linux/arch/x86/net/bpf_jit_comp.c

1631 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* bpf_jit_comp.c: BPF JIT compiler
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
*
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
*/
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <linux/bpf.h>
#include <linux/memory.h>
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
#include <asm/extable.h>
#include <asm/set_memory.h>
bpf, x64: implement retpoline for tail call Implement a retpoline [0] for the BPF tail call JIT'ing that converts the indirect jump via jmp %rax that is used to make the long jump into another JITed BPF image. Since this is subject to speculative execution, we need to control the transient instruction sequence here as well when CONFIG_RETPOLINE is set, and direct it into a pause + lfence loop. The latter aligns also with what gcc / clang emits (e.g. [1]). JIT dump after patch: # bpftool p d x i 1 0: (18) r2 = map[id:1] 2: (b7) r3 = 0 3: (85) call bpf_tail_call#12 4: (b7) r0 = 2 5: (95) exit With CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000072 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000072 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000072 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: callq 0x000000000000006d |+ 66: pause | 68: lfence | 6b: jmp 0x0000000000000066 | 6d: mov %rax,(%rsp) | 71: retq | 72: mov $0x2,%eax [...] * relative fall-through jumps in error case + retpoline for indirect jump Without CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000063 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000063 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000063 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: jmpq *%rax |- 63: mov $0x2,%eax [...] * relative fall-through jumps in error case - plain indirect jump as before [0] https://support.google.com/faqs/answer/7625886 [1] https://github.com/gcc-mirror/gcc/commit/a31e654fa107be968b802786d747e962c2fcdb2b Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-02-22 22:12:53 +08:00
#include <asm/nospec-branch.h>
#include <asm/text-patching.h>
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
{
if (len == 1)
*ptr = bytes;
else if (len == 2)
*(u16 *)ptr = bytes;
else {
*(u32 *)ptr = bytes;
barrier();
}
return ptr + len;
}
#define EMIT(bytes, len) \
do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
#define EMIT1(b1) EMIT(b1, 1)
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define EMIT1_off32(b1, off) \
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
do { EMIT1(b1); EMIT(off, 4); } while (0)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define EMIT2_off32(b1, b2, off) \
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define EMIT3_off32(b1, b2, b3, off) \
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define EMIT4_off32(b1, b2, b3, b4, off) \
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
static bool is_imm8(int value)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
{
return value <= 127 && value >= -128;
}
static bool is_simm32(s64 value)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
{
return value == (s64)(s32)value;
}
static bool is_uimm32(u64 value)
{
return value == (u64)(u32)value;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
/* mov dst, src */
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
#define EMIT_mov(DST, SRC) \
do { \
if (DST != SRC) \
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
} while (0)
static int bpf_size_to_x86_bytes(int bpf_size)
{
if (bpf_size == BPF_W)
return 4;
else if (bpf_size == BPF_H)
return 2;
else if (bpf_size == BPF_B)
return 1;
else if (bpf_size == BPF_DW)
return 4; /* imm32 */
else
return 0;
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* List of x86 cond jumps opcodes (. + s8)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
*/
#define X86_JB 0x72
#define X86_JAE 0x73
#define X86_JE 0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA 0x77
#define X86_JL 0x7C
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define X86_JGE 0x7D
#define X86_JLE 0x7E
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
#define X86_JG 0x7F
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Pick a register outside of BPF range for JIT internal work */
#define AUX_REG (MAX_BPF_JIT_REG + 1)
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* The following table maps BPF registers to x86-64 registers.
*
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
* x86-64 register R12 is unused, since if used as base address
* register in load/store instructions, it always needs an
* extra byte of encoding and is callee saved.
*
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
* x86-64 register R9 is not used by BPF programs, but can be used by BPF
* trampoline. x86-64 register R10 is used for blinding (if enabled).
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
*/
static const int reg2hex[] = {
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
[BPF_REG_0] = 0, /* RAX */
[BPF_REG_1] = 7, /* RDI */
[BPF_REG_2] = 6, /* RSI */
[BPF_REG_3] = 2, /* RDX */
[BPF_REG_4] = 1, /* RCX */
[BPF_REG_5] = 0, /* R8 */
[BPF_REG_6] = 3, /* RBX callee saved */
[BPF_REG_7] = 5, /* R13 callee saved */
[BPF_REG_8] = 6, /* R14 callee saved */
[BPF_REG_9] = 7, /* R15 callee saved */
[BPF_REG_FP] = 5, /* RBP readonly */
[BPF_REG_AX] = 2, /* R10 temp register */
[AUX_REG] = 3, /* R11 temp register */
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
[X86_REG_R9] = 1, /* R9 register, 6th function argument */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
};
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
static const int reg2pt_regs[] = {
[BPF_REG_0] = offsetof(struct pt_regs, ax),
[BPF_REG_1] = offsetof(struct pt_regs, di),
[BPF_REG_2] = offsetof(struct pt_regs, si),
[BPF_REG_3] = offsetof(struct pt_regs, dx),
[BPF_REG_4] = offsetof(struct pt_regs, cx),
[BPF_REG_5] = offsetof(struct pt_regs, r8),
[BPF_REG_6] = offsetof(struct pt_regs, bx),
[BPF_REG_7] = offsetof(struct pt_regs, r13),
[BPF_REG_8] = offsetof(struct pt_regs, r14),
[BPF_REG_9] = offsetof(struct pt_regs, r15),
};
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
* which need extra byte of encoding.
* rax,rcx,...,rbp have simpler encoding
*/
static bool is_ereg(u32 reg)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
{
return (1 << reg) & (BIT(BPF_REG_5) |
BIT(AUX_REG) |
BIT(BPF_REG_7) |
BIT(BPF_REG_8) |
BIT(BPF_REG_9) |
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
BIT(X86_REG_R9) |
BIT(BPF_REG_AX));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
}
static bool is_axreg(u32 reg)
{
return reg == BPF_REG_0;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
static u8 add_1mod(u8 byte, u32 reg)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
{
if (is_ereg(reg))
byte |= 1;
return byte;
}
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
{
if (is_ereg(r1))
byte |= 1;
if (is_ereg(r2))
byte |= 4;
return byte;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
static u8 add_1reg(u8 byte, u32 dst_reg)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
{
return byte + reg2hex[dst_reg];
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
{
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
}
static void jit_fill_hole(void *area, unsigned int size)
{
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Fill whole space with INT3 instructions */
memset(area, 0xcc, size);
}
struct jit_context {
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
int cleanup_addr; /* Epilogue code offset */
};
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE 128
#define BPF_INSN_SAFETY 64
/* Number of bytes emit_patch() needs to generate instructions */
#define X86_PATCH_SIZE 5
#define PROLOGUE_SIZE 25
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Emit x86-64 prologue code for BPF program and check its size.
