linux/fs/minix/minix.h

170 lines
5.2 KiB
C
Raw Normal View History

#ifndef FS_MINIX_H
#define FS_MINIX_H
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/minix_fs.h>
#define INODE_VERSION(inode) minix_sb(inode->i_sb)->s_version
#define MINIX_V1 0x0001 /* original minix fs */
#define MINIX_V2 0x0002 /* minix V2 fs */
#define MINIX_V3 0x0003 /* minix V3 fs */
/*
* minix fs inode data in memory
*/
struct minix_inode_info {
union {
__u16 i1_data[16];
__u32 i2_data[16];
} u;
struct inode vfs_inode;
};
/*
* minix super-block data in memory
*/
struct minix_sb_info {
unsigned long s_ninodes;
unsigned long s_nzones;
unsigned long s_imap_blocks;
unsigned long s_zmap_blocks;
unsigned long s_firstdatazone;
unsigned long s_log_zone_size;
unsigned long s_max_size;
int s_dirsize;
int s_namelen;
struct buffer_head ** s_imap;
struct buffer_head ** s_zmap;
struct buffer_head * s_sbh;
struct minix_super_block * s_ms;
unsigned short s_mount_state;
unsigned short s_version;
};
extern struct inode *minix_iget(struct super_block *, unsigned long);
extern struct minix_inode * minix_V1_raw_inode(struct super_block *, ino_t, struct buffer_head **);
extern struct minix2_inode * minix_V2_raw_inode(struct super_block *, ino_t, struct buffer_head **);
extern struct inode * minix_new_inode(const struct inode *, umode_t, int *);
extern void minix_free_inode(struct inode * inode);
extern unsigned long minix_count_free_inodes(struct super_block *sb);
extern int minix_new_block(struct inode * inode);
extern void minix_free_block(struct inode *inode, unsigned long block);
extern unsigned long minix_count_free_blocks(struct super_block *sb);
statx: Add a system call to make enhanced file info available Add a system call to make extended file information available, including file creation and some attribute flags where available through the underlying filesystem. The getattr inode operation is altered to take two additional arguments: a u32 request_mask and an unsigned int flags that indicate the synchronisation mode. This change is propagated to the vfs_getattr*() function. Functions like vfs_stat() are now inline wrappers around new functions vfs_statx() and vfs_statx_fd() to reduce stack usage. ======== OVERVIEW ======== The idea was initially proposed as a set of xattrs that could be retrieved with getxattr(), but the general preference proved to be for a new syscall with an extended stat structure. A number of requests were gathered for features to be included. The following have been included: (1) Make the fields a consistent size on all arches and make them large. (2) Spare space, request flags and information flags are provided for future expansion. (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an __s64). (4) Creation time: The SMB protocol carries the creation time, which could be exported by Samba, which will in turn help CIFS make use of FS-Cache as that can be used for coherency data (stx_btime). This is also specified in NFSv4 as a recommended attribute and could be exported by NFSD [Steve French]. (5) Lightweight stat: Ask for just those details of interest, and allow a netfs (such as NFS) to approximate anything not of interest, possibly without going to the server [Trond Myklebust, Ulrich Drepper, Andreas Dilger] (AT_STATX_DONT_SYNC). (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks its cached attributes are up to date [Trond Myklebust] (AT_STATX_FORCE_SYNC). And the following have been left out for future extension: (7) Data version number: Could be used by userspace NFS servers [Aneesh Kumar]. Can also be used to modify fill_post_wcc() in NFSD which retrieves i_version directly, but has just called vfs_getattr(). It could get it from the kstat struct if it used vfs_xgetattr() instead. (There's disagreement on the exact semantics of a single field, since not all filesystems do this the same way). (8) BSD stat compatibility: Including more fields from the BSD stat such as creation time (st_btime) and inode generation number (st_gen) [Jeremy Allison, Bernd Schubert]. (9) Inode generation number: Useful for FUSE and userspace NFS servers [Bernd Schubert]. (This was asked for but later deemed unnecessary with the open-by-handle capability available and caused disagreement as to whether it's a security hole or not). (10) Extra coherency data may be useful in making backups [Andreas Dilger]. (No particular data were offered, but things like last backup timestamp, the data version number and the DOS archive bit would come into this category). (11) Allow the filesystem to indicate what it can/cannot provide: A filesystem can now say it doesn't support a standard stat feature if that isn't available, so if, for instance, inode numbers