linux/drivers/thunderbolt/debugfs.c

1577 lines
38 KiB
C
Raw Normal View History

thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Debugfs interface
*
* Copyright (C) 2020, Intel Corporation
* Authors: Gil Fine <gil.fine@intel.com>
* Mika Westerberg <mika.westerberg@linux.intel.com>
*/
#include <linux/debugfs.h>
#include <linux/pm_runtime.h>
#include <linux/uaccess.h>
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
#include "tb.h"
#include "sb_regs.h"
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
#define PORT_CAP_PCIE_LEN 1
#define PORT_CAP_POWER_LEN 2
#define PORT_CAP_LANE_LEN 3
#define PORT_CAP_USB3_LEN 5
#define PORT_CAP_DP_LEN 8
#define PORT_CAP_TMU_LEN 8
#define PORT_CAP_BASIC_LEN 9
#define PORT_CAP_USB4_LEN 20
#define SWITCH_CAP_TMU_LEN 26
#define SWITCH_CAP_BASIC_LEN 27
#define PATH_LEN 2
#define COUNTER_SET_LEN 3
#define DEBUGFS_ATTR(__space, __write) \
static int __space ## _open(struct inode *inode, struct file *file) \
{ \
return single_open(file, __space ## _show, inode->i_private); \
} \
\
static const struct file_operations __space ## _fops = { \
.owner = THIS_MODULE, \
.open = __space ## _open, \
.release = single_release, \
.read = seq_read, \
.write = __write, \
.llseek = seq_lseek, \
}
#define DEBUGFS_ATTR_RO(__space) \
DEBUGFS_ATTR(__space, NULL)
#define DEBUGFS_ATTR_RW(__space) \
DEBUGFS_ATTR(__space, __space ## _write)
static struct dentry *tb_debugfs_root;
static void *validate_and_copy_from_user(const void __user *user_buf,
size_t *count)
{
size_t nbytes;
void *buf;
if (!*count)
return ERR_PTR(-EINVAL);
if (!access_ok(user_buf, *count))
return ERR_PTR(-EFAULT);
buf = (void *)get_zeroed_page(GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
nbytes = min_t(size_t, *count, PAGE_SIZE);
if (copy_from_user(buf, user_buf, nbytes)) {
free_page((unsigned long)buf);
return ERR_PTR(-EFAULT);
}
*count = nbytes;
return buf;
}
static bool parse_line(char **line, u32 *offs, u32 *val, int short_fmt_len,
int long_fmt_len)
{
char *token;
u32 v[5];
int ret;
token = strsep(line, "\n");
if (!token)
return false;
/*
* For Adapter/Router configuration space:
* Short format is: offset value\n
* v[0] v[1]
* Long format as produced from the read side:
* offset relative_offset cap_id vs_cap_id value\n
* v[0] v[1] v[2] v[3] v[4]
*
* For Counter configuration space:
* Short format is: offset\n
* v[0]
* Long format as produced from the read side:
* offset relative_offset counter_id value\n
* v[0] v[1] v[2] v[3]
*/
ret = sscanf(token, "%i %i %i %i %i", &v[0], &v[1], &v[2], &v[3], &v[4]);
/* In case of Counters, clear counter, "val" content is NA */
if (ret == short_fmt_len) {
*offs = v[0];
*val = v[short_fmt_len - 1];
return true;
} else if (ret == long_fmt_len) {
*offs = v[0];
*val = v[long_fmt_len - 1];
return true;
}
return false;
}
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_WRITE)
static ssize_t regs_write(struct tb_switch *sw, struct tb_port *port,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
struct tb *tb = sw->tb;
char *line, *buf;
u32 val, offset;
int ret = 0;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* User did hardware changes behind the driver's back */
add_taint(TAINT_USER, LOCKDEP_STILL_OK);
line = buf;
while (parse_line(&line, &offset, &val, 2, 5)) {
if (port)
ret = tb_port_write(port, &val, TB_CFG_PORT, offset, 1);
else
ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, offset, 1);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static ssize_t port_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
return regs_write(port->sw, port, user_buf, count, ppos);
}
static ssize_t switch_regs_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_switch *sw = s->private;
return regs_write(sw, NULL, user_buf, count, ppos);
}
#define DEBUGFS_MODE 0600
