
static struct proto tun_proto = {
.name = "tun",
.owner = THIS_MODULE,
.obj_size = sizeof(struct tun_file),
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
};
static int tun_flags(struct tun_struct *tun)
{
return tun->flags & (TUN_FEATURES | IFF_PERSIST | IFF_TUN | IFF_TAP);
}
static ssize_t tun_show_flags(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tun_struct *tun = netdev_priv(to_net_dev(dev));
return sprintf(buf, "0x%x\n", tun_flags(tun));
}
static ssize_t tun_show_owner(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tun_struct *tun = netdev_priv(to_net_dev(dev));
return uid_valid(tun->owner)?
sprintf(buf, "%u\n",
from_kuid_munged(current_user_ns(), tun->owner)):
sprintf(buf, "-1\n");
}
static ssize_t tun_show_group(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct tun_struct *tun = netdev_priv(to_net_dev(dev));
return gid_valid(tun->group) ?
sprintf(buf, "%u\n",
from_kgid_munged(current_user_ns(), tun->group)):
sprintf(buf, "-1\n");
}
static DEVICE_ATTR(tun_flags, 0444, tun_show_flags, NULL);
static DEVICE_ATTR(owner, 0444, tun_show_owner, NULL);
static DEVICE_ATTR(group, 0444, tun_show_group, NULL);
static struct attribute *tun_dev_attrs[] = {
&dev_attr_tun_flags.attr,
&dev_attr_owner.attr,
&dev_attr_group.attr,
NULL
};
static const struct attribute_group tun_attr_group = {
.attrs = tun_dev_attrs
};
static int tun_set_iff(struct net *net, struct file *file, struct ifreq *ifr)
{
struct tun_struct *tun;
struct tun_file *tfile = file->private_data;
struct net_device *dev;
int err;
if (tfile->detached)
return -EINVAL;
dev = __dev_get_by_name(net, ifr->ifr_name);
if (dev) {
if (ifr->ifr_flags & IFF_TUN_EXCL)
return -EBUSY;
if ((ifr->ifr_flags & IFF_TUN) && dev->netdev_ops == &tun_netdev_ops)
tun = netdev_priv(dev);
else if ((ifr->ifr_flags & IFF_TAP) && dev->netdev_ops == &tap_netdev_ops)
tun = netdev_priv(dev);
else
return -EINVAL;
if (!!(ifr->ifr_flags & IFF_MULTI_QUEUE) !=
!!(tun->flags & IFF_MULTI_QUEUE))
return -EINVAL;
if (tun_not_capable(tun))
return -EPERM;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
err = security_tun_dev_open(tun->security);
if (err < 0)
return err;
err = tun_attach(tun, file, ifr->ifr_flags & IFF_NOFILTER);
if (err < 0)
return err;
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
if (tun->flags & IFF_MULTI_QUEUE &&
(tun->numqueues + tun->numdisabled > 1)) {
/* One or more queue has already been attached, no need
* to initialize the device again.
*/
return 0;
}
}
else {
char *name;
unsigned long flags = 0;
int queues = ifr->ifr_flags & IFF_MULTI_QUEUE ?
MAX_TAP_QUEUES : 1;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
err = security_tun_dev_create();
if (err < 0)
return err;
/* Set dev type */
if (ifr->ifr_flags & IFF_TUN) {
/* TUN device */
flags |= IFF_TUN;
name = "tun%d";
} else if (ifr->ifr_flags & IFF_TAP) {
/* TAP device */
flags |= IFF_TAP;
name = "tap%d";
} else
return -EINVAL;
if (*ifr->ifr_name)
name = ifr->ifr_name;
dev = alloc_netdev_mqs(sizeof(struct tun_struct), name,
NET_NAME_UNKNOWN, tun_setup, queues,
queues);
if (!dev)
return -ENOMEM;
dev_net_set(dev, net);
dev->rtnl_link_ops = &tun_link_ops;
dev->ifindex = tfile->ifindex;
dev->sysfs_groups[0] = &tun_attr_group;
tun = netdev_priv(dev);
tun->dev = dev;
tun->flags = flags;
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
tun->txflt.count = 0;
tun->vnet_hdr_sz = sizeof(struct virtio_net_hdr);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
tun->align = NET_SKB_PAD;
tun->filter_attached = false;
tun->sndbuf = tfile->socket.sk->sk_sndbuf;
tun->rx_batched = 0;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
tun->pcpu_stats = netdev_alloc_pcpu_stats(struct tun_pcpu_stats);
if (!tun->pcpu_stats) {
err = -ENOMEM;
goto err_free_dev;
}
spin_lock_init(&tun->lock);
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
err = security_tun_dev_alloc_security(&tun->security);
if (err < 0)
goto err_free_stat;
tun_net_init(dev);
tun_flow_init(tun);
dev->hw_features = NETIF_F_SG | NETIF_F_FRAGLIST |
TUN_USER_FEATURES | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_TX;
dev->features = dev->hw_features | NETIF_F_LLTX;
dev->vlan_features = dev->features &
~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_TX);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
INIT_LIST_HEAD(&tun->disabled);
err = tun_attach(tun, file, false);
if (err < 0)
goto err_free_flow;
err = register_netdevice(tun->dev);
if (err < 0)
goto err_detach;
}
netif_carrier_on(tun->dev);
tun_debug(KERN_INFO, tun, "tun_set_iff\n");
tun->flags = (tun->flags & ~TUN_FEATURES) |
(ifr->ifr_flags & TUN_FEATURES);
/* Make sure persistent devices do not get stuck in
* xoff state.
