linux/Documentation/filesystems/9p.rst

196 lines
6.6 KiB
ReStructuredText
Raw Normal View History

.. SPDX-License-Identifier: GPL-2.0
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
=======================================
v9fs: Plan 9 Resource Sharing for Linux
=======================================
About
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
=====
v9fs is a Unix implementation of the Plan 9 9p remote filesystem protocol.
This software was originally developed by Ron Minnich <rminnich@sandia.gov>
and Maya Gokhale. Additional development by Greg Watson
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
<gwatson@lanl.gov> and most recently Eric Van Hensbergen
<ericvh@gmail.com>, Latchesar Ionkov <lucho@ionkov.net> and Russ Cox
<rsc@swtch.com>.
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
The best detailed explanation of the Linux implementation and applications of
the 9p client is available in the form of a USENIX paper:
https://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html
Other applications are described in the following papers:
* XCPU & Clustering
http://xcpu.org/papers/xcpu-talk.pdf
* KVMFS: control file system for KVM
http://xcpu.org/papers/kvmfs.pdf
* CellFS: A New Programming Model for the Cell BE
http://xcpu.org/papers/cellfs-talk.pdf
* PROSE I/O: Using 9p to enable Application Partitions
http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf
* VirtFS: A Virtualization Aware File System pass-through
http://goo.gl/3WPDg
Usage
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
=====
For remote file server::
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
mount -t 9p 10.10.1.2 /mnt/9
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
For Plan 9 From User Space applications (http://swtch.com/plan9)::
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
mount -t 9p `namespace`/acme /mnt/9 -o trans=unix,uname=$USER
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
For server running on QEMU host with virtio transport::
mount -t 9p -o trans=virtio <mount_tag> /mnt/9
where mount_tag is the tag associated by the server to each of the exported
mount points. Each 9P export is seen by the client as a virtio device with an
associated "mount_tag" property. Available mount tags can be
seen by reading /sys/bus/virtio/drivers/9pnet_virtio/virtio<n>/mount_tag files.
Options
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
=======
============= ===============================================================
trans=name select an alternative transport. Valid options are
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
currently:
======== ============================================
unix specifying a named pipe mount point
tcp specifying a normal TCP/IP connection
fd used passed file descriptors for connection
(see rfdno and wfdno)
virtio connect to the next virtio channel available
(from QEMU with trans_virtio module)
rdma connect to a specified RDMA channel
======== ============================================
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
uname=name user name to attempt mount as on the remote server. The
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
server may override or ignore this value. Certain user
names may require authentication.
aname=name aname specifies the file tree to access when the server is
offering several exported file systems.
cache=mode specifies a caching policy. By default, no caches are used.
none
default no cache policy, metadata and data
alike are synchronous.
loose
no attempts are made at consistency,
intended for exclusive, read-only mounts
fscache
use FS-Cache for a persistent, read-only
cache backend.
mmap
minimal cache that is only used for read-write
mmap. Northing else is cached, like cache=none
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
debug=n specifies debug level. The debug level is a bitmask.
===== ================================
0x01 display verbose error messages
0x02 developer debug (DEBUG_CURRENT)
0x04 display 9p trace
0x08 display VFS trace
0x10 display Marshalling debug
0x20 display RPC debug
0x40 display transport debug
0x80 display allocation debug
0x100 display protocol message debug
0x200 display Fid debug
0x400 display packet debug
0x800 display fscache tracing debug
===== ================================
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
rfdno=n the file descriptor for reading with trans=fd
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
wfdno=n the file descriptor for writing with trans=fd
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
msize=n the number of bytes to use for 9p packet payload
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
port=n port to connect to on the remote server
noextend force legacy mode (no 9p2000.u or 9p2000.L semantics)
version=name Select 9P protocol version. Valid options are:
======== ==============================
9p2000 Legacy mode (same as noextend)
9p2000.u Use 9P2000.u protocol
9p2000.L Use 9P2000.L protocol
======== ==============================
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
dfltuid attempt to mount as a particular uid
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
dfltgid attempt to mount with a particular gid
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
afid security channel - used by Plan 9 authentication protocols
nodevmap do not map special files - represent them as normal files.