* bpf_tail_call helper will skip it while jumping into another program
*/
static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
{
u8 *prog = *pprog;
int cnt = X86_PATCH_SIZE;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
/* BPF trampoline can be made to work without these nops,
* but let's waste 5 bytes for now and optimize later
*/
memcpy(prog, ideal_nops[NOP_ATOMIC5], cnt);
prog += cnt;
EMIT1(0x55); /* push rbp */
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
/* sub rsp, rounded_stack_depth */
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
EMIT1(0x53); /* push rbx */
EMIT2(0x41, 0x55); /* push r13 */
EMIT2(0x41, 0x56); /* push r14 */
EMIT2(0x41, 0x57); /* push r15 */
if (!ebpf_from_cbpf) {
/* zero init tail_call_cnt */
EMIT2(0x6a, 0x00);
BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
}
*pprog = prog;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Generate the following code:
*
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
* if (index >= array->map.max_entries)
* goto out;
* if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
* prog = array->ptrs[index];
* if (prog == NULL)
* goto out;
* goto *(prog->bpf_func + prologue_size);
* out:
*/
static void emit_bpf_tail_call(u8 **pprog)
{
u8 *prog = *pprog;
int label1, label2, label3;
int cnt = 0;
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* rdi - pointer to ctx
* rsi - pointer to bpf_array
* rdx - index in bpf_array
*/
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* if (index >= array->map.max_entries)
* goto out;
*/
EMIT2(0x89, 0xD2); /* mov edx, edx */
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
offsetof(struct bpf_array, map.max_entries));
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
EMIT2(X86_JBE, OFFSET1); /* jbe out */
label1 = cnt;
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
*/
EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
bpf, x64: implement retpoline for tail call Implement a retpoline [0] for the BPF tail call JIT'ing that converts the indirect jump via jmp %rax that is used to make the long jump into another JITed BPF image. Since this is subject to speculative execution, we need to control the transient instruction sequence here as well when CONFIG_RETPOLINE is set, and direct it into a pause + lfence loop. The latter aligns also with what gcc / clang emits (e.g. [1]). JIT dump after patch: # bpftool p d x i 1 0: (18) r2 = map[id:1] 2: (b7) r3 = 0 3: (85) call bpf_tail_call#12 4: (b7) r0 = 2 5: (95) exit With CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000072 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000072 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000072 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: callq 0x000000000000006d |+ 66: pause | 68: lfence | 6b: jmp 0x0000000000000066 | 6d: mov %rax,(%rsp) | 71: retq | 72: mov $0x2,%eax [...] * relative fall-through jumps in error case + retpoline for indirect jump Without CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000063 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000063 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000063 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: jmpq *%rax |- 63: mov $0x2,%eax [...] * relative fall-through jumps in error case - plain indirect jump as before [0] https://support.google.com/faqs/answer/7625886 [1] https://github.com/gcc-mirror/gcc/commit/a31e654fa107be968b802786d747e962c2fcdb2b Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-02-22 22:12:53 +08:00
#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
EMIT2(X86_JA, OFFSET2); /* ja out */
label2 = cnt;
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
/* prog = array->ptrs[index]; */
EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
offsetof(struct bpf_array, ptrs));
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* if (prog == NULL)
* goto out;
*/
EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
bpf, x64: implement retpoline for tail call Implement a retpoline [0] for the BPF tail call JIT'ing that converts the indirect jump via jmp %rax that is used to make the long jump into another JITed BPF image. Since this is subject to speculative execution, we need to control the transient instruction sequence here as well when CONFIG_RETPOLINE is set, and direct it into a pause + lfence loop. The latter aligns also with what gcc / clang emits (e.g. [1]). JIT dump after patch: # bpftool p d x i 1 0: (18) r2 = map[id:1] 2: (b7) r3 = 0 3: (85) call bpf_tail_call#12 4: (b7) r0 = 2 5: (95) exit With CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000072 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000072 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000072 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: callq 0x000000000000006d |+ 66: pause | 68: lfence | 6b: jmp 0x0000000000000066 | 6d: mov %rax,(%rsp) | 71: retq | 72: mov $0x2,%eax [...] * relative fall-through jumps in error case + retpoline for indirect jump Without CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000063 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000063 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000063 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: jmpq *%rax |- 63: mov $0x2,%eax [...] * relative fall-through jumps in error case - plain indirect jump as before [0] https://support.google.com/faqs/answer/7625886 [1] https://github.com/gcc-mirror/gcc/commit/a31e654fa107be968b802786d747e962c2fcdb2b Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-02-22 22:12:53 +08:00
#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
EMIT2(X86_JE, OFFSET3); /* je out */
label3 = cnt;
/* goto *(prog->bpf_func + prologue_size); */
EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
offsetof(struct bpf_prog, bpf_func));
EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Wow we're ready to jump into next BPF program
* rdi == ctx (1st arg)
* rax == prog->bpf_func + prologue_size
*/
bpf, x64: implement retpoline for tail call Implement a retpoline [0] for the BPF tail call JIT'ing that converts the indirect jump via jmp %rax that is used to make the long jump into another JITed BPF image. Since this is subject to speculative execution, we need to control the transient instruction sequence here as well when CONFIG_RETPOLINE is set, and direct it into a pause + lfence loop. The latter aligns also with what gcc / clang emits (e.g. [1]). JIT dump after patch: # bpftool p d x i 1 0: (18) r2 = map[id:1] 2: (b7) r3 = 0 3: (85) call bpf_tail_call#12 4: (b7) r0 = 2 5: (95) exit With CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000072 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000072 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000072 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: callq 0x000000000000006d |+ 66: pause | 68: lfence | 6b: jmp 0x0000000000000066 | 6d: mov %rax,(%rsp) | 71: retq | 72: mov $0x2,%eax [...] * relative fall-through jumps in error case + retpoline for indirect jump Without CONFIG_RETPOLINE: # bpftool p d j i 1 [...] 33: cmp %edx,0x24(%rsi) 36: jbe 0x0000000000000063 |* 38: mov 0x24(%rbp),%eax 3e: cmp $0x20,%eax 41: ja 0x0000000000000063 | 43: add $0x1,%eax 46: mov %eax,0x24(%rbp) 4c: mov 0x90(%rsi,%rdx,8),%rax 54: test %rax,%rax 57: je 0x0000000000000063 | 59: mov 0x28(%rax),%rax 5d: add $0x25,%rax 61: jmpq *%rax |- 63: mov $0x2,%eax [...] * relative fall-through jumps in error case - plain indirect jump as before [0] https://support.google.com/faqs/answer/7625886 [1] https://github.com/gcc-mirror/gcc/commit/a31e654fa107be968b802786d747e962c2fcdb2b Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-02-22 22:12:53 +08:00
RETPOLINE_RAX_BPF_JIT();
/* out: */
BUILD_BUG_ON(cnt - label1 != OFFSET1);
BUILD_BUG_ON(cnt - label2 != OFFSET2);
BUILD_BUG_ON(cnt - label3 != OFFSET3);
*pprog = prog;
}
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
u32 dst_reg, const u32 imm32)
{
u8 *prog = *pprog;
u8 b1, b2, b3;
int cnt = 0;
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
* (which zero-extends imm32) to save 2 bytes.
*/
if (sign_propagate && (s32)imm32 < 0) {
/* 'mov %rax, imm32' sign extends imm32 */
b1 = add_1mod(0x48, dst_reg);
b2 = 0xC7;
b3 = 0xC0;
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
goto done;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
* to save 3 bytes.
*/
if (imm32 == 0) {
if (is_ereg(dst_reg))
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
b2 = 0x31; /* xor */
b3 = 0xC0;
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
goto done;
}
/* mov %eax, imm32 */
if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
done:
*pprog = prog;
}
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
const u32 imm32_hi, const u32 imm32_lo)
{
u8 *prog = *pprog;
int cnt = 0;
if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* For emitting plain u32, where sign bit must not be
* propagated LLVM tends to load imm64 over mov32
* directly, so save couple of bytes by just doing
* 'mov %eax, imm32' instead.