*/
if (netif_running(tun->dev))
netif_tx_wake_all_queues(tun->dev);
strcpy(ifr->ifr_name, tun->dev->name);
return 0;
err_detach:
tun_detach_all(dev);
err_free_flow:
tun_flow_uninit(tun);
security_tun_dev_free_security(tun->security);
err_free_stat:
free_percpu(tun->pcpu_stats);
err_free_dev:
free_netdev(dev);
return err;
}
static void tun_get_iff(struct net *net, struct tun_struct *tun,
struct ifreq *ifr)
{
tun_debug(KERN_INFO, tun, "tun_get_iff\n");
strcpy(ifr->ifr_name, tun->dev->name);
ifr->ifr_flags = tun_flags(tun);
}
/* This is like a cut-down ethtool ops, except done via tun fd so no
* privs required. */
static int set_offload(struct tun_struct *tun, unsigned long arg)
{
netdev_features_t features = 0;
if (arg & TUN_F_CSUM) {
features |= NETIF_F_HW_CSUM;
arg &= ~TUN_F_CSUM;
if (arg & (TUN_F_TSO4|TUN_F_TSO6)) {
if (arg & TUN_F_TSO_ECN) {
features |= NETIF_F_TSO_ECN;
arg &= ~TUN_F_TSO_ECN;
}
if (arg & TUN_F_TSO4)
features |= NETIF_F_TSO;
if (arg & TUN_F_TSO6)
features |= NETIF_F_TSO6;
arg &= ~(TUN_F_TSO4|TUN_F_TSO6);
}
if (arg & TUN_F_UFO) {
features |= NETIF_F_UFO;
arg &= ~TUN_F_UFO;
}
}
/* This gives the user a way to test for new features in future by
* trying to set them. */
if (arg)
return -EINVAL;
tun->set_features = features;
netdev_update_features(tun->dev);
return 0;
}
static void tun_detach_filter(struct tun_struct *tun, int n)
{
int i;
struct tun_file *tfile;
for (i = 0; i < n; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
lock_sock(tfile->socket.sk);
sk_detach_filter(tfile->socket.sk);
release_sock(tfile->socket.sk);
}
tun->filter_attached = false;
}
static int tun_attach_filter(struct tun_struct *tun)
{
int i, ret = 0;
struct tun_file *tfile;
for (i = 0; i < tun->numqueues; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
lock_sock(tfile->socket.sk);
ret = sk_attach_filter(&tun->fprog, tfile->socket.sk);
release_sock(tfile->socket.sk);
if (ret) {
tun_detach_filter(tun, i);
return ret;
}
}
tun->filter_attached = true;
return ret;
}
static void tun_set_sndbuf(struct tun_struct *tun)
{
struct tun_file *tfile;
int i;
for (i = 0; i < tun->numqueues; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
tfile->socket.sk->sk_sndbuf = tun->sndbuf;
}
}
static int tun_set_queue(struct file *file, struct ifreq *ifr)
{
struct tun_file *tfile = file->private_data;
struct tun_struct *tun;
int ret = 0;
rtnl_lock();
if (ifr->ifr_flags & IFF_ATTACH_QUEUE) {
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
tun = tfile->detached;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
if (!tun) {
ret = -EINVAL;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
goto unlock;
}
ret = security_tun_dev_attach_queue(tun->security);
if (ret < 0)
goto unlock;
ret = tun_attach(tun, file, false);
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
} else if (ifr->ifr_flags & IFF_DETACH_QUEUE) {
tun = rtnl_dereference(tfile->tun);
if (!tun || !(tun->flags & IFF_MULTI_QUEUE) || tfile->detached)
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
ret = -EINVAL;
else
__tun_detach(tfile, false);
} else
ret = -EINVAL;