or UIDs don't exist or are fabricated locally... (This requires a separate system call - I have an fsinfo() call idea for this). (12) Store a 16-byte volume ID in the superblock that can be returned in struct xstat [Steve French]. (Deferred to fsinfo). (13) Include granularity fields in the time data to indicate the granularity of each of the times (NFSv4 time_delta) [Steve French]. (Deferred to fsinfo). (14) FS_IOC_GETFLAGS value. These could be translated to BSD's st_flags. Note that the Linux IOC flags are a mess and filesystems such as Ext4 define flags that aren't in linux/fs.h, so translation in the kernel may be a necessity (or, possibly, we provide the filesystem type too). (Some attributes are made available in stx_attributes, but the general feeling was that the IOC flags were to ext[234]-specific and shouldn't be exposed through statx this way). (15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer, Michael Kerrisk]. (Deferred, probably to fsinfo. Finding out if there's an ACL or seclabal might require extra filesystem operations). (16) Femtosecond-resolution timestamps [Dave Chinner]. (A __reserved field has been left in the statx_timestamp struct for this - if there proves to be a need). (17) A set multiple attributes syscall to go with this. =============== NEW SYSTEM CALL =============== The new system call is: int ret = statx(int dfd, const char *filename, unsigned int flags, unsigned int mask, struct statx *buffer); The dfd, filename and flags parameters indicate the file to query, in a similar way to fstatat(). There is no equivalent of lstat() as that can be emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags. There is also no equivalent of fstat() as that can be emulated by passing a NULL filename to statx() with the fd of interest in dfd. Whether or not statx() synchronises the attributes with the backing store can be controlled by OR'ing a value into the flags argument (this typically only affects network filesystems): (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this respect. (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise its attributes with the server - which might require data writeback to occur to get the timestamps correct. (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a network filesystem. The resulting values should be considered approximate. mask is a bitmask indicating the fields in struct statx that are of interest to the caller. The user should set this to STATX_BASIC_STATS to get the basic set returned by stat(). It should be noted that asking for more information may entail extra I/O operations. buffer points to the destination for the data. This must be 256 bytes in size. ====================== MAIN ATTRIBUTES RECORD ====================== The following structures are defined in which to return the main attribute set: struct statx_timestamp { __s64 tv_sec; __s32 tv_nsec; __s32 __reserved; }; struct statx { __u32 stx_mask; __u32 stx_blksize; __u64 stx_attributes; __u32 stx_nlink; __u32 stx_uid; __u32 stx_gid; __u16 stx_mode; __u16 __spare0[1]; __u64 stx_ino; __u64 stx_size; __u64 stx_blocks; __u64 __spare1[1]; struct statx_timestamp stx_atime; struct statx_timestamp stx_btime; struct statx_timestamp stx_ctime; struct statx_timestamp stx_mtime; __u32 stx_rdev_major; __u32 stx_rdev_minor; __u32 stx_dev_major; __u32 stx_dev_minor; __u64 __spare2[14]; }; The defined bits in request_mask and stx_mask are: STATX_TYPE Want/got stx_mode & S_IFMT STATX_MODE Want/got stx_mode & ~S_IFMT STATX_NLINK Want/got stx_nlink STATX_UID Want/got stx_uid STATX_GID Want/got stx_gid STATX_ATIME Want/got stx_atime{,_ns} STATX_MTIME Want/got stx_mtime{,_ns} STATX_CTIME Want/got stx_ctime{,_ns} STATX_INO Want/got stx_ino STATX_SIZE Want/got stx_size STATX_BLOCKS Want/got stx_blocks STATX_BASIC_STATS [The stuff in the normal stat struct] STATX_BTIME Want/got stx_btime{,_ns} STATX_ALL [All currently available stuff] stx_btime is the file creation time, stx_mask is a bitmask indicating the data provided and __spares*[] are where as-yet undefined fields can be placed. Time fields are structures with separate seconds and nanoseconds fields plus a reserved field in case we want to add even finer resolution. Note that times will be negative if before 1970; in such a case, the nanosecond fields will also be negative if not zero. The bits defined in the stx_attributes field convey information about a file, how it is accessed, where it is and what it does. The following attributes map to FS_*_FL flags and are the same numerical value: STATX_ATTR_COMPRESSED File is compressed by the fs STATX_ATTR_IMMUTABLE File is marked immutable STATX_ATTR_APPEND File is append-only STATX_ATTR_NODUMP