#else
#define port_regs_write NULL
#define switch_regs_write NULL
#define DEBUGFS_MODE 0400
#endif
#if IS_ENABLED(CONFIG_USB4_DEBUGFS_MARGINING)
/**
* struct tb_margining - Lane margining support
* @caps: Port lane margining capabilities
* @results: Last lane margining results
* @lanes: %0, %1 or %7 (all)
* @min_ber_level: Minimum supported BER level contour value
* @max_ber_level: Maximum supported BER level contour value
* @ber_level: Current BER level contour value
* @voltage_steps: Number of mandatory voltage steps
* @max_voltage_offset: Maximum mandatory voltage offset (in mV)
* @time_steps: Number of time margin steps
* @max_time_offset: Maximum time margin offset (in mUI)
* @software: %true if software margining is used instead of hardware
* @time: %true if time margining is used instead of voltage
* @right_high: %false if left/low margin test is performed, %true if
* right/high
*/
struct tb_margining {
u32 caps[2];
u32 results[2];
unsigned int lanes;
unsigned int min_ber_level;
unsigned int max_ber_level;
unsigned int ber_level;
unsigned int voltage_steps;
unsigned int max_voltage_offset;
unsigned int time_steps;
unsigned int max_time_offset;
bool software;
bool time;
bool right_high;
};
static bool supports_software(const struct usb4_port *usb4)
{
return usb4->margining->caps[0] & USB4_MARGIN_CAP_0_MODES_SW;
}
static bool supports_hardware(const struct usb4_port *usb4)
{
return usb4->margining->caps[0] & USB4_MARGIN_CAP_0_MODES_HW;
}
static bool both_lanes(const struct usb4_port *usb4)
{
return usb4->margining->caps[0] & USB4_MARGIN_CAP_0_2_LANES;
}
static unsigned int independent_voltage_margins(const struct usb4_port *usb4)
{
return (usb4->margining->caps[0] & USB4_MARGIN_CAP_0_VOLTAGE_INDP_MASK) >>
USB4_MARGIN_CAP_0_VOLTAGE_INDP_SHIFT;
}
static bool supports_time(const struct usb4_port *usb4)
{
return usb4->margining->caps[0] & USB4_MARGIN_CAP_0_TIME;
}
/* Only applicable if supports_time() returns true */
static unsigned int independent_time_margins(const struct usb4_port *usb4)
{
return (usb4->margining->caps[1] & USB4_MARGIN_CAP_1_TIME_INDP_MASK) >>
USB4_MARGIN_CAP_1_TIME_INDP_SHIFT;
}
static ssize_t
margining_ber_level_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
unsigned int val;
int ret = 0;
char *buf;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (usb4->margining->software) {
ret = -EINVAL;
goto out_unlock;
}
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf)) {
ret = PTR_ERR(buf);
goto out_unlock;
}
buf[count - 1] = '\0';
ret = kstrtouint(buf, 10, &val);
if (ret)
goto out_free;
if (val < usb4->margining->min_ber_level ||
val > usb4->margining->max_ber_level) {
ret = -EINVAL;
goto out_free;
}
usb4->margining->ber_level = val;
out_free:
free_page((unsigned long)buf);
out_unlock:
mutex_unlock(&tb->lock);
return ret < 0 ? ret : count;
}
static void ber_level_show(struct seq_file *s, unsigned int val)
{
if (val % 2)
seq_printf(s, "3 * 1e%d (%u)\n", -12 + (val + 1) / 2, val);
else
seq_printf(s, "1e%d (%u)\n", -12 + val / 2, val);
}
static int margining_ber_level_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
if (usb4->margining->software)
return -EINVAL;
ber_level_show(s, usb4->margining->ber_level);
return 0;
}
DEBUGFS_ATTR_RW(margining_ber_level);
static int margining_caps_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
u32 cap0, cap1;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Dump the raw caps first */
cap0 = usb4->margining->caps[0];
seq_printf(s, "0x%08x\n", cap0);
cap1 = usb4->margining->caps[1];
seq_printf(s, "0x%08x\n", cap1);
seq_printf(s, "# software margining: %s\n",
supports_software(usb4) ? "yes" : "no");
if (supports_hardware(usb4)) {
seq_puts(s, "# hardware margining: yes\n");
seq_puts(s, "# minimum BER level contour: ");