tun: fix LSM/SELinux labeling of tun/tap devices This patch corrects some problems with LSM/SELinux that were introduced with the multiqueue patchset. The problem stems from the fact that the multiqueue work changed the relationship between the tun device and its associated socket; before the socket persisted for the life of the device, however after the multiqueue changes the socket only persisted for the life of the userspace connection (fd open). For non-persistent devices this is not an issue, but for persistent devices this can cause the tun device to lose its SELinux label. We correct this problem by adding an opaque LSM security blob to the tun device struct which allows us to have the LSM security state, e.g. SELinux labeling information, persist for the lifetime of the tun device. In the process we tweak the LSM hooks to work with this new approach to TUN device/socket labeling and introduce a new LSM hook, security_tun_dev_attach_queue(), to approve requests to attach to a TUN queue via TUNSETQUEUE. The SELinux code has been adjusted to match the new LSM hooks, the other LSMs do not make use of the LSM TUN controls. This patch makes use of the recently added "tun_socket:attach_queue" permission to restrict access to the TUNSETQUEUE operation. On older SELinux policies which do not define the "tun_socket:attach_queue" permission the access control decision for TUNSETQUEUE will be handled according to the SELinux policy's unknown permission setting. Signed-off-by: Paul Moore <pmoore@redhat.com> Acked-by: Eric Paris <eparis@parisplace.org> Tested-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-01-14 15:12:19 +08:00
unlock:
rtnl_unlock();
return ret;
}
static long __tun_chr_ioctl(struct file *file, unsigned int cmd,
unsigned long arg, int ifreq_len)
{
struct tun_file *tfile = file->private_data;
struct tun_struct *tun;
void __user* argp = (void __user*)arg;
struct ifreq ifr;
kuid_t owner;
kgid_t group;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
int sndbuf;
int vnet_hdr_sz;
unsigned int ifindex;
int le;
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
int ret;
if (cmd == TUNSETIFF || cmd == TUNSETQUEUE || _IOC_TYPE(cmd) == SOCK_IOC_TYPE) {
if (copy_from_user(&ifr, argp, ifreq_len))
return -EFAULT;
} else {
memset(&ifr, 0, sizeof(ifr));
}
if (cmd == TUNGETFEATURES) {
/* Currently this just means: "what IFF flags are valid?".
* This is needed because we never checked for invalid flags on
* TUNSETIFF.
*/
return put_user(IFF_TUN | IFF_TAP | TUN_FEATURES,
(unsigned int __user*)argp);
} else if (cmd == TUNSETQUEUE)
return tun_set_queue(file, &ifr);
ret = 0;
rtnl_lock();
tun = __tun_get(tfile);
if (cmd == TUNSETIFF) {
ret = -EEXIST;
if (tun)
goto unlock;
ifr.ifr_name[IFNAMSIZ-1] = '\0';
ret = tun_set_iff(sock_net(&tfile->sk), file, &ifr);
if (ret)
goto unlock;
if (copy_to_user(argp, &ifr, ifreq_len))
ret = -EFAULT;
goto unlock;
}
if (cmd == TUNSETIFINDEX) {
ret = -EPERM;
if (tun)
goto unlock;
ret = -EFAULT;
if (copy_from_user(&ifindex, argp, sizeof(ifindex)))
goto unlock;
ret = 0;
tfile->ifindex = ifindex;
goto unlock;
}
ret = -EBADFD;
if (!tun)
goto unlock;
tun_debug(KERN_INFO, tun, "tun_chr_ioctl cmd %u\n", cmd);
ret = 0;
switch (cmd) {
case TUNGETIFF:
tun_get_iff(current->nsproxy->net_ns, tun, &ifr);
if (tfile->detached)
ifr.ifr_flags |= IFF_DETACH_QUEUE;
if (!tfile->socket.sk->sk_filter)
ifr.ifr_flags |= IFF_NOFILTER;
if (copy_to_user(argp, &ifr, ifreq_len))
ret = -EFAULT;
break;
case TUNSETNOCSUM:
/* Disable/Enable checksum */
/* [unimplemented] */
tun_debug(KERN_INFO, tun, "ignored: set checksum %s\n",
arg ? "disabled" : "enabled");
break;
case TUNSETPERSIST:
/* Disable/Enable persist mode. Keep an extra reference to the
* module to prevent the module being unprobed.