*/
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
} else {
/* movabsq %rax, imm64 */
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
EMIT(imm32_lo, 4);
EMIT(imm32_hi, 4);
}
*pprog = prog;
}
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
{
u8 *prog = *pprog;
int cnt = 0;
if (is64) {
/* mov dst, src */
EMIT_mov(dst_reg, src_reg);
} else {
/* mov32 dst, src */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
}
*pprog = prog;
}
/* LDX: dst_reg = *(u8*)(src_reg + off) */
static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
u8 *prog = *pprog;
int cnt = 0;
switch (size) {
case BPF_B:
/* Emit 'movzx rax, byte ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
break;
case BPF_H:
/* Emit 'movzx rax, word ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
break;
case BPF_W:
/* Emit 'mov eax, dword ptr [rax+0x14]' */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
else
EMIT1(0x8B);
break;
case BPF_DW:
/* Emit 'mov rax, qword ptr [rax+0x14]' */
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
break;
}
/*
* If insn->off == 0 we can save one extra byte, but
* special case of x86 R13 which always needs an offset
* is not worth the hassle
*/
if (is_imm8(off))
EMIT2(add_2reg(0x40, src_reg, dst_reg), off);
else
EMIT1_off32(add_2reg(0x80, src_reg, dst_reg), off);
*pprog = prog;
}
/* STX: *(u8*)(dst_reg + off) = src_reg */
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
u8 *prog = *pprog;
int cnt = 0;
switch (size) {
case BPF_B:
/* Emit 'mov byte ptr [rax + off], al' */
if (is_ereg(dst_reg) || is_ereg(src_reg) ||
/* We have to add extra byte for x86 SIL, DIL regs */
src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
else
EMIT1(0x88);
break;
case BPF_H:
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
else
EMIT2(0x66, 0x89);
break;
case BPF_W:
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
else
EMIT1(0x89);
break;
case BPF_DW:
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
break;
}
if (is_imm8(off))
EMIT2(add_2reg(0x40, dst_reg, src_reg), off);
else
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg), off);
*pprog = prog;
}
static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode)
{
u8 *prog = *pprog;
int cnt = 0;
s64 offset;
offset = func - (ip + X86_PATCH_SIZE);
if (!is_simm32(offset)) {
pr_err("Target call %p is out of range\n", func);
return -EINVAL;
}
EMIT1_off32(opcode, offset);
*pprog = prog;
return 0;
}
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
static int emit_call(u8 **pprog, void *func, void *ip)
{
return emit_patch(pprog, func, ip, 0xE8);
}
static int emit_jump(u8 **pprog, void *func, void *ip)
{
return emit_patch(pprog, func, ip, 0xE9);
}
int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
void *old_addr, void *new_addr)
{
int (*emit_patch_fn)(u8 **pprog, void *func, void *ip);
u8 old_insn[X86_PATCH_SIZE] = {};
u8 new_insn[X86_PATCH_SIZE] = {};
u8 *prog;
int ret;
bpf: Support attaching tracing BPF program to other BPF programs Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type including their subprograms. This feature allows snooping on input and output packets in XDP, TC programs including their return values. In order to do that the verifier needs to track types not only of vmlinux, but types of other BPF programs as well. The verifier also needs to translate uapi/linux/bpf.h types used by networking programs into kernel internal BTF types used by FENTRY/FEXIT BPF programs. In some cases LLVM optimizations can remove arguments from BPF subprograms without adjusting BTF info that LLVM backend knows. When BTF info disagrees with actual types that the verifiers sees the BPF trampoline has to fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT program can still attach to such subprograms, but it won't be able to recognize pointer types like 'struct sk_buff *' and it won't be able to pass them to bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program would need to use bpf_probe_read_kernel() instead. The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd points to previously loaded BPF program the attach_btf_id is BTF type id of main function or one of its subprograms. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-15 02:57:17 +08:00
if (!is_kernel_text((long)ip) &&
!is_bpf_text_address((long)ip))
/* BPF poking in modules is not supported */
return -EINVAL;
switch (t) {
case BPF_MOD_NOP_TO_CALL ... BPF_MOD_CALL_TO_NOP:
emit_patch_fn = emit_call;
break;
case BPF_MOD_NOP_TO_JUMP ... BPF_MOD_JUMP_TO_NOP:
emit_patch_fn = emit_jump;
break;
default:
return -ENOTSUPP;
}
if (old_addr) {
prog = old_insn;
ret = emit_patch_fn(&prog, old_addr, (void *)ip);
if (ret)
return ret;
}
if (new_addr) {
prog = new_insn;
ret = emit_patch_fn(&prog, new_addr, (void *)ip);
if (ret)
return ret;
}
ret = -EBUSY;
mutex_lock(&text_mutex);
switch (t) {
case BPF_MOD_NOP_TO_CALL:
case BPF_MOD_NOP_TO_JUMP:
if (memcmp(ip, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE))
goto out;
text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
break;
case BPF_MOD_CALL_TO_CALL:
case BPF_MOD_JUMP_TO_JUMP:
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
goto out;
text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL);
break;
case BPF_MOD_CALL_TO_NOP:
case BPF_MOD_JUMP_TO_NOP:
if (memcmp(ip, old_insn, X86_PATCH_SIZE))
goto out;
text_poke_bp(ip, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE,
NULL);
break;
}
ret = 0;
out:
mutex_unlock(&text_mutex);
return ret;
}
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
static bool ex_handler_bpf(const struct exception_table_entry *x,
struct pt_regs *regs, int trapnr,
unsigned long error_code, unsigned long fault_addr)
{
u32 reg = x->fixup >> 8;
/* jump over faulting load and clear dest register */
*(unsigned long *)((void *)regs + reg) = 0;
regs->ip += x->fixup & 0xff;
return true;
}
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
int oldproglen, struct jit_context *ctx)
{
struct bpf_insn *insn = bpf_prog->insnsi;
int insn_cnt = bpf_prog->len;
bool seen_exit = false;
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
int i, cnt = 0, excnt = 0;
int proglen = 0;
u8 *prog = temp;
emit_prologue(&prog, bpf_prog->aux->stack_depth,
bpf_prog_was_classic(bpf_prog));
addrs[0] = prog - temp;
for (i = 1; i <= insn_cnt; i++, insn++) {
const s32 imm32 = insn->imm;
u32 dst_reg = insn->dst_reg;
u32 src_reg = insn->src_reg;
u8 b2 = 0, b3 = 0;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
s64 jmp_offset;
u8 jmp_cond;
int ilen;
u8 *func;
switch (insn->code) {
/* ALU */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
switch (BPF_OP(insn->code)) {
case BPF_ADD: b2 = 0x01; break;
case BPF_SUB: b2 = 0x29; break;
case BPF_AND: b2 = 0x21; break;
case BPF_OR: b2 = 0x09; break;
case BPF_XOR: b2 = 0x31; break;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ALU64 | BPF_MOV | BPF_X:
case BPF_ALU | BPF_MOV | BPF_X:
emit_mov_reg(&prog,
BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, src_reg);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
/* neg dst */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* b3 holds 'normal' opcode, b2 short form only valid
* in case dst is eax/rax.
*/
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
switch (BPF_OP(insn->code)) {
case BPF_ADD:
b3 = 0xC0;
b2 = 0x05;
break;
case BPF_SUB:
b3 = 0xE8;
b2 = 0x2D;
break;
case BPF_AND:
b3 = 0xE0;
b2 = 0x25;
break;
case BPF_OR:
b3 = 0xC8;
b2 = 0x0D;
break;
case BPF_XOR:
b3 = 0xF0;
b2 = 0x35;
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
}
if (is_imm8(imm32))
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
else if (is_axreg(dst_reg))
EMIT1_off32(b2, imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case BPF_ALU64 | BPF_MOV | BPF_K:
case BPF_ALU | BPF_MOV | BPF_K:
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
net: filter: add "load 64-bit immediate" eBPF instruction add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register. All previous instructions were 8-byte. This is first 16-byte instruction. Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction: insn[0].code = BPF_LD | BPF_DW | BPF_IMM insn[0].dst_reg = destination register insn[0].imm = lower 32-bit insn[1].code = 0 insn[1].imm = upper 32-bit All unused fields must be zero. Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads 32-bit immediate value into a register. x64 JITs it as single 'movabsq %rax, imm64' arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn Note that old eBPF programs are binary compatible with new interpreter. It helps eBPF programs load 64-bit constant into a register with one instruction instead of using two registers and 4 instructions: BPF_MOV32_IMM(R1, imm32) BPF_ALU64_IMM(BPF_LSH, R1, 32) BPF_MOV32_IMM(R2, imm32) BPF_ALU64_REG(BPF_OR, R1, R2) User space generated programs will use this instruction to load constants only. To tell kernel that user space needs a pointer the _pseudo_ variant of this instruction may be added later, which will use extra bits of encoding to indicate what type of pointer user space is asking kernel to provide. For example 'off' or 'src_reg' fields can be used for such purpose. src_reg = 1 could mean that user space is asking kernel to validate and load in-kernel map pointer. src_reg = 2 could mean that user space needs readonly data section pointer src_reg = 3 could mean that user space needs a pointer to per-cpu local data All such future pseudo instructions will not be carrying the actual pointer as part of the instruction, but rather will be treated as a request to kernel to provide one. The kernel will verify the request_for_a_pointer, then will drop _pseudo_ marking and will store actual internal pointer inside the instruction, so the end result is the interpreter and JITs never see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that loads 64-bit immediate into a register. User space never operates on direct pointers and verifier can easily recognize request_for_pointer vs other instructions. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-05 13:17:17 +08:00
