linux/drivers/clocksource/timer-keystone.c

230 lines
5.4 KiB
C
Raw Normal View History

/*
* Keystone broadcast clock-event
*
* Copyright 2013 Texas Instruments, Inc.
*
* Author: Ivan Khoronzhuk <ivan.khoronzhuk@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#define TIMER_NAME "timer-keystone"
/* Timer register offsets */
#define TIM12 0x10
#define TIM34 0x14
#define PRD12 0x18
#define PRD34 0x1c
#define TCR 0x20
#define TGCR 0x24
#define INTCTLSTAT 0x44
/* Timer register bitfields */
#define TCR_ENAMODE_MASK 0xC0
#define TCR_ENAMODE_ONESHOT_MASK 0x40
#define TCR_ENAMODE_PERIODIC_MASK 0x80
#define TGCR_TIM_UNRESET_MASK 0x03
#define INTCTLSTAT_ENINT_MASK 0x01
/**
* struct keystone_timer: holds timer's data
* @base: timer memory base address
* @hz_period: cycles per HZ period
* @event_dev: event device based on timer
*/
static struct keystone_timer {
void __iomem *base;
unsigned long hz_period;
struct clock_event_device event_dev;
} timer;
static inline u32 keystone_timer_readl(unsigned long rg)
{
return readl_relaxed(timer.base + rg);
}
static inline void keystone_timer_writel(u32 val, unsigned long rg)
{
writel_relaxed(val, timer.base + rg);
}
/**
* keystone_timer_barrier: write memory barrier
* use explicit barrier to avoid using readl/writel non relaxed function
* variants, because in our case non relaxed variants hide the true places
* where barrier is needed.
*/
static inline void keystone_timer_barrier(void)
{
__iowmb();
}
/**
* keystone_timer_config: configures timer to work in oneshot/periodic modes.
* @ mask: mask of the mode to configure
* @ period: cycles number to configure for
*/
static int keystone_timer_config(u64 period, int mask)
{
u32 tcr;
u32 off;
tcr = keystone_timer_readl(TCR);
off = tcr & ~(TCR_ENAMODE_MASK);
/* set enable mode */
tcr |= mask;
/* disable timer */
keystone_timer_writel(off, TCR);
/* here we have to be sure the timer has been disabled */
keystone_timer_barrier();
/* reset counter to zero, set new period */
keystone_timer_writel(0, TIM12);
keystone_timer_writel(0, TIM34);
keystone_timer_writel(period & 0xffffffff, PRD12);
keystone_timer_writel(period >> 32, PRD34);
/*
* enable timer
* here we have to be sure that CNTLO, CNTHI, PRDLO, PRDHI registers
* have been written.
*/
keystone_timer_barrier();
keystone_timer_writel(tcr, TCR);
return 0;
}
static void keystone_timer_disable(void)
{
u32 tcr;
tcr = keystone_timer_readl(TCR);
/* disable timer */
tcr &= ~(TCR_ENAMODE_MASK);
keystone_timer_writel(tcr, TCR);
}
static irqreturn_t keystone_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int keystone_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
return keystone_timer_config(cycles, TCR_ENAMODE_ONESHOT_MASK);
}
static int keystone_shutdown(struct clock_event_device *evt)
{
keystone_timer_disable();
return 0;
}
static int keystone_set_periodic(struct clock_event_device *evt)
{
keystone_timer_config(timer.hz_period, TCR_ENAMODE_PERIODIC_MASK);
return 0;
}
static void __init keystone_timer_init(struct device_node *np)
{
struct clock_event_device *event_dev = &timer.event_dev;
unsigned long rate;
struct clk *clk;
int irq, error;
irq = irq_of_parse_and_map(np, 0);
if (irq == NO_IRQ) {
pr_err("%s: failed to map interrupts\n", __func__);
return;
}
timer.base = of_iomap(np, 0);
if (!timer.base) {
pr_err("%s: failed to map registers\n", __func__);
return;
}
clk = of_clk_get(np, 0);
if (IS_ERR(clk)) {
pr_err("%s: failed to get clock\n", __func__);
iounmap(timer.base);
return;
}
error = clk_prepare_enable(clk);
if (error) {
pr_err("%s: failed to enable clock\n", __func__);
goto err;
}
rate = clk_get_rate(clk);
/* disable, use internal clock source */
keystone_timer_writel(0, TCR);
/* here we have to be sure the timer has been disabled */
keystone_timer_barrier();
/* reset timer as 64-bit, no pre-scaler, plus features are disabled */
keystone_timer_writel(0, TGCR);
/* unreset timer */
keystone_timer_writel(TGCR_TIM_UNRESET_MASK, TGCR);
/* init counter to zero */
keystone_timer_writel(0, TIM12);
keystone_timer_writel(0, TIM34);
timer.hz_period = DIV_ROUND_UP(rate, HZ);
/* enable timer interrupts */
keystone_timer_writel(INTCTLSTAT_ENINT_MASK, INTCTLSTAT);
error = request_irq(irq, keystone_timer_interrupt, IRQF_TIMER,
TIMER_NAME, event_dev);
if (error) {
pr_err("%s: failed to setup irq\n", __func__);
goto err;
}
/* setup clockevent */
event_dev->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
event_dev->set_next_event = keystone_set_next_event;
event_dev->set_state_shutdown = keystone_shutdown;
event_dev->set_state_periodic = keystone_set_periodic;
event_dev->set_state_oneshot = keystone_shutdown;
event_dev->cpumask = cpu_all_mask;
event_dev->owner = THIS_MODULE;
event_dev->name = TIMER_NAME;
event_dev->irq = irq;
clockevents_config_and_register(event_dev, rate, 1, ULONG_MAX);
pr_info("keystone timer clock @%lu Hz\n", rate);
return;
err:
clk_put(clk);
iounmap(timer.base);
}
CLOCKSOURCE_OF_DECLARE(keystone_timer, "ti,keystone-timer",
keystone_timer_init);