*/
if (arg && !(tun->flags & IFF_PERSIST)) {
tun->flags |= IFF_PERSIST;
__module_get(THIS_MODULE);
}
if (!arg && (tun->flags & IFF_PERSIST)) {
tun->flags &= ~IFF_PERSIST;
module_put(THIS_MODULE);
}
tun_debug(KERN_INFO, tun, "persist %s\n",
arg ? "enabled" : "disabled");
break;
case TUNSETOWNER:
/* Set owner of the device */
owner = make_kuid(current_user_ns(), arg);
if (!uid_valid(owner)) {
ret = -EINVAL;
break;
}
tun->owner = owner;
tun_debug(KERN_INFO, tun, "owner set to %u\n",
from_kuid(&init_user_ns, tun->owner));
break;
case TUNSETGROUP:
/* Set group of the device */
group = make_kgid(current_user_ns(), arg);
if (!gid_valid(group)) {
ret = -EINVAL;
break;
}
tun->group = group;
tun_debug(KERN_INFO, tun, "group set to %u\n",
from_kgid(&init_user_ns, tun->group));
break;
case TUNSETLINK:
/* Only allow setting the type when the interface is down */
if (tun->dev->flags & IFF_UP) {
tun_debug(KERN_INFO, tun,
"Linktype set failed because interface is up\n");
ret = -EBUSY;
} else {
tun->dev->type = (int) arg;
tun_debug(KERN_INFO, tun, "linktype set to %d\n",
tun->dev->type);
ret = 0;
}
break;
#ifdef TUN_DEBUG
case TUNSETDEBUG:
tun->debug = arg;
break;
#endif
case TUNSETOFFLOAD:
ret = set_offload(tun, arg);
break;
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
case TUNSETTXFILTER:
/* Can be set only for TAPs */
ret = -EINVAL;
if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP)
break;
ret = update_filter(&tun->txflt, (void __user *)arg);
break;
case SIOCGIFHWADDR:
/* Get hw address */
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
memcpy(ifr.ifr_hwaddr.sa_data, tun->dev->dev_addr, ETH_ALEN);
ifr.ifr_hwaddr.sa_family = tun->dev->type;
if (copy_to_user(argp, &ifr, ifreq_len))
ret = -EFAULT;
break;
case SIOCSIFHWADDR:
tun: Fix/rewrite packet filtering logic Please see the following thread to get some context on this http://marc.info/?l=linux-netdev&m=121564433018903&w=2 Basically the issue is that current multi-cast filtering stuff in the TUN/TAP driver is seriously broken. Original patch went in without proper review and ACK. It was broken and confusing to start with and subsequent patches broke it completely. To give you an idea of what's broken here are some of the issues: - Very confusing comments throughout the code that imply that the character device is a network interface in its own right, and that packets are passed between the two nics. Which is completely wrong. - Wrong set of ioctls is used for setting up filters. They look like shortcuts for manipulating state of the tun/tap network interface but in reality manipulate the state of the TX filter. - ioctls that were originally used for setting address of the the TX filter got "fixed" and now set the address of the network interface itself. Which made filter totaly useless. - Filtering is done too late. Instead of filtering early on, to avoid unnecessary wakeups, filtering is done in the read() call. The list goes on and on :) So the patch cleans all that up. It introduces simple and clean interface for setting up TX filters (TUNSETTXFILTER + tun_filter spec) and does filtering before enqueuing the packets. TX filtering is useful in the scenarios where TAP is part of a bridge, in which case it gets all broadcast, multicast and potentially other packets when the bridge is learning. So for example Ethernet tunnelling app may want to setup TX filters to avoid tunnelling multicast traffic. QEMU and other hypervisors can push RX filtering that is currently done in the guest into the host context therefore saving wakeups and unnecessary data transfer. Signed-off-by: Max Krasnyansky <maxk@qualcomm.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-15 13:18:19 +08:00
/* Set hw address */
tun_debug(KERN_DEBUG, tun, "set hw address: %pM\n",
ifr.ifr_hwaddr.sa_data);
ret = dev_set_mac_address(tun->dev, &ifr.ifr_hwaddr);
break;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
case TUNGETSNDBUF:
sndbuf = tfile->socket.sk->sk_sndbuf;
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
if (copy_to_user(argp, &sndbuf, sizeof(sndbuf)))
ret = -EFAULT;
break;
case TUNSETSNDBUF:
if (copy_from_user(&sndbuf, argp, sizeof(sndbuf))) {
ret = -EFAULT;
break;
}
tun->sndbuf = sndbuf;
tun_set_sndbuf(tun);