ber_level_show(s, usb4->margining->min_ber_level);
seq_puts(s, "# maximum BER level contour: ");
ber_level_show(s, usb4->margining->max_ber_level);
} else {
seq_puts(s, "# hardware margining: no\n");
}
seq_printf(s, "# both lanes simultaneously: %s\n",
both_lanes(usb4) ? "yes" : "no");
seq_printf(s, "# voltage margin steps: %u\n",
usb4->margining->voltage_steps);
seq_printf(s, "# maximum voltage offset: %u mV\n",
usb4->margining->max_voltage_offset);
switch (independent_voltage_margins(usb4)) {
case USB4_MARGIN_CAP_0_VOLTAGE_MIN:
seq_puts(s, "# returns minimum between high and low voltage margins\n");
break;
case USB4_MARGIN_CAP_0_VOLTAGE_HL:
seq_puts(s, "# returns high or low voltage margin\n");
break;
case USB4_MARGIN_CAP_0_VOLTAGE_BOTH:
seq_puts(s, "# returns both high and low margins\n");
break;
}
if (supports_time(usb4)) {
seq_puts(s, "# time margining: yes\n");
seq_printf(s, "# time margining is destructive: %s\n",
cap1 & USB4_MARGIN_CAP_1_TIME_DESTR ? "yes" : "no");
switch (independent_time_margins(usb4)) {
case USB4_MARGIN_CAP_1_TIME_MIN:
seq_puts(s, "# returns minimum between left and right time margins\n");
break;
case USB4_MARGIN_CAP_1_TIME_LR:
seq_puts(s, "# returns left or right margin\n");
break;
case USB4_MARGIN_CAP_1_TIME_BOTH:
seq_puts(s, "# returns both left and right margins\n");
break;
}
seq_printf(s, "# time margin steps: %u\n",
usb4->margining->time_steps);
seq_printf(s, "# maximum time offset: %u mUI\n",
usb4->margining->max_time_offset);
} else {
seq_puts(s, "# time margining: no\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RO(margining_caps);
static ssize_t
margining_lanes_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "0")) {
usb4->margining->lanes = 0;
} else if (!strcmp(buf, "1")) {
usb4->margining->lanes = 1;
} else if (!strcmp(buf, "all")) {
/* Needs to be supported */
if (both_lanes(usb4))
usb4->margining->lanes = 7;
else
ret = -EINVAL;
} else {
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static int margining_lanes_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
unsigned int lanes;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
lanes = usb4->margining->lanes;
if (both_lanes(usb4)) {
if (!lanes)
seq_puts(s, "[0] 1 all\n");
else if (lanes == 1)
seq_puts(s, "0 [1] all\n");
else
seq_puts(s, "0 1 [all]\n");
} else {
if (!lanes)
seq_puts(s, "[0] 1\n");
else
seq_puts(s, "0 [1]\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_lanes);
static ssize_t margining_mode_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "software")) {
if (supports_software(usb4))
usb4->margining->software = true;
else
ret = -EINVAL;
} else if (!strcmp(buf, "hardware")) {
if (supports_hardware(usb4))
usb4->margining->software = false;
else
ret = -EINVAL;
} else {
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_mode_show(struct seq_file *s, void *not_used)
{
const struct tb_port *port = s->private;
const struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
const char *space = "";
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_software(usb4)) {
if (usb4->margining->software)
seq_puts(s, "[software]");
else
seq_puts(s, "software");
space = " ";
}
if (supports_hardware(usb4)) {
if (usb4->margining->software)
seq_printf(s, "%shardware", space);
else
seq_printf(s, "%s[hardware]", space);
}
mutex_unlock(&tb->lock);
seq_puts(s, "\n");
return 0;
}
DEBUGFS_ATTR_RW(margining_mode);
static int margining_run_write(void *data, u64 val)
{
struct tb_port *port = data;
struct usb4_port *usb4 = port->usb4;
struct tb_switch *sw = port->sw;
struct tb_margining *margining;
struct tb *tb = sw->tb;
int ret;
if (val != 1)
return -EINVAL;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
/*
* CL states may interfere with lane margining so inform the user know
* and bail out.