This can be used to share devices/named pipes/sockets between
hosts. This functionality will be expanded in later versions.
access there are four access modes.
user
if a user tries to access a file on v9fs
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-18 03:31:07 +08:00
filesystem for the first time, v9fs sends an
attach command (Tattach) for that user.
This is the default mode.
<uid>
allows only user with uid=<uid> to access
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-18 03:31:07 +08:00
the files on the mounted filesystem
any
v9fs does single attach and performs all
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-18 03:31:07 +08:00
operations as one user
clien
ACL based access check on the 9p client
side for access validation
9p: attach-per-user The 9P2000 protocol requires the authentication and permission checks to be done in the file server. For that reason every user that accesses the file server tree has to authenticate and attach to the server separately. Multiple users can share the same connection to the server. Currently v9fs does a single attach and executes all I/O operations as a single user. This makes using v9fs in multiuser environment unsafe as it depends on the client doing the permission checking. This patch improves the 9P2000 support by allowing every user to attach separately. The patch defines three modes of access (new mount option 'access'): - attach-per-user (access=user) (default mode for 9P2000.u) If a user tries to access a file served by v9fs for the first time, v9fs sends an attach command to the server (Tattach) specifying the user. If the attach succeeds, the user can access the v9fs tree. As there is no uname->uid (string->integer) mapping yet, this mode works only with the 9P2000.u dialect. - allow only one user to access the tree (access=<uid>) Only the user with uid can access the v9fs tree. Other users that attempt to access it will get EPERM error. - do all operations as a single user (access=any) (default for 9P2000) V9fs does a single attach and all operations are done as a single user. If this mode is selected, the v9fs behavior is identical with the current one. Signed-off-by: Latchesar Ionkov <lucho@ionkov.net> Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com>
2007-10-18 03:31:07 +08:00
cachetag cache tag to use the specified persistent cache.
cache tags for existing cache sessions can be listed at
/sys/fs/9p/caches. (applies only to cache=fscache)
============= ===============================================================
Behavior
========
This section aims at describing 9p 'quirks' that can be different
from a local filesystem behaviors.
- Setting O_NONBLOCK on a file will make client reads return as early
as the server returns some data instead of trying to fill the read
buffer with the requested amount of bytes or end of file is reached.
Resources
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
=========
Protocol specifications are maintained on github:
http://ericvh.github.com/9p-rfc/
9p client and server implementations are listed on
http://9p.cat-v.org/implementations
A 9p2000.L server is being developed by LLNL and can be found
at http://code.google.com/p/diod/
There are user and developer mailing lists available through the v9fs project
on sourceforge (http://sourceforge.net/projects/v9fs).
News and other information is maintained on a Wiki.
(http://sf.net/apps/mediawiki/v9fs/index.php).
Bug reports are best issued via the mailing list.
[PATCH] v9fs: Documentation, Makefiles, Configuration OVERVIEW V9FS is a distributed file system for Linux which provides an implementation of the Plan 9 resource sharing protocol 9P. It can be used to share all sorts of resources: static files, synthetic file servers (such as /proc or /sys), devices, and application file servers (such as FUSE). BACKGROUND Plan 9 (http://plan9.bell-labs.com/plan9) is a research operating system and associated applications suite developed by the Computing Science Research Center of AT&T Bell Laboratories (now a part of Lucent Technologies), the same group that developed UNIX , C, and C++. Plan 9 was initially released in 1993 to universities, and then made generally available in 1995. Its core operating systems code laid the foundation for the Inferno Operating System released as a product by Lucent Bell-Labs in 1997. The Inferno venture was the only commercial embodiment of Plan 9 and is currently maintained as a product by Vita Nuova (http://www.vitanuova.com). After updated releases in 2000 and 2002, Plan 9 was open-sourced under the OSI approved Lucent Public License in 2003. The Plan 9 project was started by Ken Thompson and Rob Pike in 1985. Their intent was to explore potential solutions to some of the shortcomings of UNIX in the face of the widespread use of high-speed networks to connect machines. In UNIX, networking was an afterthought and UNIX clusters became little more than a network of stand-alone systems. Plan 