case BPF_LD | BPF_IMM | BPF_DW:
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
net: filter: add "load 64-bit immediate" eBPF instruction add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register. All previous instructions were 8-byte. This is first 16-byte instruction. Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction: insn[0].code = BPF_LD | BPF_DW | BPF_IMM insn[0].dst_reg = destination register insn[0].imm = lower 32-bit insn[1].code = 0 insn[1].imm = upper 32-bit All unused fields must be zero. Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads 32-bit immediate value into a register. x64 JITs it as single 'movabsq %rax, imm64' arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn Note that old eBPF programs are binary compatible with new interpreter. It helps eBPF programs load 64-bit constant into a register with one instruction instead of using two registers and 4 instructions: BPF_MOV32_IMM(R1, imm32) BPF_ALU64_IMM(BPF_LSH, R1, 32) BPF_MOV32_IMM(R2, imm32) BPF_ALU64_REG(BPF_OR, R1, R2) User space generated programs will use this instruction to load constants only. To tell kernel that user space needs a pointer the _pseudo_ variant of this instruction may be added later, which will use extra bits of encoding to indicate what type of pointer user space is asking kernel to provide. For example 'off' or 'src_reg' fields can be used for such purpose. src_reg = 1 could mean that user space is asking kernel to validate and load in-kernel map pointer. src_reg = 2 could mean that user space needs readonly data section pointer src_reg = 3 could mean that user space needs a pointer to per-cpu local data All such future pseudo instructions will not be carrying the actual pointer as part of the instruction, but rather will be treated as a request to kernel to provide one. The kernel will verify the request_for_a_pointer, then will drop _pseudo_ marking and will store actual internal pointer inside the instruction, so the end result is the interpreter and JITs never see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that loads 64-bit immediate into a register. User space never operates on direct pointers and verifier can easily recognize request_for_pointer vs other instructions. Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-05 13:17:17 +08:00
insn++;
i++;
break;
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
EMIT1(0x50); /* push rax */
EMIT1(0x52); /* push rdx */
if (BPF_SRC(insn->code) == BPF_X)
/* mov r11, src_reg */
EMIT_mov(AUX_REG, src_reg);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
/* mov r11, imm32 */
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
/* mov rax, dst_reg */
EMIT_mov(BPF_REG_0, dst_reg);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* xor edx, edx
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
* equivalent to 'xor rdx, rdx', but one byte less
*/
EMIT2(0x31, 0xd2);
if (BPF_CLASS(insn->code) == BPF_ALU64)
/* div r11 */
EMIT3(0x49, 0xF7, 0xF3);
else
/* div r11d */
EMIT3(0x41, 0xF7, 0xF3);
if (BPF_OP(insn->code) == BPF_MOD)
/* mov r11, rdx */
EMIT3(0x49, 0x89, 0xD3);
else
/* mov r11, rax */
EMIT3(0x49, 0x89, 0xC3);
EMIT1(0x5A); /* pop rdx */
EMIT1(0x58); /* pop rax */
/* mov dst_reg, r11 */
EMIT_mov(dst_reg, AUX_REG);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_X:
{
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
if (dst_reg != BPF_REG_0)
EMIT1(0x50); /* push rax */
if (dst_reg != BPF_REG_3)
EMIT1(0x52); /* push rdx */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
/* mov r11, dst_reg */
EMIT_mov(AUX_REG, dst_reg);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
if (BPF_SRC(insn->code) == BPF_X)
emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
if (is64)
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT1(add_1mod(0x48, AUX_REG));
else if (is_ereg(AUX_REG))
EMIT1(add_1mod(0x40, AUX_REG));
/* mul(q) r11 */
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
if (dst_reg != BPF_REG_3)
EMIT1(0x5A); /* pop rdx */
if (dst_reg != BPF_REG_0) {
/* mov dst_reg, rax */
EMIT_mov(dst_reg, BPF_REG_0);
EMIT1(0x58); /* pop rax */
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Shifts */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
switch (BPF_OP(insn->code)) {
case BPF_LSH: b3 = 0xE0; break;
case BPF_RSH: b3 = 0xE8; break;
case BPF_ARSH: b3 = 0xF8; break;
}
if (imm32 == 1)
EMIT2(0xD1, add_1reg(b3, dst_reg));
else
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Check for bad case when dst_reg == rcx */
if (dst_reg == BPF_REG_4) {
/* mov r11, dst_reg */
EMIT_mov(AUX_REG, dst_reg);
dst_reg = AUX_REG;
}
if (src_reg != BPF_REG_4) { /* common case */
EMIT1(0x51); /* push rcx */
/* mov rcx, src_reg */
EMIT_mov(BPF_REG_4, src_reg);
}
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
switch (BPF_OP(insn->code)) {
case BPF_LSH: b3 = 0xE0; break;
case BPF_RSH: b3 = 0xE8; break;
case BPF_ARSH: b3 = 0xF8; break;
}
EMIT2(0xD3, add_1reg(b3, dst_reg));
if (src_reg != BPF_REG_4)
EMIT1(0x59); /* pop rcx */
if (insn->dst_reg == BPF_REG_4)
/* mov dst_reg, r11 */
EMIT_mov(insn->dst_reg, AUX_REG);
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (imm32) {
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case 16:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT1(0x66);
if (is_ereg(dst_reg))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT1(0x41);
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'movzwl eax, ax' */
if (is_ereg(dst_reg))
EMIT3(0x45, 0x0F, 0xB7);
else
EMIT2(0x0F, 0xB7);
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case 32:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'bswap eax' to swap lower 4 bytes */
if (is_ereg(dst_reg))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT2(0x41, 0x0F);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
else
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT1(0x0F);
EMIT1(add_1reg(0xC8, dst_reg));
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case 64:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'bswap rax' to swap 8 bytes */
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
add_1reg(0xC8, dst_reg));
break;
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
case BPF_ALU | BPF_END | BPF_FROM_LE:
switch (imm32) {
case 16:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Emit 'movzwl eax, ax' to zero extend 16-bit
* into 64 bit
*/
if (is_ereg(dst_reg))
EMIT3(0x45, 0x0F, 0xB7);
else
EMIT2(0x0F, 0xB7);
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
break;
case 32:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'mov eax, eax' to clear upper 32-bits */
if (is_ereg(dst_reg))
EMIT1(0x45);
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
break;
case 64:
/* nop */
break;
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
/* ST: *(u8*)(dst_reg + off) = imm */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_ST | BPF_MEM | BPF_B:
if (is_ereg(dst_reg))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT2(0x41, 0xC6);
else
EMIT1(0xC6);
goto st;
case BPF_ST | BPF_MEM | BPF_H:
if (is_ereg(dst_reg))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT3(0x66, 0x41, 0xC7);
else
EMIT2(0x66, 0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_W:
if (is_ereg(dst_reg))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT2(0x41, 0xC7);
else
EMIT1(0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_DW:
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
st: if (is_imm8(insn->off))
EMIT2(add_1reg(0x40, dst_reg), insn->off);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
/* STX: *(u8*)(dst_reg + off) = src_reg */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_STX | BPF_MEM | BPF_B:
case BPF_STX | BPF_MEM | BPF_H:
case BPF_STX | BPF_MEM | BPF_W:
case BPF_STX | BPF_MEM | BPF_DW:
emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
/* LDX: dst_reg = *(u8*)(src_reg + off) */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_LDX | BPF_MEM | BPF_B:
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_LDX | BPF_MEM | BPF_H:
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_LDX | BPF_MEM | BPF_W:
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_LDX | BPF_MEM | BPF_DW:
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off);
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
struct exception_table_entry *ex;
u8 *_insn = image + proglen;
s64 delta;
if (!bpf_prog->aux->extable)
break;
if (excnt >= bpf_prog->aux->num_exentries) {
pr_err("ex gen bug\n");
return -EFAULT;
}
ex = &bpf_prog->aux->extable[excnt++];
delta = _insn - (u8 *)&ex->insn;
if (!is_simm32(delta)) {
pr_err("extable->insn doesn't fit into 32-bit\n");
return -EFAULT;
}
ex->insn = delta;
delta = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
if (!is_simm32(delta)) {
pr_err("extable->handler doesn't fit into 32-bit\n");
return -EFAULT;
}
ex->handler = delta;
if (dst_reg > BPF_REG_9) {
pr_err("verifier error\n");
return -EFAULT;
}
/*
* Compute size of x86 insn and its target dest x86 register.