*/
if (tb_port_is_clx_enabled(port, TB_CL1 | TB_CL2)) {
tb_port_warn(port,
"CL states are enabled, Disable them with clx=0 and re-connect\n");
ret = -EINVAL;
goto out_unlock;
}
margining = usb4->margining;
if (margining->software) {
tb_port_dbg(port, "running software %s lane margining for lanes %u\n",
margining->time ? "time" : "voltage", margining->lanes);
ret = usb4_port_sw_margin(port, margining->lanes, margining->time,
margining->right_high,
USB4_MARGIN_SW_COUNTER_CLEAR);
if (ret)
goto out_unlock;
ret = usb4_port_sw_margin_errors(port, &margining->results[0]);
} else {
tb_port_dbg(port, "running hardware %s lane margining for lanes %u\n",
margining->time ? "time" : "voltage", margining->lanes);
/* Clear the results */
margining->results[0] = 0;
margining->results[1] = 0;
ret = usb4_port_hw_margin(port, margining->lanes,
margining->ber_level, margining->time,
margining->right_high, margining->results);
}
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEFINE_DEBUGFS_ATTRIBUTE(margining_run_fops, NULL, margining_run_write,
"%llu\n");
static ssize_t margining_results_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
/* Just clear the results */
usb4->margining->results[0] = 0;
usb4->margining->results[1] = 0;
mutex_unlock(&tb->lock);
return count;
}
static void voltage_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, voltage;
tmp = val & USB4_MARGIN_HW_RES_1_MARGIN_MASK;
voltage = tmp * margining->max_voltage_offset / margining->voltage_steps;
seq_printf(s, "%u mV (%u)", voltage, tmp);
if (val & USB4_MARGIN_HW_RES_1_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
}
static void time_margin_show(struct seq_file *s,
const struct tb_margining *margining, u8 val)
{
unsigned int tmp, interval;
tmp = val & USB4_MARGIN_HW_RES_1_MARGIN_MASK;
interval = tmp * margining->max_time_offset / margining->time_steps;
seq_printf(s, "%u mUI (%u)", interval, tmp);
if (val & USB4_MARGIN_HW_RES_1_EXCEEDS)
seq_puts(s, " exceeds maximum");
seq_puts(s, "\n");
}
static int margining_results_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb_margining *margining;
struct tb *tb = port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
margining = usb4->margining;
/* Dump the raw results first */
seq_printf(s, "0x%08x\n", margining->results[0]);
/* Only the hardware margining has two result dwords */
if (!margining->software) {
unsigned int val;
seq_printf(s, "0x%08x\n", margining->results[1]);
if (margining->time) {
if (!margining->lanes || margining->lanes == 7) {
val = margining->results[1];
seq_puts(s, "# lane 0 right time margin: ");
time_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L0_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 0 left time margin: ");
time_margin_show(s, margining, val);
}
if (margining->lanes == 1 || margining->lanes == 7) {
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_RH_MARGIN_SHIFT;
seq_puts(s, "# lane 1 right time margin: ");
time_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 1 left time margin: ");
time_margin_show(s, margining, val);
}
} else {
if (!margining->lanes || margining->lanes == 7) {
val = margining->results[1];
seq_puts(s, "# lane 0 high voltage margin: ");
voltage_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L0_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 0 low voltage margin: ");
voltage_margin_show(s, margining, val);
}
if (margining->lanes == 1 || margining->lanes == 7) {
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_RH_MARGIN_SHIFT;
seq_puts(s, "# lane 1 high voltage margin: ");
voltage_margin_show(s, margining, val);
val = margining->results[1] >>
USB4_MARGIN_HW_RES_1_L1_LL_MARGIN_SHIFT;
seq_puts(s, "# lane 1 low voltage margin: ");
voltage_margin_show(s, margining, val);
}
}
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_results);
static ssize_t margining_test_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (!strcmp(buf, "time") && supports_time(usb4))
usb4->margining->time = true;
else if (!strcmp(buf, "voltage"))
usb4->margining->time = false;
else
ret = -EINVAL;
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_test_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (supports_time(usb4)) {
if (usb4->margining->time)
seq_puts(s, "voltage [time]\n");
else
seq_puts(s, "[voltage] time\n");
} else {
seq_puts(s, "[voltage]\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_test);
static ssize_t margining_margin_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
int ret = 0;
char *buf;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
