linux/drivers/scsi/esp_scsi.c

2919 lines
69 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* esp_scsi.c: ESP SCSI driver.
*
* Copyright (C) 2007 David S. Miller (davem@davemloft.net)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/completion.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/irqreturn.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_transport_spi.h>
#include "esp_scsi.h"
#define DRV_MODULE_NAME "esp"
#define PFX DRV_MODULE_NAME ": "
#define DRV_VERSION "2.000"
#define DRV_MODULE_RELDATE "April 19, 2007"
/* SCSI bus reset settle time in seconds. */
static int esp_bus_reset_settle = 3;
static u32 esp_debug;
#define ESP_DEBUG_INTR 0x00000001
#define ESP_DEBUG_SCSICMD 0x00000002
#define ESP_DEBUG_RESET 0x00000004
#define ESP_DEBUG_MSGIN 0x00000008
#define ESP_DEBUG_MSGOUT 0x00000010
#define ESP_DEBUG_CMDDONE 0x00000020
#define ESP_DEBUG_DISCONNECT 0x00000040
#define ESP_DEBUG_DATASTART 0x00000080
#define ESP_DEBUG_DATADONE 0x00000100
#define ESP_DEBUG_RECONNECT 0x00000200
#define ESP_DEBUG_AUTOSENSE 0x00000400
#define ESP_DEBUG_EVENT 0x00000800
#define ESP_DEBUG_COMMAND 0x00001000
#define esp_log_intr(f, a...) \
do { if (esp_debug & ESP_DEBUG_INTR) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_reset(f, a...) \
do { if (esp_debug & ESP_DEBUG_RESET) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_msgin(f, a...) \
do { if (esp_debug & ESP_DEBUG_MSGIN) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_msgout(f, a...) \
do { if (esp_debug & ESP_DEBUG_MSGOUT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_cmddone(f, a...) \
do { if (esp_debug & ESP_DEBUG_CMDDONE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_disconnect(f, a...) \
do { if (esp_debug & ESP_DEBUG_DISCONNECT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_datastart(f, a...) \
do { if (esp_debug & ESP_DEBUG_DATASTART) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_datadone(f, a...) \
do { if (esp_debug & ESP_DEBUG_DATADONE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_reconnect(f, a...) \
do { if (esp_debug & ESP_DEBUG_RECONNECT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_autosense(f, a...) \
do { if (esp_debug & ESP_DEBUG_AUTOSENSE) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_event(f, a...) \
do { if (esp_debug & ESP_DEBUG_EVENT) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_log_command(f, a...) \
do { if (esp_debug & ESP_DEBUG_COMMAND) \
shost_printk(KERN_DEBUG, esp->host, f, ## a); \
} while (0)
#define esp_read8(REG) esp->ops->esp_read8(esp, REG)
#define esp_write8(VAL,REG) esp->ops->esp_write8(esp, VAL, REG)
static void esp_log_fill_regs(struct esp *esp,
struct esp_event_ent *p)
{
p->sreg = esp->sreg;
p->seqreg = esp->seqreg;
p->sreg2 = esp->sreg2;
p->ireg = esp->ireg;
p->select_state = esp->select_state;
p->event = esp->event;
}
void scsi_esp_cmd(struct esp *esp, u8 val)
{
struct esp_event_ent *p;
int idx = esp->esp_event_cur;
p = &esp->esp_event_log[idx];
p->type = ESP_EVENT_TYPE_CMD;
p->val = val;
esp_log_fill_regs(esp, p);
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
esp_log_command("cmd[%02x]\n", val);
esp_write8(val, ESP_CMD);
}
EXPORT_SYMBOL(scsi_esp_cmd);
static void esp_send_dma_cmd(struct esp *esp, int len, int max_len, int cmd)
{
if (esp->flags & ESP_FLAG_USE_FIFO) {
int i;
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
for (i = 0; i < len; i++)
esp_write8(esp->command_block[i], ESP_FDATA);
scsi_esp_cmd(esp, cmd);
} else {
if (esp->rev == FASHME)
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
cmd |= ESP_CMD_DMA;
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
len, max_len, 0, cmd);
}
}
static void esp_event(struct esp *esp, u8 val)
{
struct esp_event_ent *p;
int idx = esp->esp_event_cur;
p = &esp->esp_event_log[idx];
p->type = ESP_EVENT_TYPE_EVENT;
p->val = val;
esp_log_fill_regs(esp, p);
esp->esp_event_cur = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
esp->event = val;
}
static void esp_dump_cmd_log(struct esp *esp)
{
int idx = esp->esp_event_cur;
int stop = idx;
shost_printk(KERN_INFO, esp->host, "Dumping command log\n");
do {
struct esp_event_ent *p = &esp->esp_event_log[idx];
shost_printk(KERN_INFO, esp->host,
"ent[%d] %s val[%02x] sreg[%02x] seqreg[%02x] "
"sreg2[%02x] ireg[%02x] ss[%02x] event[%02x]\n",
idx,
p->type == ESP_EVENT_TYPE_CMD ? "CMD" : "EVENT",
p->val, p->sreg, p->seqreg,
p->sreg2, p->ireg, p->select_state, p->event);
idx = (idx + 1) & (ESP_EVENT_LOG_SZ - 1);
} while (idx != stop);
}
static void esp_flush_fifo(struct esp *esp)
{
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP236) {
int lim = 1000;
while (esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES) {
if (--lim == 0) {
shost_printk(KERN_ALERT, esp->host,
"ESP_FF_BYTES will not clear!\n");
break;
}
udelay(1);
}
}
}
static void hme_read_fifo(struct esp *esp)
{
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
int idx = 0;
while (fcnt--) {
esp->fifo[idx++] = esp_read8(ESP_FDATA);
esp->fifo[idx++] = esp_read8(ESP_FDATA);
}
if (esp->sreg2 & ESP_STAT2_F1BYTE) {
esp_write8(0, ESP_FDATA);
esp->fifo[idx++] = esp_read8(ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
}
esp->fifo_cnt = idx;
}
static void esp_set_all_config3(struct esp *esp, u8 val)
{
int i;
for (i = 0; i < ESP_MAX_TARGET; i++)
esp->target[i].esp_config3 = val;
}
/* Reset the ESP chip, _not_ the SCSI bus. */
static void esp_reset_esp(struct esp *esp)
{
u8 family_code, version;
/* Now reset the ESP chip */
scsi_esp_cmd(esp, ESP_CMD_RC);
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
if (esp->rev == FAST)
esp_write8(ESP_CONFIG2_FENAB, ESP_CFG2);
scsi_esp_cmd(esp, ESP_CMD_NULL | ESP_CMD_DMA);
/* This is the only point at which it is reliable to read
* the ID-code for a fast ESP chip variants.