9 was designed from first principles as a seamless distributed system with integrated secure network resource sharing. Applications and services were architected in such a way as to allow for implicit distribution across a cluster of systems. Configuring an environment to use remote application components or services in place of their local equivalent could be achieved with a few simple command line instructions. For the most part, application implementations operated independent of the location of their actual resources. Commercial operating systems haven't changed much in the 20 years since Plan 9 was conceived. Network and distributed systems support is provided by a patchwork of middle-ware, with an endless number of packages supplying pieces of the puzzle. Matters are complicated by the use of different complicated protocols for individual services, and separate implementations for kernel and application resources. The V9FS project (http://v9fs.sourceforge.net) is an attempt to bring Plan 9's unified approach to resource sharing to Linux and other operating systems via support for the 9P2000 resource sharing protocol. V9FS HISTORY V9FS was originally developed by Ron Minnich and Maya Gokhale at Los Alamos National Labs (LANL) in 1997. In November of 2001, Greg Watson setup a SourceForge project as a public repository for the code which supported the Linux 2.4 kernel. About a year ago, I picked up the initial attempt Ron Minnich had made to provide 2.6 support and got the code integrated into a 2.6.5 kernel. I then went through a line-for-line re-write attempting to clean-up the code while more closely following the Linux Kernel style guidelines. I co-authored a paper with Ron Minnich on the V9FS Linux support including performance comparisons to NFSv3 using Bonnie and PostMark - this paper appeared at the USENIX/FREENIX 2005 conference in April 2005: ( http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html ). CALL FOR PARTICIPATION/REQUEST FOR COMMENTS Our 2.6 kernel support is stabilizing and we'd like to begin pursuing its integration into the official kernel tree. We would appreciate any review, comments, critiques, and additions from this community and are actively seeking people to join our project and help us produce something that would be acceptable and useful to the Linux community. STATUS The code is reasonably stable, although there are no doubt corner cases our regression tests haven't discovered yet. It is in regular use by several of the developers and has been tested on x86 and PowerPC (32-bit and 64-bit) in both small and large (LANL cluster) deployments. Our current regression tests include fsx, bonnie, and postmark. It was our intention to keep things as simple as possible for this release -- trying to focus on correctness within the core of the protocol support versus a rich set of features. For example: a more complete security model and cache layer are in the road map, but excluded from this release. Additionally, we have removed support for mmap operations at Al Viro's request. PERFORMANCE Detailed performance numbers and analysis are included in the FREENIX paper, but we show comparable performance to NFSv3 for large file operations based on the Bonnie benchmark, and superior performance for many small file operations based on the PostMark benchmark. Somewhat preliminary graphs (from the FREENIX paper) are available (http://v9fs.sourceforge.net/perf/index.html). RESOURCES The source code is available in a few different forms: tarballs: http://v9fs.sf.net CVSweb: http://cvs.sourceforge.net/viewcvs.py/v9fs/linux-9p/ CVS: :pserver:anonymous@cvs.sourceforge.net:/cvsroot/v9fs/linux-9p Git: rsync://v9fs.graverobber.org/v9fs (webgit: http://v9fs.graverobber.org) 9P: tcp!v9fs.graverobber.org!6564 The user-level server is available from either the Plan 9 distribution or from http://v9fs.sf.net Other support applications are still being developed, but preliminary version can be downloaded from sourceforge. Documentation on the protocol has historically been the Plan 9 Man pages (http://plan9.bell-labs.com/sys/man/5/INDEX.html), but there is an effort under way to write a more complete Internet-Draft style specification (http://v9fs.sf.net/rfc). There are a couple of mailing lists supporting v9fs, but the most used is v9fs-developer@lists.sourceforge.net -- please direct/cc your comments there so the other v9fs contibutors can participate in the conversation. There is also an IRC channel: irc://freenode.net/#v9fs This part of the patch contains Documentation, Makefiles, and configuration file changes. Signed-off-by: Eric Van Hensbergen <ericvh@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 04:04:18 +08:00
For more information on the Plan 9 Operating System check out
http://plan9.bell-labs.com/plan9
For information on Plan 9 from User Space (Plan 9 applications and libraries
ported to Linux/BSD/OSX/etc) check out https://9fans.github.io/plan9port/