buf[count - 1] = '\0';
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_free;
}
if (usb4->margining->time) {
if (!strcmp(buf, "left"))
usb4->margining->right_high = false;
else if (!strcmp(buf, "right"))
usb4->margining->right_high = true;
else
ret = -EINVAL;
} else {
if (!strcmp(buf, "low"))
usb4->margining->right_high = false;
else if (!strcmp(buf, "high"))
usb4->margining->right_high = true;
else
ret = -EINVAL;
}
mutex_unlock(&tb->lock);
out_free:
free_page((unsigned long)buf);
return ret ? ret : count;
}
static int margining_margin_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct usb4_port *usb4 = port->usb4;
struct tb *tb = port->sw->tb;
if (mutex_lock_interruptible(&tb->lock))
return -ERESTARTSYS;
if (usb4->margining->time) {
if (usb4->margining->right_high)
seq_puts(s, "left [right]\n");
else
seq_puts(s, "[left] right\n");
} else {
if (usb4->margining->right_high)
seq_puts(s, "low [high]\n");
else
seq_puts(s, "[low] high\n");
}
mutex_unlock(&tb->lock);
return 0;
}
DEBUGFS_ATTR_RW(margining_margin);
static void margining_port_init(struct tb_port *port)
{
struct tb_margining *margining;
struct dentry *dir, *parent;
struct usb4_port *usb4;
char dir_name[10];
unsigned int val;
int ret;
usb4 = port->usb4;
if (!usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
margining = kzalloc(sizeof(*margining), GFP_KERNEL);
if (!margining)
return;
ret = usb4_port_margining_caps(port, margining->caps);
if (ret) {
kfree(margining);
return;
}
usb4->margining = margining;
/* Set the initial mode */
if (supports_software(usb4))
margining->software = true;
val = (margining->caps[0] & USB4_MARGIN_CAP_0_VOLTAGE_STEPS_MASK) >>
USB4_MARGIN_CAP_0_VOLTAGE_STEPS_SHIFT;
margining->voltage_steps = val;
val = (margining->caps[0] & USB4_MARGIN_CAP_0_MAX_VOLTAGE_OFFSET_MASK) >>
USB4_MARGIN_CAP_0_MAX_VOLTAGE_OFFSET_SHIFT;
margining->max_voltage_offset = 74 + val * 2;
if (supports_time(usb4)) {
val = (margining->caps[1] & USB4_MARGIN_CAP_1_TIME_STEPS_MASK) >>
USB4_MARGIN_CAP_1_TIME_STEPS_SHIFT;
margining->time_steps = val;
val = (margining->caps[1] & USB4_MARGIN_CAP_1_TIME_OFFSET_MASK) >>
USB4_MARGIN_CAP_1_TIME_OFFSET_SHIFT;
/*
* Store it as mUI (milli Unit Interval) because we want
* to keep it as integer.
*/
margining->max_time_offset = 200 + 10 * val;
}
dir = debugfs_create_dir("margining", parent);
if (supports_hardware(usb4)) {
val = (margining->caps[1] & USB4_MARGIN_CAP_1_MIN_BER_MASK) >>
USB4_MARGIN_CAP_1_MIN_BER_SHIFT;
margining->min_ber_level = val;
val = (margining->caps[1] & USB4_MARGIN_CAP_1_MAX_BER_MASK) >>
USB4_MARGIN_CAP_1_MAX_BER_SHIFT;
margining->max_ber_level = val;
/* Set the default to minimum */
margining->ber_level = margining->min_ber_level;
debugfs_create_file("ber_level_contour", 0400, dir, port,
&margining_ber_level_fops);
}
debugfs_create_file("caps", 0400, dir, port, &margining_caps_fops);
debugfs_create_file("lanes", 0600, dir, port, &margining_lanes_fops);
debugfs_create_file("mode", 0600, dir, port, &margining_mode_fops);
debugfs_create_file("run", 0600, dir, port, &margining_run_fops);
debugfs_create_file("results", 0600, dir, port, &margining_results_fops);
debugfs_create_file("test", 0600, dir, port, &margining_test_fops);
if (independent_voltage_margins(usb4) ||
(supports_time(usb4) && independent_time_margins(usb4)))
debugfs_create_file("margin", 0600, dir, port, &margining_margin_fops);
}
static void margining_port_remove(struct tb_port *port)
{
struct dentry *parent;
char dir_name[10];
if (!port->usb4)
return;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
parent = debugfs_lookup(dir_name, port->sw->debugfs_dir);
if (parent)
debugfs_remove_recursive(debugfs_lookup("margining", parent));
kfree(port->usb4->margining);
port->usb4->margining = NULL;
}
static void margining_switch_init(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_init(downstream);
margining_port_init(upstream);
}
static void margining_switch_remove(struct tb_switch *sw)
{
struct tb_port *upstream, *downstream;
struct tb_switch *parent_sw;
u64 route = tb_route(sw);
if (!route)
return;
upstream = tb_upstream_port(sw);
parent_sw = tb_switch_parent(sw);
downstream = tb_port_at(route, parent_sw);
margining_port_remove(upstream);
margining_port_remove(downstream);
}
static void margining_xdomain_init(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_init(downstream);
}
static void margining_xdomain_remove(struct tb_xdomain *xd)
{
struct tb_switch *parent_sw;
struct tb_port *downstream;
parent_sw = tb_xdomain_parent(xd);
downstream = tb_port_at(xd->route, parent_sw);