* ex_handler_bpf() will use lower 8 bits to adjust
* pt_regs->ip to jump over this x86 instruction
* and upper bits to figure out which pt_regs to zero out.
* End result: x86 insn "mov rbx, qword ptr [rax+0x14]"
* of 4 bytes will be ignored and rbx will be zero inited.
*/
ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8);
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_STX | BPF_XADD | BPF_W:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Emit 'lock add dword ptr [rax + off], eax' */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
EMIT2(0xF0, 0x01);
goto xadd;
case BPF_STX | BPF_XADD | BPF_DW:
EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
xadd: if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
insn->off);
break;
/* call */
case BPF_JMP | BPF_CALL:
func = (u8 *) __bpf_call_base + imm32;
if (!imm32 || emit_call(&prog, func, image + addrs[i - 1]))
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
return -EINVAL;
break;
case BPF_JMP | BPF_TAIL_CALL:
emit_bpf_tail_call(&prog);
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
/* cond jump */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
/* cmp dst_reg, src_reg */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
/* test dst_reg, src_reg */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
/* test dst_reg, imm32 */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
goto emit_cond_jmp;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
/* test dst_reg, dst_reg to save one extra byte */
if (imm32 == 0) {
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_2mod(0x48, dst_reg, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg));
goto emit_cond_jmp;
}
/* cmp dst_reg, imm8/32 */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
if (is_imm8(imm32))
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
else
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
emit_cond_jmp: /* Convert BPF opcode to x86 */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
switch (BPF_OP(insn->code)) {
case BPF_JEQ:
jmp_cond = X86_JE;
break;
case BPF_JSET:
case BPF_JNE:
jmp_cond = X86_JNE;
break;
case BPF_JGT:
/* GT is unsigned '>', JA in x86 */
jmp_cond = X86_JA;
break;
case BPF_JLT:
/* LT is unsigned '<', JB in x86 */
jmp_cond = X86_JB;
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JGE:
/* GE is unsigned '>=', JAE in x86 */
jmp_cond = X86_JAE;
break;
case BPF_JLE:
/* LE is unsigned '<=', JBE in x86 */
jmp_cond = X86_JBE;
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JSGT:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Signed '>', GT in x86 */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
jmp_cond = X86_JG;
break;
case BPF_JSLT:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Signed '<', LT in x86 */
jmp_cond = X86_JL;
break;
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JSGE:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Signed '>=', GE in x86 */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
jmp_cond = X86_JGE;
break;
case BPF_JSLE:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Signed '<=', LE in x86 */
jmp_cond = X86_JLE;
break;
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
default: /* to silence GCC warning */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
return -EFAULT;
}
jmp_offset = addrs[i + insn->off] - addrs[i];
if (is_imm8(jmp_offset)) {
EMIT2(jmp_cond, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
} else {
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
case BPF_JMP | BPF_JA:
bpf, x64: fix JIT emission for dead code Commit 2a5418a13fcf ("bpf: improve dead code sanitizing") replaced dead code with a series of ja-1 instructions, for safety. That made JIT compilation much more complex for some BPF programs. One instance of such programs is, for example: bool flag = false ... /* A bunch of other code */ ... if (flag) do_something() In some cases llvm is not able to remove at compile time the code for do_something(), so the generated BPF program ends up with a large amount of dead instructions. In one specific real life example, there are two series of ~500 and ~1000 dead instructions in the program. When the verifier replaces them with a series of ja-1 instructions, it causes an interesting behavior at JIT time. During the first pass, since all the instructions are estimated at 64 bytes, the ja-1 instructions end up being translated as 5 bytes JMP instructions (0xE9), since the jump offsets become increasingly large (> 127) as each instruction gets discovered to be 5 bytes instead of the estimated 64. Starting from the second pass, the first N instructions of the ja-1 sequence get translated into 2 bytes JMPs (0xEB) because the jump offsets become <= 127 this time. In particular, N is defined as roughly 127 / (5 - 2) ~= 42. So, each further pass will make the subsequent N JMP instructions shrink from 5 to 2 bytes, making the image shrink every time. This means that in order to have the entire program converge, there need to be, in the real example above, at least ~1000 / 42 ~= 24 passes just for translating the dead code. If we add this number to the passes needed to translate the other non dead code, it brings such program to 40+ passes, and JIT doesn't complete. Ultimately the userspace loader fails because such BPF program was supposed to be part of a prog array owner being JITed. While it is certainly possible to try to refactor such programs to help the compiler remove dead code, the behavior is not really intuitive and it puts further burden on the BPF developer who is not expecting such behavior. To make things worse, such programs are working just fine in all the kernel releases prior to the ja-1 fix. A possible approach to mitigate this behavior consists into noticing that for ja-1 instructions we don't really need to rely on the estimated size of the previous and current instructions, we know that a -1 BPF jump offset can be safely translated into a 0xEB instruction with a jump offset of -2. Such fix brings the BPF program in the previous example to complete again in ~9 passes. Fixes: 2a5418a13fcf ("bpf: improve dead code sanitizing") Signed-off-by: Gianluca Borello <g.borello@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-25 13:42:16 +08:00
if (insn->off == -1)
/* -1 jmp instructions will always jump
* backwards two bytes. Explicitly handling
* this case avoids wasting too many passes
* when there are long sequences of replaced
* dead code.
*/
jmp_offset = -2;
else
jmp_offset = addrs[i + insn->off] - addrs[i];
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
if (!jmp_offset)
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Optimize out nop jumps */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
emit_jmp:
if (is_imm8(jmp_offset)) {
EMIT2(0xEB, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT1_off32(0xE9, jmp_offset);
} else {
pr_err("jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
case BPF_JMP | BPF_EXIT:
if (seen_exit) {
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
jmp_offset = ctx->cleanup_addr - addrs[i];
goto emit_jmp;
}
seen_exit = true;
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/* Update cleanup_addr */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
ctx->cleanup_addr = proglen;
if (!bpf_prog_was_classic(bpf_prog))
EMIT1(0x5B); /* get rid of tail_call_cnt */
EMIT2(0x41, 0x5F); /* pop r15 */
EMIT2(0x41, 0x5E); /* pop r14 */
EMIT2(0x41, 0x5D); /* pop r13 */
EMIT1(0x5B); /* pop rbx */
EMIT1(0xC9); /* leave */
EMIT1(0xC3); /* ret */
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
break;
default:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* By design x86-64 JIT should support all BPF instructions.
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
* This error will be seen if new instruction was added
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
* to the interpreter, but not to the JIT, or if there is
* junk in bpf_prog.