tun: Limit amount of queued packets per device Unlike a normal socket path, the tuntap device send path does not have any accounting. This means that the user-space sender may be able to pin down arbitrary amounts of kernel memory by continuing to send data to an end-point that is congested. Even when this isn't an issue because of limited queueing at most end points, this can also be a problem because its only response to congestion is packet loss. That is, when those local queues at the end-point fills up, the tuntap device will start wasting system time because it will continue to send data there which simply gets dropped straight away. Of course one could argue that everybody should do congestion control end-to-end, unfortunately there are people in this world still hooked on UDP, and they don't appear to be going away anywhere fast. In fact, we've always helped them by performing accounting in our UDP code, the sole purpose of which is to provide congestion feedback other than through packet loss. This patch attempts to apply the same bandaid to the tuntap device. It creates a pseudo-socket object which is used to account our packets just as a normal socket does for UDP. Of course things are a little complex because we're actually reinjecting traffic back into the stack rather than out of the stack. The stack complexities however should have been resolved by preceding patches. So this one can simply start using skb_set_owner_w. For now the accounting is essentially disabled by default for backwards compatibility. In particular, we set the cap to INT_MAX. This is so that existing applications don't get confused by the sudden arrival EAGAIN errors. In future we may wish (or be forced to) do this by default. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-06 13:25:32 +08:00
break;
case TUNGETVNETHDRSZ:
vnet_hdr_sz = tun->vnet_hdr_sz;
if (copy_to_user(argp, &vnet_hdr_sz, sizeof(vnet_hdr_sz)))
ret = -EFAULT;
break;
case TUNSETVNETHDRSZ:
if (copy_from_user(&vnet_hdr_sz, argp, sizeof(vnet_hdr_sz))) {
ret = -EFAULT;
break;
}
if (vnet_hdr_sz < (int)sizeof(struct virtio_net_hdr)) {
ret = -EINVAL;
break;
}
tun->vnet_hdr_sz = vnet_hdr_sz;
break;
case TUNGETVNETLE:
le = !!(tun->flags & TUN_VNET_LE);
if (put_user(le, (int __user *)argp))
ret = -EFAULT;
break;
case TUNSETVNETLE:
if (get_user(le, (int __user *)argp)) {
ret = -EFAULT;
break;
}
if (le)
tun->flags |= TUN_VNET_LE;
else
tun->flags &= ~TUN_VNET_LE;
break;
case TUNGETVNETBE:
ret = tun_get_vnet_be(tun, argp);
break;
case TUNSETVNETBE:
ret = tun_set_vnet_be(tun, argp);
break;
case TUNATTACHFILTER:
/* Can be set only for TAPs */
ret = -EINVAL;
if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP)
break;
ret = -EFAULT;
if (copy_from_user(&tun->fprog, argp, sizeof(tun->fprog)))
break;
ret = tun_attach_filter(tun);
break;
case TUNDETACHFILTER:
/* Can be set only for TAPs */
ret = -EINVAL;
if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP)
break;
ret = 0;
tun_detach_filter(tun, tun->numqueues);
break;
case TUNGETFILTER:
ret = -EINVAL;
if ((tun->flags & TUN_TYPE_MASK) != IFF_TAP)
break;
ret = -EFAULT;
if (copy_to_user(argp, &tun->fprog, sizeof(tun->fprog)))
break;
ret = 0;
break;
default:
ret = -EINVAL;
break;
}
unlock:
rtnl_unlock();
if (tun)
tun_put(tun);
return ret;
}
static long tun_chr_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
return __tun_chr_ioctl(file, cmd, arg, sizeof (struct ifreq));
}
#ifdef CONFIG_COMPAT
static long tun_chr_compat_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case TUNSETIFF:
case TUNGETIFF:
case TUNSETTXFILTER:
case TUNGETSNDBUF:
case TUNSETSNDBUF:
case SIOCGIFHWADDR:
case SIOCSIFHWADDR:
arg = (unsigned long)compat_ptr(arg);
break;
default:
arg = (compat_ulong_t)arg;
break;
}
/*
* compat_ifreq is shorter than ifreq, so we must not access beyond
* the end of that structure. All fields that are used in this
* driver are compatible though, we don't need to convert the
* contents.
*/
return __tun_chr_ioctl(file, cmd, arg, sizeof(struct compat_ifreq));
}
#endif /* CONFIG_COMPAT */
static int tun_chr_fasync(int fd, struct file *file, int on)
{
struct tun_file *tfile = file->private_data;
int ret;
if ((ret = fasync_helper(fd, file, on, &tfile->fasync)) < 0)
goto out;
if (on) {
__f_setown(file, task_pid(current), PIDTYPE_PID, 0);
tfile->flags |= TUN_FASYNC;
} else
tfile->flags &= ~TUN_FASYNC;
ret = 0;
out:
return ret;
}
static int tun_chr_open(struct inode *inode, struct file * file)
{
struct net *net = current->nsproxy->net_ns;
struct tun_file *tfile;
DBG1(KERN_INFO, "tunX: tun_chr_open\n");
tfile = (struct tun_file *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL,
&tun_proto, 0);
if (!tfile)
return -ENOMEM;
RCU_INIT_POINTER(tfile->tun, NULL);
tfile->flags = 0;
tfile->ifindex = 0;
init_waitqueue_head(&tfile->wq.wait);
RCU_INIT_POINTER(tfile->socket.wq, &tfile->wq);
tfile->socket.file = file;
tfile->socket.ops = &tun_socket_ops;
sock_init_data(&tfile->socket, &tfile->sk);
tfile->sk.sk_write_space = tun_sock_write_space;
tfile->sk.sk_sndbuf = INT_MAX;
