linux/kernel/time/timekeeping.h

34 lines
926 B
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 22:07:57 +08:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _KERNEL_TIME_TIMEKEEPING_H
#define _KERNEL_TIME_TIMEKEEPING_H
/*
* Internal interfaces for kernel/time/
*/
extern ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq,
ktime_t *offs_real,
Revert: Unify CLOCK_MONOTONIC and CLOCK_BOOTTIME Revert commits 92af4dcb4e1c ("tracing: Unify the "boot" and "mono" tracing clocks") 127bfa5f4342 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior") 7250a4047aa6 ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior") d6c7270e913d ("timekeeping: Remove boot time specific code") f2d6fdbfd238 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior") d6ed449afdb3 ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock") 72199320d49d ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock") As stated in the pull request for the unification of CLOCK_MONOTONIC and CLOCK_BOOTTIME, it was clear that we might have to revert the change. As reported by several folks systemd and other applications rely on the documented behaviour of CLOCK_MONOTONIC on Linux and break with the above changes. After resume daemons time out and other timeout related issues are observed. Rafael compiled this list: * systemd kills daemons on resume, after >WatchdogSec seconds of suspending (Genki Sky). [Verified that that's because systemd uses CLOCK_MONOTONIC and expects it to not include the suspend time.] * systemd-journald misbehaves after resume: systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal corrupted or uncleanly shut down, renaming and replacing. (Mike Galbraith). * NetworkManager reports "networking disabled" and networking is broken after resume 50% of the time (Pavel). [May be because of systemd.] * MATE desktop dims the display and starts the screensaver right after system resume (Pavel). * Full system hang during resume (me). [May be due to systemd or NM or both.] That happens on debian and open suse systems. It's sad, that these problems were neither catched in -next nor by those folks who expressed interest in this change. Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net> Reported-by: Genki Sky <sky@genki.is>, Reported-by: Pavel Machek <pavel@ucw.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kevin Easton <kevin@guarana.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org>
2018-04-25 21:33:38 +08:00
ktime_t *offs_boot,
ktime_t *offs_tai);
extern int timekeeping_valid_for_hres(void);
extern u64 timekeeping_max_deferment(void);
extern void timekeeping_warp_clock(void);
PM / sleep: Make it possible to quiesce timers during suspend-to-idle The efficiency of suspend-to-idle depends on being able to keep CPUs in the deepest available idle states for as much time as possible. Ideally, they should only be brought out of idle by system wakeup interrupts. However, timer interrupts occurring periodically prevent that from happening and it is not practical to chase all of the "misbehaving" timers in a whack-a-mole fashion. A much more effective approach is to suspend the local ticks for all CPUs and the entire timekeeping along the lines of what is done during full suspend, which also helps to keep suspend-to-idle and full suspend reasonably similar. The idea is to suspend the local tick on each CPU executing cpuidle_enter_freeze() and to make the last of them suspend the entire timekeeping. That should prevent timer interrupts from triggering until an IO interrupt wakes up one of the CPUs. It needs to be done with interrupts disabled on all of the CPUs, though, because otherwise the suspended clocksource might be accessed by an interrupt handler which might lead to fatal consequences. Unfortunately, the existing ->enter callbacks provided by cpuidle drivers generally cannot be used for implementing that, because some of them re-enable interrupts temporarily and some idle entry methods cause interrupts to be re-enabled automatically on exit. Also some of these callbacks manipulate local clock event devices of the CPUs which really shouldn't be done after suspending their ticks. To overcome that difficulty, introduce a new cpuidle state callback, ->enter_freeze, that will be guaranteed (1) to keep interrupts disabled all the time (and return with interrupts disabled) and (2) not to touch the CPU timer devices. Modify cpuidle_enter_freeze() to look for the deepest available idle state with ->enter_freeze present and to make the CPU execute that callback with suspended tick (and the last of the online CPUs to execute it with suspended timekeeping). Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2015-02-14 06:50:43 +08:00
extern int timekeeping_suspend(void);
extern void timekeeping_resume(void);
timers/sched_clock: Prevent generic sched_clock wrap caused by tick_freeze() tick_freeze() introduced by suspend-to-idle in commit 124cf9117c5f ("PM / sleep: Make it possible to quiesce timers during suspend-to-idle") uses timekeeping_suspend() instead of syscore_suspend() during suspend-to-idle. As a consequence generic sched_clock will keep going because sched_clock_suspend() and sched_clock_resume() are not invoked during suspend-to-idle which can result in a generic sched_clock wrap. On a ARM system with suspend-to-idle enabled, sched_clock is registered as "56 bits at 13MHz, resolution 76ns, wraps every 4398046511101ns", which means the real wrapping duration is 8796093022202ns. [ 134.551779] suspend-to-idle suspend (timekeeping_suspend()) [ 1204.912239] suspend-to-idle resume (timekeeping_resume()) ...... [ 1206.912239] suspend-to-idle suspend (timekeeping_suspend()) [ 5880.502807] suspend-to-idle resume (timekeeping_resume()) ...... [ 6000.403724] suspend-to-idle suspend (timekeeping_suspend()) [ 8035.753167] suspend-to-idle resume (timekeeping_resume()) ...... [ 8795.786684] (2)[321:charger_thread]...... [ 8795.788387] (2)[321:charger_thread]...... [ 0.057226] (0)[0:swapper/0]...... [ 0.061447] (2)[0:swapper/2]...... sched_clock was not stopped during suspend-to-idle, and sched_clock_poll hrtimer was not expired because timekeeping_suspend() was invoked during suspend-to-idle. It makes sched_clock wrap at kernel time 8796s. To prevent this, invoke sched_clock_suspend() and sched_clock_resume() in tick_freeze() together with timekeeping_suspend() and timekeeping_resume(). Fixes: 124cf9117c5f (PM / sleep: Make it possible to quiesce timers during suspend-to-idle) Signed-off-by: Chang-An Chen <chang-an.chen@mediatek.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: Corey Minyard <cminyard@mvista.com> Cc: <linux-mediatek@lists.infradead.org> Cc: <linux-arm-kernel@lists.infradead.org> Cc: Stanley Chu <stanley.chu@mediatek.com> Cc: <kuohong.wang@mediatek.com> Cc: <freddy.hsin@mediatek.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1553828349-8914-1-git-send-email-chang-an.chen@mediatek.com
2019-03-29 10:59:09 +08:00
#ifdef CONFIG_GENERIC_SCHED_CLOCK
extern int sched_clock_suspend(void);
extern void sched_clock_resume(void);
#else
static inline int sched_clock_suspend(void) { return 0; }
static inline void sched_clock_resume(void) { }
#endif
extern void do_timer(unsigned long ticks);
extern void update_wall_time(void);
extern raw_spinlock_t jiffies_lock;
extern seqcount_t jiffies_seq;
#define CS_NAME_LEN 32
#endif