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
*/
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
return -EINVAL;
}
net: filter: x86: internal BPF JIT Maps all internal BPF instructions into x86_64 instructions. This patch replaces original BPF x64 JIT with internal BPF x64 JIT. sysctl net.core.bpf_jit_enable is reused as on/off switch. Performance: 1. old BPF JIT and internal BPF JIT generate equivalent x86_64 code. No performance difference is observed for filters that were JIT-able before Example assembler code for BPF filter "tcpdump port 22" original BPF -> old JIT: original BPF -> internal BPF -> new JIT: 0: push %rbp 0: push %rbp 1: mov %rsp,%rbp 1: mov %rsp,%rbp 4: sub $0x60,%rsp 4: sub $0x228,%rsp 8: mov %rbx,-0x8(%rbp) b: mov %rbx,-0x228(%rbp) // prologue 12: mov %r13,-0x220(%rbp) 19: mov %r14,-0x218(%rbp) 20: mov %r15,-0x210(%rbp) 27: xor %eax,%eax // clear A c: xor %ebx,%ebx 29: xor %r13,%r13 // clear X e: mov 0x68(%rdi),%r9d 2c: mov 0x68(%rdi),%r9d 12: sub 0x6c(%rdi),%r9d 30: sub 0x6c(%rdi),%r9d 16: mov 0xd8(%rdi),%r8 34: mov 0xd8(%rdi),%r10 3b: mov %rdi,%rbx 1d: mov $0xc,%esi 3e: mov $0xc,%esi 22: callq 0xffffffffe1021e15 43: callq 0xffffffffe102bd75 27: cmp $0x86dd,%eax 48: cmp $0x86dd,%rax 2c: jne 0x0000000000000069 4f: jne 0x000000000000009a 2e: mov $0x14,%esi 51: mov $0x14,%esi 33: callq 0xffffffffe1021e31 56: callq 0xffffffffe102bd91 38: cmp $0x84,%eax 5b: cmp $0x84,%rax 3d: je 0x0000000000000049 62: je 0x0000000000000074 3f: cmp $0x6,%eax 64: cmp $0x6,%rax 42: je 0x0000000000000049 68: je 0x0000000000000074 44: cmp $0x11,%eax 6a: cmp $0x11,%rax 47: jne 0x00000000000000c6 6e: jne 0x0000000000000117 49: mov $0x36,%esi 74: mov $0x36,%esi 4e: callq 0xffffffffe1021e15 79: callq 0xffffffffe102bd75 53: cmp $0x16,%eax 7e: cmp $0x16,%rax 56: je 0x00000000000000bf 82: je 0x0000000000000110 58: mov $0x38,%esi 88: mov $0x38,%esi 5d: callq 0xffffffffe1021e15 8d: callq 0xffffffffe102bd75 62: cmp $0x16,%eax 92: cmp $0x16,%rax 65: je 0x00000000000000bf 96: je 0x0000000000000110 67: jmp 0x00000000000000c6 98: jmp 0x0000000000000117 69: cmp $0x800,%eax 9a: cmp $0x800,%rax 6e: jne 0x00000000000000c6 a1: jne 0x0000000000000117 70: mov $0x17,%esi a3: mov $0x17,%esi 75: callq 0xffffffffe1021e31 a8: callq 0xffffffffe102bd91 7a: cmp $0x84,%eax ad: cmp $0x84,%rax 7f: je 0x000000000000008b b4: je 0x00000000000000c2 81: cmp $0x6,%eax b6: cmp $0x6,%rax 84: je 0x000000000000008b ba: je 0x00000000000000c2 86: cmp $0x11,%eax bc: cmp $0x11,%rax 89: jne 0x00000000000000c6 c0: jne 0x0000000000000117 8b: mov $0x14,%esi c2: mov $0x14,%esi 90: callq 0xffffffffe1021e15 c7: callq 0xffffffffe102bd75 95: test $0x1fff,%ax cc: test $0x1fff,%rax 99: jne 0x00000000000000c6 d3: jne 0x0000000000000117 d5: mov %rax,%r14 9b: mov $0xe,%esi d8: mov $0xe,%esi a0: callq 0xffffffffe1021e44 dd: callq 0xffffffffe102bd91 // MSH e2: and $0xf,%eax e5: shl $0x2,%eax e8: mov %rax,%r13 eb: mov %r14,%rax ee: mov %r13,%rsi a5: lea 0xe(%rbx),%esi f1: add $0xe,%esi a8: callq 0xffffffffe1021e0d f4: callq 0xffffffffe102bd6d ad: cmp $0x16,%eax f9: cmp $0x16,%rax b0: je 0x00000000000000bf fd: je 0x0000000000000110 ff: mov %r13,%rsi b2: lea 0x10(%rbx),%esi 102: add $0x10,%esi b5: callq 0xffffffffe1021e0d 105: callq 0xffffffffe102bd6d ba: cmp $0x16,%eax 10a: cmp $0x16,%rax bd: jne 0x00000000000000c6 10e: jne 0x0000000000000117 bf: mov $0xffff,%eax 110: mov $0xffff,%eax c4: jmp 0x00000000000000c8 115: jmp 0x000000000000011c c6: xor %eax,%eax 117: mov $0x0,%eax c8: mov -0x8(%rbp),%rbx 11c: mov -0x228(%rbp),%rbx // epilogue cc: leaveq 123: mov -0x220(%rbp),%r13 cd: retq 12a: mov -0x218(%rbp),%r14 131: mov -0x210(%rbp),%r15 138: leaveq 139: retq On fully cached SKBs both JITed functions take 12 nsec to execute. BPF interpreter executes the program in 30 nsec. The difference in generated assembler is due to the following: Old BPF imlements LDX_MSH instruction via sk_load_byte_msh() helper function inside bpf_jit.S. New JIT removes the helper and does it explicitly, so ldx_msh cost is the same for both JITs, but generated code looks longer. New JIT has 4 registers to save, so prologue/epilogue are larger, but the cost is within noise on x64. Old JIT checks whether first insn clears A and if not emits 'xor %eax,%eax'. New JIT clears %rax unconditionally. 2. old BPF JIT doesn't support ANC_NLATTR, ANC_PAY_OFFSET, ANC_RANDOM extensions. New JIT supports all BPF extensions. Performance of such filters improves 2-4 times depending on a filter. The longer the filter the higher performance gain. Synthetic benchmarks with many ancillary loads see 20x speedup which seems to be the maximum gain from JIT Notes: . net.core.bpf_jit_enable=2 + tools/net/bpf_jit_disasm is still functional and can be used to see generated assembler . there are two jit_compile() functions and code flow for classic filters is: sk_attach_filter() - load classic BPF bpf_jit_compile() - try to JIT from classic BPF sk_convert_filter() - convert classic to internal bpf_int_jit_compile() - JIT from internal BPF seccomp and tracing filters will just call bpf_int_jit_compile() Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-05-14 10:50:46 +08:00
ilen = prog - temp;
if (ilen > BPF_MAX_INSN_SIZE) {
pr_err("bpf_jit: fatal insn size error\n");
return -EFAULT;
}
if (image) {
if (unlikely(proglen + ilen > oldproglen)) {
pr_err("bpf_jit: fatal error\n");
return -EFAULT;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
memcpy(image + proglen, temp, ilen);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
proglen += ilen;
addrs[i] = proglen;
prog = temp;
}
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
if (image && excnt != bpf_prog->aux->num_exentries) {
pr_err("extable is not populated\n");
return -EFAULT;
}
return proglen;
}
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
static void save_regs(struct btf_func_model *m, u8 **prog, int nr_args,
int stack_size)
{
int i;
/* Store function arguments to stack.
* For a function that accepts two pointers the sequence will be:
* mov QWORD PTR [rbp-0x10],rdi
* mov QWORD PTR [rbp-0x8],rsi
*/
for (i = 0; i < min(nr_args, 6); i++)
emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
BPF_REG_FP,
i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
-(stack_size - i * 8));
}
static void restore_regs(struct btf_func_model *m, u8 **prog, int nr_args,
int stack_size)
{
int i;
/* Restore function arguments from stack.
* For a function that accepts two pointers the sequence will be:
* EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
* EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
*/
for (i = 0; i < min(nr_args, 6); i++)
emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
BPF_REG_FP,
-(stack_size - i * 8));
}
static int invoke_bpf(struct btf_func_model *m, u8 **pprog,
struct bpf_prog **progs, int prog_cnt, int stack_size)
{
u8 *prog = *pprog;
int cnt = 0, i;
for (i = 0; i < prog_cnt; i++) {
if (emit_call(&prog, __bpf_prog_enter, prog))
return -EINVAL;
/* remember prog start time returned by __bpf_prog_enter */
emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
/* arg1: lea rdi, [rbp - stack_size] */
EMIT4(0x48, 0x8D, 0x7D, -stack_size);
/* arg2: progs[i]->insnsi for interpreter */
if (!progs[i]->jited)
emit_mov_imm64(&prog, BPF_REG_2,
(long) progs[i]->insnsi >> 32,
(u32) (long) progs[i]->insnsi);
/* call JITed bpf program or interpreter */
if (emit_call(&prog, progs[i]->bpf_func, prog))
return -EINVAL;
/* arg1: mov rdi, progs[i] */
emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
(u32) (long) progs[i]);
/* arg2: mov rsi, rbx <- start time in nsec */
emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
if (emit_call(&prog, __bpf_prog_exit, prog))
return -EINVAL;
}
*pprog = prog;
return 0;
}
/* Example:
* __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
* its 'struct btf_func_model' will be nr_args=2
* The assembly code when eth_type_trans is executing after trampoline:
*
* push rbp
* mov rbp, rsp
* sub rsp, 16 // space for skb and dev
* push rbx // temp regs to pass start time
* mov qword ptr [rbp - 16], rdi // save skb pointer to stack
* mov qword ptr [rbp - 8], rsi // save dev pointer to stack
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
* mov rbx, rax // remember start time in bpf stats are enabled
* lea rdi, [rbp - 16] // R1==ctx of bpf prog
* call addr_of_jited_FENTRY_prog
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
* mov rsi, rbx // prog start time
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
* mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
* mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
* pop rbx
* leave
* ret
*
* eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
* replaced with 'call generated_bpf_trampoline'. When it returns
* eth_type_trans will continue executing with original skb and dev pointers.