file->private_data = tfile;
tuntap: fix ambigious multiqueue API The current multiqueue API is ambigious which may confuse both user and LSM to do things correctly: - Both TUNSETIFF and TUNSETQUEUE could be used to create the queues of a tuntap device. - TUNSETQUEUE were used to disable and enable a specific queue of the device. But since the state of tuntap were completely removed from the queue, it could be used to attach to another device (there's no such kind of requirement currently, and it needs new kind of LSM policy. - TUNSETQUEUE could be used to attach to a persistent device without any queues. This kind of attching bypass the necessary checking during TUNSETIFF and may lead unexpected result. So this patch tries to make a cleaner and simpler API by: - Only allow TUNSETIFF to create queues. - TUNSETQUEUE could be only used to disable and enabled the queues of a device, and the state of the tuntap device were not detachd from the queues when it was disabled, so TUNSETQUEUE could be only used after TUNSETIFF and with the same device. This is done by introducing a list which keeps track of all queues which were disabled. The queue would be moved between this list and tfiles[] array when it was enabled/disabled. A pointer of the tun_struct were also introdued to track the device it belongs to when it was disabled. After the change, the isolation between management and application could be done through: TUNSETIFF were only called by management software and TUNSETQUEUE were only called by application.For LSM/SELinux, the things left is to do proper check during tun_set_queue() if needed. Signed-off-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-12-14 07:53:30 +08:00
INIT_LIST_HEAD(&tfile->next);
sock_set_flag(&tfile->sk, SOCK_ZEROCOPY);
return 0;
}
static int tun_chr_close(struct inode *inode, struct file *file)
{
struct tun_file *tfile = file->private_data;
tun_detach(tfile, true);
return 0;
}
#ifdef CONFIG_PROC_FS
static void tun_chr_show_fdinfo(struct seq_file *m, struct file *f)
{
struct tun_struct *tun;
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
rtnl_lock();
tun = tun_get(f);
if (tun)
tun_get_iff(current->nsproxy->net_ns, tun, &ifr);
rtnl_unlock();
if (tun)
tun_put(tun);
seq_printf(m, "iff:\t%s\n", ifr.ifr_name);
}
#endif
static const struct file_operations tun_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read_iter = tun_chr_read_iter,
.write_iter = tun_chr_write_iter,
.poll = tun_chr_poll,
.unlocked_ioctl = tun_chr_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = tun_chr_compat_ioctl,
#endif
.open = tun_chr_open,
.release = tun_chr_close,
.fasync = tun_chr_fasync,
#ifdef CONFIG_PROC_FS
.show_fdinfo = tun_chr_show_fdinfo,
#endif
};
static struct miscdevice tun_miscdev = {
.minor = TUN_MINOR,
.name = "tun",
.nodename = "net/tun",
.fops = &tun_fops,
};
/* ethtool interface */
static int tun_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
cmd->supported = 0;
cmd->advertising = 0;
ethtool_cmd_speed_set(cmd, SPEED_10);
cmd->duplex = DUPLEX_FULL;
cmd->port = PORT_TP;
cmd->phy_address = 0;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = AUTONEG_DISABLE;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 0;
return 0;
}
static void tun_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct tun_struct *tun = netdev_priv(dev);
strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_VERSION, sizeof(info->version));
switch (tun->flags & TUN_TYPE_MASK) {
case IFF_TUN:
strlcpy(info->bus_info, "tun", sizeof(info->bus_info));
break;
case IFF_TAP:
strlcpy(info->bus_info, "tap", sizeof(info->bus_info));
break;
}
}
static u32 tun_get_msglevel(struct net_device *dev)
{
#ifdef TUN_DEBUG
struct tun_struct *tun = netdev_priv(dev);
return tun->debug;
#else
return -EOPNOTSUPP;
#endif
}
static void tun_set_msglevel(struct net_device *dev, u32 value)
{
#ifdef TUN_DEBUG
struct tun_struct *tun = netdev_priv(dev);
tun->debug = value;
#endif
}
static int tun_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct tun_struct *tun = netdev_priv(dev);
ec->rx_max_coalesced_frames = tun->rx_batched;
return 0;
}
static int tun_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ec)
{
struct tun_struct *tun = netdev_priv(dev);
if (ec->rx_max_coalesced_frames > NAPI_POLL_WEIGHT)
tun->rx_batched = NAPI_POLL_WEIGHT;
else
tun->rx_batched = ec->rx_max_coalesced_frames;
return 0;
}
static const struct ethtool_ops tun_ethtool_ops = {
.get_settings = tun_get_settings,
.get_drvinfo = tun_get_drvinfo,
.get_msglevel = tun_get_msglevel,
.set_msglevel = tun_set_msglevel,
.get_link = ethtool_op_get_link,
.get_ts_info = ethtool_op_get_ts_info,