margining_port_remove(downstream);
}
#else
static inline void margining_switch_init(struct tb_switch *sw) { }
static inline void margining_switch_remove(struct tb_switch *sw) { }
static inline void margining_xdomain_init(struct tb_xdomain *xd) { }
static inline void margining_xdomain_remove(struct tb_xdomain *xd) { }
#endif
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
static int port_clear_all_counters(struct tb_port *port)
{
u32 *buf;
int ret;
buf = kcalloc(COUNTER_SET_LEN * port->config.max_counters, sizeof(u32),
GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = tb_port_write(port, buf, TB_CFG_COUNTERS, 0,
COUNTER_SET_LEN * port->config.max_counters);
kfree(buf);
return ret;
}
static ssize_t counters_write(struct file *file, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = port->sw->tb;
char *buf;
int ret;
buf = validate_and_copy_from_user(user_buf, &count);
if (IS_ERR(buf))
return PTR_ERR(buf);
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
/* If written delimiter only, clear all counters in one shot */
if (buf[0] == '\n') {
ret = port_clear_all_counters(port);
} else {
char *line = buf;
u32 val, offset;
ret = -EINVAL;
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
while (parse_line(&line, &offset, &val, 1, 4)) {
ret = tb_port_write(port, &val, TB_CFG_COUNTERS,
offset, 1);
if (ret)
break;
}
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
free_page((unsigned long)buf);
return ret < 0 ? ret : count;
}
static void cap_show_by_dw(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap,
unsigned int offset, u8 cap_id, u8 vsec_id,
int dwords)
{
int i, ret;
u32 data;
for (i = 0; i < dwords; i++) {
if (port)
ret = tb_port_read(port, &data, TB_CFG_PORT, cap + offset + i, 1);
else
ret = tb_sw_read(sw, &data, TB_CFG_SWITCH, cap + offset + i, 1);
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", cap + offset + i);
continue;
}
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n", cap + offset + i,
offset + i, cap_id, vsec_id, data);
}
}
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
static void cap_show(struct seq_file *s, struct tb_switch *sw,
struct tb_port *port, unsigned int cap, u8 cap_id,
u8 vsec_id, int length)
{
int ret, offset = 0;
while (length > 0) {
int i, dwords = min(length, TB_MAX_CONFIG_RW_LENGTH);
u32 data[TB_MAX_CONFIG_RW_LENGTH];
if (port)
ret = tb_port_read(port, data, TB_CFG_PORT, cap + offset,
dwords);
else
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, cap + offset, dwords);
if (ret) {
cap_show_by_dw(s, sw, port, cap, offset, cap_id, vsec_id, length);
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
return;
}
for (i = 0; i < dwords; i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%02x 0x%08x\n",
cap + offset + i, offset + i,
cap_id, vsec_id, data[i]);
}
length -= dwords;
offset += dwords;
}
}
static void port_cap_show(struct tb_port *port, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
u8 vsec_id = 0;
size_t length;
int ret;
ret = tb_port_read(port, &header, TB_CFG_PORT, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
switch (header.basic.cap) {
case TB_PORT_CAP_PHY:
length = PORT_CAP_LANE_LEN;
break;
case TB_PORT_CAP_TIME1:
length = PORT_CAP_TMU_LEN;
break;
case TB_PORT_CAP_POWER:
length = PORT_CAP_POWER_LEN;
break;
case TB_PORT_CAP_ADAP:
if (tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) {
length = PORT_CAP_PCIE_LEN;
} else if (tb_port_is_dpin(port) || tb_port_is_dpout(port)) {
if (usb4_dp_port_bw_mode_supported(port))
length = PORT_CAP_DP_LEN + 1;
else
length = PORT_CAP_DP_LEN;
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
} else if (tb_port_is_usb3_down(port) ||
tb_port_is_usb3_up(port)) {
length = PORT_CAP_USB3_LEN;
} else {
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
break;
case TB_PORT_CAP_VSE:
if (!header.extended_short.length) {
ret = tb_port_read(port, (u32 *)&header + 1, TB_CFG_PORT,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
vsec_id = header.extended_short.vsec_id;
} else {
length = header.extended_short.length;
vsec_id = header.extended_short.vsec_id;
}
break;
case TB_PORT_CAP_USB4:
length = PORT_CAP_USB4_LEN;
break;
default:
seq_printf(s, "0x%04x <unsupported capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
cap_show(s, NULL, port, cap, header.basic.cap, vsec_id, length);
}
static void port_caps_show(struct tb_port *port, struct seq_file *s)
{
int cap;
cap = tb_port_next_cap(port, 0);
while (cap > 0) {
port_cap_show(port, s, cap);
cap = tb_port_next_cap(port, cap);
}
}
static int port_basic_regs_show(struct tb_port *port, struct seq_file *s)
