linux/lib/kref.c

79 lines
1.9 KiB
C
Raw Normal View History

/*
* kref.c - library routines for handling generic reference counted objects
*
* Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2004 IBM Corp.
*
* based on lib/kobject.c which was:
* Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org>
*
* This file is released under the GPLv2.
*
*/
#include <linux/kref.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
/**
* kref_set - initialize object and set refcount to requested number.
* @kref: object in question.
* @num: initial reference counter
*/
void kref_set(struct kref *kref, int num)
{
atomic_set(&kref->refcount, num);
smp_mb();
}
/**
* kref_init - initialize object.
* @kref: object in question.
*/
void kref_init(struct kref *kref)
{
kref_set(kref, 1);
}
/**
* kref_get - increment refcount for object.
* @kref: object.
*/
void kref_get(struct kref *kref)
{
WARN_ON(!atomic_read(&kref->refcount));
atomic_inc(&kref->refcount);
smp_mb__after_atomic_inc();
}
/**
* kref_put - decrement refcount for object.
* @kref: object.
* @release: pointer to the function that will clean up the object when the
* last reference to the object is released.
* This pointer is required, and it is not acceptable to pass kfree
* in as this function.
*
* Decrement the refcount, and if 0, call release().
* Return 1 if the object was removed, otherwise return 0. Beware, if this
* function returns 0, you still can not count on the kref from remaining in
* memory. Only use the return value if you want to see if the kref is now
* gone, not present.
*/
int kref_put(struct kref *kref, void (*release)(struct kref *kref))
{
WARN_ON(release == NULL);
WARN_ON(release == (void (*)(struct kref *))kfree);
kref refcnt and false positives With WARN_ON addition to kobject_init() [ http://kernel.org/pub/linux/kernel/people/akpm/patches/2.6/2.6.19/2.6.19-mm1/dont-use/broken-out/gregkh-driver-kobject-warn.patch ] I started seeing following WARNING on CPU offline followed by online on my x86_64 system. WARNING at lib/kobject.c:172 kobject_init() Call Trace: [<ffffffff8020ab45>] dump_trace+0xaa/0x3ef [<ffffffff8020aec4>] show_trace+0x3a/0x50 [<ffffffff8020b0f6>] dump_stack+0x15/0x17 [<ffffffff80350abc>] kobject_init+0x3f/0x8a [<ffffffff80350be1>] kobject_register+0x1a/0x3e [<ffffffff803bbd89>] sysdev_register+0x5b/0xf9 [<ffffffff80211d0b>] mce_create_device+0x77/0xf4 [<ffffffff80211dc2>] mce_cpu_callback+0x3a/0xe5 [<ffffffff805632fd>] notifier_call_chain+0x26/0x3b [<ffffffff8023f6f3>] raw_notifier_call_chain+0x9/0xb [<ffffffff802519bf>] _cpu_up+0xb4/0xdc [<ffffffff80251a12>] cpu_up+0x2b/0x42 [<ffffffff803bef00>] store_online+0x4a/0x72 [<ffffffff803bb6ce>] sysdev_store+0x24/0x26 [<ffffffff802baaa2>] sysfs_write_file+0xcf/0xfc [<ffffffff8027fc6f>] vfs_write+0xae/0x154 [<ffffffff80280418>] sys_write+0x47/0x6f [<ffffffff8020963e>] system_call+0x7e/0x83 DWARF2 unwinder stuck at system_call+0x7e/0x83 Leftover inexact backtrace: This is a false positive as mce.c is unregistering/registering sysfs interfaces cleanly on hotplug. kref_put() and conditional decrement of refcnt seems to be the root cause for this and the patch below resolves the issue for me. Signed-off-by: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-12-20 05:01:29 +08:00
if (atomic_dec_and_test(&kref->refcount)) {
release(kref);
return 1;
}
return 0;
}
EXPORT_SYMBOL(kref_set);
EXPORT_SYMBOL(kref_init);
EXPORT_SYMBOL(kref_get);
EXPORT_SYMBOL(kref_put);