File is not to be dumped STATX_ATTR_ENCRYPTED File requires key to decrypt in fs Within the kernel, the supported flags are listed by: KSTAT_ATTR_FS_IOC_FLAGS [Are any other IOC flags of sufficient general interest to be exposed through this interface?] New flags include: STATX_ATTR_AUTOMOUNT Object is an automount trigger These are for the use of GUI tools that might want to mark files specially, depending on what they are. Fields in struct statx come in a number of classes: (0) stx_dev_*, stx_blksize. These are local system information and are always available. (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino, stx_size, stx_blocks. These will be returned whether the caller asks for them or not. The corresponding bits in stx_mask will be set to indicate whether they actually have valid values. If the caller didn't ask for them, then they may be approximated. For example, NFS won't waste any time updating them from the server, unless as a byproduct of updating something requested. If the values don't actually exist for the underlying object (such as UID or GID on a DOS file), then the bit won't be set in the stx_mask, even if the caller asked for the value. In such a case, the returned value will be a fabrication. Note that there are instances where the type might not be valid, for instance Windows reparse points. (2) stx_rdev_*. This will be set only if stx_mode indicates we're looking at a blockdev or a chardev, otherwise will be 0. (3) stx_btime. Similar to (1), except this will be set to 0 if it doesn't exist. ======= TESTING ======= The following test program can be used to test the statx system call: samples/statx/test-statx.c Just compile and run, passing it paths to the files you want to examine. The file is built automatically if CONFIG_SAMPLES is enabled. Here's some example output. Firstly, an NFS directory that crosses to another FSID. Note that the AUTOMOUNT attribute is set because transiting this directory will cause d_automount to be invoked by the VFS. [root@andromeda ~]# /tmp/test-statx -A /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:26 Inode: 1703937 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------) Secondly, the result of automounting on that directory. [root@andromeda ~]# /tmp/test-statx /warthog/data statx(/warthog/data) = 0 results=7ff Size: 4096 Blocks: 8 IO Block: 1048576 directory Device: 00:27 Inode: 2 Links: 125 Access: (3777/drwxrwxrwx) Uid: 0 Gid: 4041 Access: 2016-11-24 09:02:12.219699527+0000 Modify: 2016-11-17 10:44:36.225653653+0000 Change: 2016-11-17 10:44:36.225653653+0000 Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-02-01 00:46:22 +08:00
extern int minix_getattr(const struct path *, struct kstat *, u32, unsigned int);
extern int minix_prepare_chunk(struct page *page, loff_t pos, unsigned len);
extern void V1_minix_truncate(struct inode *);
extern void V2_minix_truncate(struct inode *);
extern void minix_truncate(struct inode *);
extern void minix_set_inode(struct inode *, dev_t);
extern int V1_minix_get_block(struct inode *, long, struct buffer_head *, int);
extern int V2_minix_get_block(struct inode *, long, struct buffer_head *, int);
extern unsigned V1_minix_blocks(loff_t, struct super_block *);
extern unsigned V2_minix_blocks(loff_t, struct super_block *);
extern struct minix_dir_entry *minix_find_entry(struct dentry*, struct page**);
extern int minix_add_link(struct dentry*, struct inode*);
extern int minix_delete_entry(struct minix_dir_entry*, struct page*);
extern int minix_make_empty(struct inode*, struct inode*);
extern int minix_empty_dir(struct inode*);
extern void minix_set_link(struct minix_dir_entry*, struct page*, struct inode*);
extern struct minix_dir_entry *minix_dotdot(struct inode*, struct page**);
extern ino_t minix_inode_by_name(struct dentry*);
extern const struct inode_operations minix_file_inode_operations;
extern const struct inode_operations minix_dir_inode_operations;
extern const struct file_operations minix_file_operations;
extern const struct file_operations minix_dir_operations;
static inline struct minix_sb_info *minix_sb(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline struct minix_inode_info *minix_i(struct inode *inode)
{
return container_of(inode, struct minix_inode_info, vfs_inode);
}
static inline unsigned minix_blocks_needed(unsigned bits, unsigned blocksize)
{
return DIV_ROUND_UP(bits, blocksize * 8);
}