*
* The assembly code when eth_type_trans is called from trampoline:
*
* push rbp
* mov rbp, rsp
* sub rsp, 24 // space for skb, dev, return value
* push rbx // temp regs to pass start time
* mov qword ptr [rbp - 24], rdi // save skb pointer to stack
* mov qword ptr [rbp - 16], rsi // save dev pointer to stack
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
* mov rbx, rax // remember start time if bpf stats are enabled
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
* call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
* mov rsi, rbx // prog start time
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
* mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
* mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
* call eth_type_trans+5 // execute body of eth_type_trans
* mov qword ptr [rbp - 8], rax // save return value
* call __bpf_prog_enter // rcu_read_lock and preempt_disable
* mov rbx, rax // remember start time in bpf stats are enabled
* lea rdi, [rbp - 24] // R1==ctx of bpf prog
* call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
* movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
* mov rsi, rbx // prog start time
* call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
* mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
* pop rbx
* leave
* add rsp, 8 // skip eth_type_trans's frame
* ret // return to its caller
*/
int arch_prepare_bpf_trampoline(void *image, struct btf_func_model *m, u32 flags,
struct bpf_prog **fentry_progs, int fentry_cnt,
struct bpf_prog **fexit_progs, int fexit_cnt,
void *orig_call)
{
int cnt = 0, nr_args = m->nr_args;
int stack_size = nr_args * 8;
u8 *prog;
/* x86-64 supports up to 6 arguments. 7+ can be added in the future */
if (nr_args > 6)
return -ENOTSUPP;
if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
(flags & BPF_TRAMP_F_SKIP_FRAME))
return -EINVAL;
if (flags & BPF_TRAMP_F_CALL_ORIG)
stack_size += 8; /* room for return value of orig_call */
if (flags & BPF_TRAMP_F_SKIP_FRAME)
/* skip patched call instruction and point orig_call to actual
* body of the kernel function.
*/
orig_call += X86_PATCH_SIZE;
bpf: Introduce BPF trampoline Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 02:57:04 +08:00
prog = image;
EMIT1(0x55); /* push rbp */
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
EMIT1(0x53); /* push rbx */
save_regs(m, &prog, nr_args, stack_size);
if (fentry_cnt)
if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
return -EINVAL;
if (flags & BPF_TRAMP_F_CALL_ORIG) {
if (fentry_cnt)
restore_regs(m, &prog, nr_args, stack_size);
/* call original function */
if (emit_call(&prog, orig_call, prog))
return -EINVAL;
/* remember return value in a stack for bpf prog to access */
emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
}
if (fexit_cnt)
if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
return -EINVAL;
if (flags & BPF_TRAMP_F_RESTORE_REGS)
restore_regs(m, &prog, nr_args, stack_size);
if (flags & BPF_TRAMP_F_CALL_ORIG)
/* restore original return value back into RAX */
emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
EMIT1(0x5B); /* pop rbx */
EMIT1(0xC9); /* leave */
if (flags & BPF_TRAMP_F_SKIP_FRAME)
/* skip our return address and return to parent */
EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
EMIT1(0xC3); /* ret */
/* One half of the page has active running trampoline.
* Another half is an area for next trampoline.
* Make sure the trampoline generation logic doesn't overflow.
*/
if (WARN_ON_ONCE(prog - (u8 *)image > PAGE_SIZE / 2 - BPF_INSN_SAFETY))
return -EFAULT;
return 0;
}
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
struct x64_jit_data {
struct bpf_binary_header *header;
int *addrs;
u8 *image;
int proglen;
struct jit_context ctx;
};
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_binary_header *header = NULL;
struct bpf_prog *tmp, *orig_prog = prog;
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
struct x64_jit_data *jit_data;
int proglen, oldproglen = 0;
struct jit_context ctx = {};
bool tmp_blinded = false;
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
bool extra_pass = false;
u8 *image = NULL;
int *addrs;
int pass;
int i;
if (!prog->jit_requested)
return orig_prog;
tmp = bpf_jit_blind_constants(prog);
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* If blinding was requested and we failed during blinding,
* we must fall back to the interpreter.
*/
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
jit_data = prog->aux->jit_data;
if (!jit_data) {
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
if (!jit_data) {
prog = orig_prog;
goto out;
}
prog->aux->jit_data = jit_data;
}
addrs = jit_data->addrs;
if (addrs) {
ctx = jit_data->ctx;
oldproglen = jit_data->proglen;
image = jit_data->image;
header = jit_data->header;
extra_pass = true;
goto skip_init_addrs;
}
addrs = kmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL);
if (!addrs) {
prog = orig_prog;
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
goto out_addrs;
}
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* Before first pass, make a rough estimation of addrs[]
* each BPF instruction is translated to less than 64 bytes
*/
for (proglen = 0, i = 0; i <= prog->len; i++) {
proglen += 64;
addrs[i] = proglen;
}
ctx.cleanup_addr = proglen;
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
skip_init_addrs:
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
/*
* JITed image shrinks with every pass and the loop iterates
* until the image stops shrinking. Very large BPF programs
* may converge on the last pass. In such case do one more
x86/bpf: Clean up non-standard comments, to make the code more readable So by chance I looked into x86 assembly in arch/x86/net/bpf_jit_comp.c and noticed the weird and inconsistent comment style it mistakenly learned from the networking code: /* Multi-line comment ... * ... looks like this. */ Fix this to use the standard comment style specified in Documentation/CodingStyle and used in arch/x86/ as well: /* * Multi-line comment ... * ... looks like this. */ Also, to quote Linus's ... more explicit views about this: http://article.gmane.org/gmane.linux.kernel.cryptoapi/21066 > But no, the networking code picked *none* of the above sane formats. > Instead, it picked these two models that are just half-arsed > shit-for-brains: > > (no) > /* This is disgusting drug-induced > * crap, and should die > */ > > (no-no-no) > /* This is also very nasty > * and visually unbalanced */ > > Please. The networking code actually has the *worst* possible comment > style. You can literally find that (no-no-no) style, which is just > really horribly disgusting and worse than the otherwise fairly similar > (d) in pretty much every way. Also improve the comments and some other details while at it: - Don't mix same-line and previous-line comment style on otherwise identical code patterns within the same function, - capitalize 'BPF' and x86 register names consistently, - capitalize sentences consistently, - instead of 'x64' use 'x86-64': x64 is a Microsoft specific term, - use more consistent punctuation, - use standard coding style in macros as well, - fix typos and a few other minor details. Consistent coding style is not optional, at least in arch/x86/. No change in functionality. ( In case this commit causes conflicts with pending development code I'll be glad to help resolve any conflicts! ) Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Alexei Starovoitov <ast@fb.com> Cc: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-27 17:54:40 +08:00
* pass to emit the final image.
*/
for (pass = 0; pass < 20 || image; pass++) {
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
if (proglen <= 0) {
out_image:
image = NULL;
if (header)
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_addrs;
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
if (image) {
if (proglen != oldproglen) {
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
proglen, oldproglen);
goto out_image;
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
break;
}
if (proglen == oldproglen) {
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
/*
* The number of entries in extable is the number of BPF_LDX
* insns that access kernel memory via "pointer to BTF type".