.get_coalesce = tun_get_coalesce,
.set_coalesce = tun_set_coalesce,
};
static int tun_queue_resize(struct tun_struct *tun)
{
struct net_device *dev = tun->dev;
struct tun_file *tfile;
struct skb_array **arrays;
int n = tun->numqueues + tun->numdisabled;
int ret, i;
arrays = kmalloc(sizeof *arrays * n, GFP_KERNEL);
if (!arrays)
return -ENOMEM;
for (i = 0; i < tun->numqueues; i++) {
tfile = rtnl_dereference(tun->tfiles[i]);
arrays[i] = &tfile->tx_array;
}
list_for_each_entry(tfile, &tun->disabled, next)
arrays[i++] = &tfile->tx_array;
ret = skb_array_resize_multiple(arrays, n,
dev->tx_queue_len, GFP_KERNEL);
kfree(arrays);
return ret;
}
static int tun_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct tun_struct *tun = netdev_priv(dev);
tun: Don't assume type tun in tun_device_event The referenced change added a netlink notifier for processing device queue size events. These events are fired for all devices but the registered callback assumed they only occurred for tun devices. This fix adds a check (borrowed from macvtap.c) to discard non-tun device events. For reference, this fixes the following splat: [ 71.505935] BUG: unable to handle kernel NULL pointer dereference at 0000000000000010 [ 71.513870] IP: [<ffffffff8153c1a0>] tun_device_event+0x110/0x340 [ 71.519906] PGD 3f41f56067 PUD 3f264b7067 PMD 0 [ 71.524497] Oops: 0002 [#1] SMP DEBUG_PAGEALLOC [ 71.529374] gsmi: Log Shutdown Reason 0x03 [ 71.533417] Modules linked in:[ 71.533826] mlx4_en: eth1: Link Up [ 71.539616] bonding w1_therm wire cdc_acm ehci_pci ehci_hcd mlx4_en ib_uverbs mlx4_ib ib_core mlx4_core [ 71.549282] CPU: 12 PID: 7915 Comm: set.ixion-haswe Not tainted 4.7.0-dbx-DEV #8 [ 71.556586] Hardware name: Intel Grantley,Wellsburg/Ixion_IT_15, BIOS 2.58.0 05/03/2016 [ 71.564495] task: ffff887f00bb20c0 ti: ffff887f00798000 task.ti: ffff887f00798000 [ 71.571894] RIP: 0010:[<ffffffff8153c1a0>] [<ffffffff8153c1a0>] tun_device_event+0x110/0x340 [ 71.580327] RSP: 0018:ffff887f0079bbd8 EFLAGS: 00010202 [ 71.585576] RAX: fffffffffffffae8 RBX: ffff887ef6d03378 RCX: 0000000000000000 [ 71.592624] RDX: 0000000000000000 RSI: 0000000000000028 RDI: 0000000000000000 [ 71.599675] RBP: ffff887f0079bc48 R08: 0000000000000000 R09: 0000000000000001 [ 71.606730] R10: 0000000000000004 R11: 0000000000000000 R12: 0000000000000010 [ 71.613780] R13: 0000000000000000 R14: 0000000000000001 R15: ffff887f0079bd00 [ 71.620832] FS: 00007f5cdc581700(0000) GS:ffff883f7f700000(0000) knlGS:0000000000000000 [ 71.628826] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 71.634500] CR2: 0000000000000010 CR3: 0000003f3eb62000 CR4: 00000000001406e0 [ 71.641549] Stack: [ 71.643533] ffff887f0079bc08 0000000000000246 000000000000001e ffff887ef6d00000 [ 71.650871] ffff887f0079bd00 0000000000000000 0000000000000000 ffffffff00000000 [ 71.658210] ffff887f0079bc48 ffffffff81d24070 00000000fffffff9 ffffffff81cec7a0 [ 71.665549] Call Trace: [ 71.667975] [<ffffffff810eeb0d>] notifier_call_chain+0x5d/0x80 [ 71.673823] [<ffffffff816365d0>] ? show_tx_maxrate+0x30/0x30 [ 71.679502] [<ffffffff810eeb3e>] __raw_notifier_call_chain+0xe/0x10 [ 71.685778] [<ffffffff810eeb56>] raw_notifier_call_chain+0x16/0x20 [ 71.691976] [<ffffffff8160eb30>] call_netdevice_notifiers_info+0x40/0x70 [ 71.698681] [<ffffffff8160ec36>] call_netdevice_notifiers+0x16/0x20 [ 71.704956] [<ffffffff81636636>] change_tx_queue_len+0x66/0x90 [ 71.710807] [<ffffffff816381ef>] netdev_store.isra.5+0xbf/0xd0 [ 71.716658] [<ffffffff81638350>] tx_queue_len_store+0x50/0x60 [ 71.722431] [<ffffffff814a6798>] dev_attr_store+0x18/0x30 [ 71.727857] [<ffffffff812ea3ff>] sysfs_kf_write+0x4f/0x70 [ 71.733274] [<ffffffff812e9507>] kernfs_fop_write+0x147/0x1d0 [ 71.739045] [<ffffffff81134a4f>] ? rcu_read_lock_sched_held+0x8f/0xa0 [ 71.745499] [<ffffffff8125a108>] __vfs_write+0x28/0x120 [ 71.750748] [<ffffffff8111b137>] ? percpu_down_read+0x57/0x90 [ 71.756516] [<ffffffff8125d7d8>] ? __sb_start_write+0xc8/0xe0 [ 71.762278] [<ffffffff8125d7d8>] ? __sb_start_write+0xc8/0xe0 [ 71.768038] [<ffffffff8125bd5e>] vfs_write+0xbe/0x1b0 [ 71.773113] [<ffffffff8125c092>] SyS_write+0x52/0xa0 [ 71.778110] [<ffffffff817528e5>] entry_SYSCALL_64_fastpath+0x18/0xa8 [ 71.784472] Code: 45 31 f6 48 8b 93 78 33 00 00 48 81 c3 78 33 00 00 48 39 d3 48 8d 82 e8 fa ff ff 74 25 48 8d b0 40 05 00 00 49 63 d6 41 83 c6 01 <49> 89 34 d4 48 8b 90 18 05 00 00 48 39 d3 48 8d 82 e8 fa ff ff [ 71.803655] RIP [<ffffffff8153c1a0>] tun_device_event+0x110/0x340 [ 71.809769] RSP <ffff887f0079bbd8> [ 71.813213] CR2: 0000000000000010 [ 71.816512] ---[ end trace 4db6449606319f73 ]--- Fixes: 1576d9860599 ("tun: switch to use skb array for tx") Signed-off-by: Craig Gallek <kraig@google.com> Acked-by: Jason Wang <jasowang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-07 06:44:20 +08:00