{
u32 data[PORT_CAP_BASIC_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_PORT, 0, ARRAY_SIZE(data));
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(data); i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int port_regs_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = port_basic_regs_show(port, s);
if (ret)
goto out_unlock;
port_caps_show(port, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(port_regs);
static void switch_cap_show(struct tb_switch *sw, struct seq_file *s,
unsigned int cap)
{
struct tb_cap_any header;
int ret, length;
u8 vsec_id = 0;
ret = tb_sw_read(sw, &header, TB_CFG_SWITCH, cap, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n", cap);
return;
}
if (header.basic.cap == TB_SWITCH_CAP_VSE) {
if (!header.extended_short.length) {
ret = tb_sw_read(sw, (u32 *)&header + 1, TB_CFG_SWITCH,
cap + 1, 1);
if (ret) {
seq_printf(s, "0x%04x <capability read failed>\n",
cap + 1);
return;
}
length = header.extended_long.length;
} else {
length = header.extended_short.length;
}
vsec_id = header.extended_short.vsec_id;
} else {
if (header.basic.cap == TB_SWITCH_CAP_TMU) {
length = SWITCH_CAP_TMU_LEN;
} else {
seq_printf(s, "0x%04x <unknown capability 0x%02x>\n",
cap, header.basic.cap);
return;
}
}
cap_show(s, sw, NULL, cap, header.basic.cap, vsec_id, length);
}
static void switch_caps_show(struct tb_switch *sw, struct seq_file *s)
{
int cap;
cap = tb_switch_next_cap(sw, 0);
while (cap > 0) {
switch_cap_show(sw, s, cap);
cap = tb_switch_next_cap(sw, cap);
}
}
static int switch_basic_regs_show(struct tb_switch *sw, struct seq_file *s)
{
u32 data[SWITCH_CAP_BASIC_LEN];
size_t dwords;
int ret, i;
/* Only USB4 has the additional registers */
if (tb_switch_is_usb4(sw))
dwords = ARRAY_SIZE(data);
else
dwords = 7;
ret = tb_sw_read(sw, data, TB_CFG_SWITCH, 0, dwords);
if (ret)
return ret;
for (i = 0; i < dwords; i++)
seq_printf(s, "0x%04x %4d 0x00 0x00 0x%08x\n", i, i, data[i]);
return 0;
}
static int switch_regs_show(struct seq_file *s, void *not_used)
{
struct tb_switch *sw = s->private;
struct tb *tb = sw->tb;
int ret;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset cap_id vs_cap_id value\n");
ret = switch_basic_regs_show(sw, s);
if (ret)
goto out_unlock;
switch_caps_show(sw, s);
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(switch_regs);
static int path_show_one(struct tb_port *port, struct seq_file *s, int hopid)
{
u32 data[PATH_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_HOPS, hopid * PATH_LEN,
ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n", hopid * PATH_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
hopid * PATH_LEN + i, i, hopid, data[i]);
}
return 0;
}
static int path_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int start, i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out_rpm_put;
}
seq_puts(s, "# offset relative_offset in_hop_id value\n");
/* NHI and lane adapters have entry for path 0 */
if (tb_port_is_null(port) || tb_port_is_nhi(port)) {
ret = path_show_one(port, s, 0);
if (ret)
goto out_unlock;
}
start = tb_port_is_nhi(port) ? 1 : TB_PATH_MIN_HOPID;
for (i = start; i <= port->config.max_in_hop_id; i++) {
ret = path_show_one(port, s, i);
if (ret)
break;
}
out_unlock:
mutex_unlock(&tb->lock);
out_rpm_put:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RO(path);
static int counter_set_regs_show(struct tb_port *port, struct seq_file *s,
int counter)
{
u32 data[COUNTER_SET_LEN];
int ret, i;
ret = tb_port_read(port, data, TB_CFG_COUNTERS,
counter * COUNTER_SET_LEN, ARRAY_SIZE(data));
if (ret) {
seq_printf(s, "0x%04x <not accessible>\n",
counter * COUNTER_SET_LEN);
return ret;
}
for (i = 0; i < ARRAY_SIZE(data); i++) {
seq_printf(s, "0x%04x %4d 0x%02x 0x%08x\n",
counter * COUNTER_SET_LEN + i, i, counter, data[i]);
}
return 0;
}
static int counters_show(struct seq_file *s, void *not_used)
{
struct tb_port *port = s->private;
struct tb_switch *sw = port->sw;
struct tb *tb = sw->tb;
int i, ret = 0;
pm_runtime_get_sync(&sw->dev);
if (mutex_lock_interruptible(&tb->lock)) {
ret = -ERESTARTSYS;
goto out;
}
seq_puts(s, "# offset relative_offset counter_id value\n");
for (i = 0; i < port->config.max_counters; i++) {
ret = counter_set_regs_show(port, s, i);
if (ret)
break;
}
mutex_unlock(&tb->lock);
out:
pm_runtime_mark_last_busy(&sw->dev);
pm_runtime_put_autosuspend(&sw->dev);
return ret;
}
DEBUGFS_ATTR_RW(counters);
/**
* tb_switch_debugfs_init() - Add debugfs entries for router
* @sw: Pointer to the router
*
* Adds debugfs directories and files for given router.