bitops: remove minix bitops from asm/bitops.h minix bit operations are only used by minix filesystem and useless by other modules. Because byte order of inode and block bitmaps is different on each architecture like below: m68k: big-endian 16bit indexed bitmaps h8300, microblaze, s390, sparc, m68knommu: big-endian 32 or 64bit indexed bitmaps m32r, mips, sh, xtensa: big-endian 32 or 64bit indexed bitmaps for big-endian mode little-endian bitmaps for little-endian mode Others: little-endian bitmaps In order to move minix bit operations from asm/bitops.h to architecture independent code in minix filesystem, this provides two config options. CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED is only selected by m68k. CONFIG_MINIX_FS_NATIVE_ENDIAN is selected by the architectures which use native byte order bitmaps (h8300, microblaze, s390, sparc, m68knommu, m32r, mips, sh, xtensa). The architectures which always use little-endian bitmaps do not select these options. Finally, we can remove minix bit operations from asm/bitops.h for all architectures. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Greg Ungerer <gerg@uclinux.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Andreas Schwab <schwab@linux-m68k.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Michal Simek <monstr@monstr.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Hirokazu Takata <takata@linux-m32r.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Paul Mundt <lethal@linux-sh.org> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:42:16 +08:00
#if defined(CONFIG_MINIX_FS_NATIVE_ENDIAN) && \
defined(CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED)
#error Minix file system byte order broken
#elif defined(CONFIG_MINIX_FS_NATIVE_ENDIAN)
/*
* big-endian 32 or 64 bit indexed bitmaps on big-endian system or
* little-endian bitmaps on little-endian system
*/
#define minix_test_and_set_bit(nr, addr) \
__test_and_set_bit((nr), (unsigned long *)(addr))
#define minix_set_bit(nr, addr) \
__set_bit((nr), (unsigned long *)(addr))
#define minix_test_and_clear_bit(nr, addr) \
__test_and_clear_bit((nr), (unsigned long *)(addr))
#define minix_test_bit(nr, addr) \
test_bit((nr), (unsigned long *)(addr))
#define minix_find_first_zero_bit(addr, size) \
find_first_zero_bit((unsigned long *)(addr), (size))
#elif defined(CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED)
/*
* big-endian 16bit indexed bitmaps
*/
static inline int minix_find_first_zero_bit(const void *vaddr, unsigned size)
{
const unsigned short *p = vaddr, *addr = vaddr;
unsigned short num;
if (!size)
return 0;
size >>= 4;
bitops: remove minix bitops from asm/bitops.h minix bit operations are only used by minix filesystem and useless by other modules. Because byte order of inode and block bitmaps is different on each architecture like below: m68k: big-endian 16bit indexed bitmaps h8300, microblaze, s390, sparc, m68knommu: big-endian 32 or 64bit indexed bitmaps m32r, mips, sh, xtensa: big-endian 32 or 64bit indexed bitmaps for big-endian mode little-endian bitmaps for little-endian mode Others: little-endian bitmaps In order to move minix bit operations from asm/bitops.h to architecture independent code in minix filesystem, this provides two config options. CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED is only selected by m68k. CONFIG_MINIX_FS_NATIVE_ENDIAN is selected by the architectures which use native byte order bitmaps (h8300, microblaze, s390, sparc, m68knommu, m32r, mips, sh, xtensa). The architectures which always use little-endian bitmaps do not select these options. Finally, we can remove minix bit operations from asm/bitops.h for all architectures. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Greg Ungerer <gerg@uclinux.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Andreas Schwab <schwab@linux-m68k.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Michal Simek <monstr@monstr.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Hirokazu Takata <takata@linux-m32r.org> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Paul Mundt <lethal@linux-sh.org> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-24 07:42:16 +08:00
while (*p++ == 0xffff) {
if (--size == 0)
return (p - addr) << 4;
}
num = *--p;
return ((p - addr) << 4) + ffz(num);
}
#define minix_test_and_set_bit(nr, addr) \
__test_and_set_bit((nr) ^ 16, (unsigned long *)(addr))
#define minix_set_bit(nr, addr) \
__set_bit((nr) ^ 16, (unsigned long *)(addr))
#define minix_test_and_clear_bit(nr, addr) \
__test_and_clear_bit((nr) ^ 16, (unsigned long *)(addr))
static inline int minix_test_bit(int nr, const void *vaddr)
{
const unsigned short *p = vaddr;
return (p[nr >> 4] & (1U << (nr & 15))) != 0;
}
#else
/*
* little-endian bitmaps
*/
#define minix_test_and_set_bit __test_and_set_bit_le
#define minix_set_bit __set_bit_le
#define minix_test_and_clear_bit __test_and_clear_bit_le
#define minix_test_bit test_bit_le
#define minix_find_first_zero_bit find_first_zero_bit_le
#endif
#endif /* FS_MINIX_H */