* The verifier changed their opcode from LDX|MEM|size
* to LDX|PROBE_MEM|size to make JITing easier.
*/
u32 align = __alignof__(struct exception_table_entry);
u32 extable_size = prog->aux->num_exentries *
sizeof(struct exception_table_entry);
/* allocate module memory for x86 insns and extable */
header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size,
&image, align, jit_fill_hole);
if (!header) {
prog = orig_prog;
goto out_addrs;
}
bpf: Add support for BTF pointers to x86 JIT Pointer to BTF object is a pointer to kernel object or NULL. Such pointers can only be used by BPF_LDX instructions. The verifier changed their opcode from LDX|MEM|size to LDX|PROBE_MEM|size to make JITing easier. The number of entries in extable is the number of BPF_LDX insns that access kernel memory via "pointer to BTF type". Only these load instructions can fault. Since x86 extable is relative it has to be allocated in the same memory region as JITed code. Allocate it prior to last pass of JITing and let the last pass populate it. Pointer to extable in bpf_prog_aux is necessary to make page fault handling fast. Page fault handling is done in two steps: 1. bpf_prog_kallsyms_find() finds BPF program that page faulted. It's done by walking rb tree. 2. then extable for given bpf program is binary searched. This process is similar to how page faulting is done for kernel modules. The exception handler skips over faulting x86 instruction and initializes destination register with zero. This mimics exact behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed). JITs for other architectures can add support in similar way. Until then they will reject unknown opcode and fallback to interpreter. Since extable should be aligned and placed near JITed code make bpf_jit_binary_alloc() return 4 byte aligned image offset, so that extable aligning formula in bpf_int_jit_compile() doesn't need to rely on internal implementation of bpf_jit_binary_alloc(). On x86 gcc defaults to 16-byte alignment for regular kernel functions due to better performance. JITed code may be aligned to 16 in the future, but it will use 4 in the meantime. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-16 11:25:03 +08:00
prog->aux->extable = (void *) image + roundup(proglen, align);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
oldproglen = proglen;
cond_resched();
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, proglen, pass + 1, image);
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
if (image) {
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
if (!prog->is_func || extra_pass) {
bpf_jit_binary_lock_ro(header);
} else {
jit_data->addrs = addrs;
jit_data->ctx = ctx;
jit_data->proglen = proglen;
jit_data->image = image;
jit_data->header = header;
}
prog->bpf_func = (void *)image;
prog->jited = 1;
prog->jited_len = proglen;
} else {
prog = orig_prog;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}
if (!image || !prog->is_func || extra_pass) {
bpf: Add bpf_line_info support This patch adds bpf_line_info support. It accepts an array of bpf_line_info objects during BPF_PROG_LOAD. The "line_info", "line_info_cnt" and "line_info_rec_size" are added to the "union bpf_attr". The "line_info_rec_size" makes bpf_line_info extensible in the future. The new "check_btf_line()" ensures the userspace line_info is valid for the kernel to use. When the verifier is translating/patching the bpf_prog (through "bpf_patch_insn_single()"), the line_infos' insn_off is also adjusted by the newly added "bpf_adj_linfo()". If the bpf_prog is jited, this patch also provides the jited addrs (in aux->jited_linfo) for the corresponding line_info.insn_off. "bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo. It is currently called by the x86 jit. Other jits can also use "bpf_prog_fill_jited_linfo()" and it will be done in the followup patches. In the future, if it deemed necessary, a particular jit could also provide its own "bpf_prog_fill_jited_linfo()" implementation. A few "*line_info*" fields are added to the bpf_prog_info such that the user can get the xlated line_info back (i.e. the line_info with its insn_off reflecting the translated prog). The jited_line_info is available if the prog is jited. It is an array of __u64. If the prog is not jited, jited_line_info_cnt is 0. The verifier's verbose log with line_info will be done in a follow up patch. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-08 08:42:25 +08:00
if (image)
bpf_prog_fill_jited_linfo(prog, addrs + 1);
out_addrs:
bpf: x64: add JIT support for multi-function programs Typical JIT does several passes over bpf instructions to compute total size and relative offsets of jumps and calls. With multitple bpf functions calling each other all relative calls will have invalid offsets intially therefore we need to additional last pass over the program to emit calls with correct offsets. For example in case of three bpf functions: main: call foo call bpf_map_lookup exit foo: call bar exit bar: exit We will call bpf_int_jit_compile() indepedently for main(), foo() and bar() x64 JIT typically does 4-5 passes to converge. After these initial passes the image for these 3 functions will be good except call targets, since start addresses of foo() and bar() are unknown when we were JITing main() (note that call bpf_map_lookup will be resolved properly during initial passes). Once start addresses of 3 functions are known we patch call_insn->imm to point to right functions and call bpf_int_jit_compile() again which needs only one pass. Additional safety checks are done to make sure this last pass doesn't produce image that is larger or smaller than previous pass. When constant blinding is on it's applied to all functions at the first pass, since doing it once again at the last pass can change size of the JITed code. Tested on x64 and arm64 hw with JIT on/off, blinding on/off. x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter. All other JITs that support normal BPF_CALL will behave the same way since bpf-to-bpf call is equivalent to bpf-to-kernel call from JITs point of view. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-15 09:55:15 +08:00
kfree(addrs);
kfree(jit_data);
prog->aux->jit_data = NULL;
}
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
net: filter: Just In Time compiler for x86-64 In order to speedup packet filtering, here is an implementation of a JIT compiler for x86_64 It is disabled by default, and must be enabled by the admin. echo 1 >/proc/sys/net/core/bpf_jit_enable It uses module_alloc() and module_free() to get memory in the 2GB text kernel range since we call helpers functions from the generated code. EAX : BPF A accumulator EBX : BPF X accumulator RDI : pointer to skb (first argument given to JIT function) RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) r9d : skb->len - skb->data_len (headlen) r8 : skb->data To get a trace of generated code, use : echo 2 >/proc/sys/net/core/bpf_jit_enable Example of generated code : # tcpdump -p -n -s 0 -i eth1 host 192.168.20.0/24 flen=18 proglen=147 pass=3 image=ffffffffa00b5000 JIT code: ffffffffa00b5000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 60 JIT code: ffffffffa00b5010: 44 2b 4f 64 4c 8b 87 b8 00 00 00 be 0c 00 00 00 JIT code: ffffffffa00b5020: e8 24 7b f7 e0 3d 00 08 00 00 75 28 be 1a 00 00 JIT code: ffffffffa00b5030: 00 e8 fe 7a f7 e0 24 00 3d 00 14 a8 c0 74 49 be JIT code: ffffffffa00b5040: 1e 00 00 00 e8 eb 7a f7 e0 24 00 3d 00 14 a8 c0 JIT code: ffffffffa00b5050: 74 36 eb 3b 3d 06 08 00 00 74 07 3d 35 80 00 00 JIT code: ffffffffa00b5060: 75 2d be 1c 00 00 00 e8 c8 7a f7 e0 24 00 3d 00 JIT code: ffffffffa00b5070: 14 a8 c0 74 13 be 26 00 00 00 e8 b5 7a f7 e0 24 JIT code: ffffffffa00b5080: 00 3d 00 14 a8 c0 75 07 b8 ff ff 00 00 eb 02 31 JIT code: ffffffffa00b5090: c0 c9 c3 BPF program is 144 bytes long, so native program is almost same size ;) (000) ldh [12] (001) jeq #0x800 jt 2 jf 8 (002) ld [26] (003) and #0xffffff00 (004) jeq #0xc0a81400 jt 16 jf 5 (005) ld [30] (006) and #0xffffff00 (007) jeq #0xc0a81400 jt 16 jf 17 (008) jeq #0x806 jt 10 jf 9 (009) jeq #0x8035 jt 10 jf 17 (010) ld [28] (011) and #0xffffff00 (012) jeq #0xc0a81400 jt 16 jf 13 (013) ld [38] (014) and #0xffffff00 (015) jeq #0xc0a81400 jt 16 jf 17 (016) ret #65535 (017) ret #0 Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: Arnaldo Carvalho de Melo <acme@infradead.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Hagen Paul Pfeifer <hagen@jauu.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-04-20 17:27:32 +08:00
}