*/
void tb_switch_debugfs_init(struct tb_switch *sw)
{
struct dentry *debugfs_dir;
struct tb_port *port;
debugfs_dir = debugfs_create_dir(dev_name(&sw->dev), tb_debugfs_root);
sw->debugfs_dir = debugfs_dir;
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir, sw,
&switch_regs_fops);
tb_switch_for_each_port(sw, port) {
struct dentry *debugfs_dir;
char dir_name[10];
if (port->disabled)
continue;
if (port->config.type == TB_TYPE_INACTIVE)
continue;
snprintf(dir_name, sizeof(dir_name), "port%d", port->port);
debugfs_dir = debugfs_create_dir(dir_name, sw->debugfs_dir);
debugfs_create_file("regs", DEBUGFS_MODE, debugfs_dir,
port, &port_regs_fops);
debugfs_create_file("path", 0400, debugfs_dir, port,
&path_fops);
if (port->config.counters_support)
debugfs_create_file("counters", 0600, debugfs_dir, port,
&counters_fops);
}
margining_switch_init(sw);
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
}
/**
* tb_switch_debugfs_remove() - Remove all router debugfs entries
* @sw: Pointer to the router
*
* Removes all previously added debugfs entries under this router.
*/
void tb_switch_debugfs_remove(struct tb_switch *sw)
{
margining_switch_remove(sw);
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
debugfs_remove_recursive(sw->debugfs_dir);
}
void tb_xdomain_debugfs_init(struct tb_xdomain *xd)
{
margining_xdomain_init(xd);
}
void tb_xdomain_debugfs_remove(struct tb_xdomain *xd)
{
margining_xdomain_remove(xd);
}
/**
* tb_service_debugfs_init() - Add debugfs directory for service
* @svc: Thunderbolt service pointer
*
* Adds debugfs directory for service.
*/
void tb_service_debugfs_init(struct tb_service *svc)
{
svc->debugfs_dir = debugfs_create_dir(dev_name(&svc->dev),
tb_debugfs_root);
}
/**
* tb_service_debugfs_remove() - Remove service debugfs directory
* @svc: Thunderbolt service pointer
*
* Removes the previously created debugfs directory for @svc.
*/
void tb_service_debugfs_remove(struct tb_service *svc)
{
debugfs_remove_recursive(svc->debugfs_dir);
svc->debugfs_dir = NULL;
}
thunderbolt: Add debugfs interface This adds debugfs interface that can be used for debugging possible issues in hardware/software. It exposes router and adapter config spaces through files like this: /sys/kernel/debug/thunderbolt/<DEVICE>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT1>/counters /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/regs /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/path /sys/kernel/debug/thunderbolt/<DEVICE>/<PORT2>/counters ... The "regs" is either the router or port configuration space register dump. The "path" is the port path configuration space and "counters" is the optional counters configuration space. These files contains one register per line so it should be easy to use normal filtering tools to find the registers of interest if needed. The router and adapter regs file becomes writable when CONFIG_USB4_DEBUGFS_WRITE is enabled (which is not supposed to be done in production systems) and in this case the developer can write "offset value" lines there to modify the hardware directly. For convenience this also supports the long format the read side produces (but ignores the additional fields). The counters file can be written even when CONFIG_USB4_DEBUGFS_WRITE is not enabled and it is only used to clear the counter values. Signed-off-by: Gil Fine <gil.fine@intel.com> Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30 01:30:52 +08:00
void tb_debugfs_init(void)
{
tb_debugfs_root = debugfs_create_dir("thunderbolt", NULL);
}
void tb_debugfs_exit(void)
{
debugfs_remove_recursive(tb_debugfs_root);
}