if (dev->rtnl_link_ops != &tun_link_ops)
return NOTIFY_DONE;
switch (event) {
case NETDEV_CHANGE_TX_QUEUE_LEN:
if (tun_queue_resize(tun))
return NOTIFY_BAD;
break;
default:
break;
}
return NOTIFY_DONE;
}
static struct notifier_block tun_notifier_block __read_mostly = {
.notifier_call = tun_device_event,
};
static int __init tun_init(void)
{
int ret = 0;
pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
pr_info("%s\n", DRV_COPYRIGHT);
ret = rtnl_link_register(&tun_link_ops);
if (ret) {
pr_err("Can't register link_ops\n");
goto err_linkops;
}
ret = misc_register(&tun_miscdev);
if (ret) {
pr_err("Can't register misc device %d\n", TUN_MINOR);
goto err_misc;
}
register_netdevice_notifier(&tun_notifier_block);
return 0;
err_misc:
rtnl_link_unregister(&tun_link_ops);
err_linkops:
return ret;
}
static void tun_cleanup(void)
{
misc_deregister(&tun_miscdev);
rtnl_link_unregister(&tun_link_ops);
unregister_netdevice_notifier(&tun_notifier_block);
}
/* Get an underlying socket object from tun file. Returns error unless file is
* attached to a device. The returned object works like a packet socket, it
* can be used for sock_sendmsg/sock_recvmsg. The caller is responsible for
* holding a reference to the file for as long as the socket is in use. */
struct socket *tun_get_socket(struct file *file)
{
struct tun_file *tfile;
if (file->f_op != &tun_fops)
return ERR_PTR(-EINVAL);
tfile = file->private_data;
if (!tfile)
return ERR_PTR(-EBADFD);
return &tfile->socket;
}
EXPORT_SYMBOL_GPL(tun_get_socket);
module_init(tun_init);
module_exit(tun_cleanup);
MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR(DRV_COPYRIGHT);
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(TUN_MINOR);
driver core: add devname module aliases to allow module on-demand auto-loading This adds: alias: devname:<name> to some common kernel modules, which will allow the on-demand loading of the kernel module when the device node is accessed. Ideally all these modules would be compiled-in, but distros seems too much in love with their modularization that we need to cover the common cases with this new facility. It will allow us to remove a bunch of pretty useless init scripts and modprobes from init scripts. The static device node aliases will be carried in the module itself. The program depmod will extract this information to a file in the module directory: $ cat /lib/modules/2.6.34-00650-g537b60d-dirty/modules.devname # Device nodes to trigger on-demand module loading. microcode cpu/microcode c10:184 fuse fuse c10:229 ppp_generic ppp c108:0 tun net/tun c10:200 dm_mod mapper/control c10:235 Udev will pick up the depmod created file on startup and create all the static device nodes which the kernel modules specify, so that these modules get automatically loaded when the device node is accessed: $ /sbin/udevd --debug ... static_dev_create_from_modules: mknod '/dev/cpu/microcode' c10:184 static_dev_create_from_modules: mknod '/dev/fuse' c10:229 static_dev_create_from_modules: mknod '/dev/ppp' c108:0 static_dev_create_from_modules: mknod '/dev/net/tun' c10:200 static_dev_create_from_modules: mknod '/dev/mapper/control' c10:235 udev_rules_apply_static_dev_perms: chmod '/dev/net/tun' 0666 udev_rules_apply_static_dev_perms: chmod '/dev/fuse' 0666 A few device nodes are switched to statically allocated numbers, to allow the static nodes to work. This might also useful for systems which still run a plain static /dev, which is completely unsafe to use with any dynamic minor numbers. Note: The devname aliases must be limited to the *common* and *single*instance* device nodes, like the misc devices, and never be used for conceptually limited systems like the loop devices, which should rather get fixed properly and get a control node for losetup to talk to, instead of creating a random number of device nodes in advance, regardless if they are ever used. This facility is to hide the mess distros are creating with too modualized kernels, and just to hide that these modules are not compiled-in, and not to paper-over broken concepts. Thanks! :) Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: David S. Miller <davem@davemloft.net> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Chris Mason <chris.mason@oracle.com> Cc: Alasdair G Kergon <agk@redhat.com> Cc: Tigran Aivazian <tigran@aivazian.fsnet.co.uk> Cc: Ian Kent <raven@themaw.net> Signed-Off-By: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-21 00:07:20 +08:00
MODULE_ALIAS("devname:net/tun");