*/
esp->max_period = ((35 * esp->ccycle) / 1000);
if (esp->rev == FAST) {
version = esp_read8(ESP_UID);
family_code = (version & 0xf8) >> 3;
if (family_code == 0x02)
esp->rev = FAS236;
else if (family_code == 0x0a)
esp->rev = FASHME; /* Version is usually '5'. */
else
esp->rev = FAS100A;
esp->min_period = ((4 * esp->ccycle) / 1000);
} else {
esp->min_period = ((5 * esp->ccycle) / 1000);
}
if (esp->rev == FAS236) {
/*
* The AM53c974 chip returns the same ID as FAS236;
* try to configure glitch eater.
*/
u8 config4 = ESP_CONFIG4_GE1;
esp_write8(config4, ESP_CFG4);
config4 = esp_read8(ESP_CFG4);
if (config4 & ESP_CONFIG4_GE1) {
esp->rev = PCSCSI;
esp_write8(esp->config4, ESP_CFG4);
}
}
esp->max_period = (esp->max_period + 3)>>2;
esp->min_period = (esp->min_period + 3)>>2;
esp_write8(esp->config1, ESP_CFG1);
switch (esp->rev) {
case ESP100:
/* nothing to do */
break;
case ESP100A:
esp_write8(esp->config2, ESP_CFG2);
break;
case ESP236:
/* Slow 236 */
esp_write8(esp->config2, ESP_CFG2);
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
break;
case FASHME:
esp->config2 |= (ESP_CONFIG2_HME32 | ESP_CONFIG2_HMEFENAB);
/* fallthrough... */
case FAS236:
case PCSCSI:
/* Fast 236, AM53c974 or HME */
esp_write8(esp->config2, ESP_CFG2);
if (esp->rev == FASHME) {
u8 cfg3 = esp->target[0].esp_config3;
cfg3 |= ESP_CONFIG3_FCLOCK | ESP_CONFIG3_OBPUSH;
if (esp->scsi_id >= 8)
cfg3 |= ESP_CONFIG3_IDBIT3;
esp_set_all_config3(esp, cfg3);
} else {
u32 cfg3 = esp->target[0].esp_config3;
cfg3 |= ESP_CONFIG3_FCLK;
esp_set_all_config3(esp, cfg3);
}
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
if (esp->rev == FASHME) {
esp->radelay = 80;
} else {
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
esp->radelay = 0;
else
esp->radelay = 96;
}
break;
case FAS100A:
/* Fast 100a */
esp_write8(esp->config2, ESP_CFG2);
esp_set_all_config3(esp,
(esp->target[0].esp_config3 |
ESP_CONFIG3_FCLOCK));
esp->prev_cfg3 = esp->target[0].esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
esp->radelay = 32;
break;
default:
break;
}
/* Reload the configuration registers */
esp_write8(esp->cfact, ESP_CFACT);
esp->prev_stp = 0;
esp_write8(esp->prev_stp, ESP_STP);
esp->prev_soff = 0;
esp_write8(esp->prev_soff, ESP_SOFF);
esp_write8(esp->neg_defp, ESP_TIMEO);
/* Eat any bitrot in the chip */
esp_read8(ESP_INTRPT);
udelay(100);
}
static void esp_map_dma(struct esp *esp, struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
struct scatterlist *sg = scsi_sglist(cmd);
int total = 0, i;
struct scatterlist *s;
if (cmd->sc_data_direction == DMA_NONE)
return;
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
/*
* For pseudo DMA and PIO we need the virtual address instead of
* a dma address, so perform an identity mapping.
*/
spriv->num_sg = scsi_sg_count(cmd);
scsi_for_each_sg(cmd, s, spriv->num_sg, i) {
s->dma_address = (uintptr_t)sg_virt(s);
total += sg_dma_len(s);
}
} else {
spriv->num_sg = scsi_dma_map(cmd);
scsi_for_each_sg(cmd, s, spriv->num_sg, i)
total += sg_dma_len(s);
}
spriv->cur_residue = sg_dma_len(sg);
spriv->prv_sg = NULL;
spriv->cur_sg = sg;
spriv->tot_residue = total;
}
static dma_addr_t esp_cur_dma_addr(struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
return ent->sense_dma +
(ent->sense_ptr - cmd->sense_buffer);
}
return sg_dma_address(p->cur_sg) +
(sg_dma_len(p->cur_sg) -
p->cur_residue);
}
static unsigned int esp_cur_dma_len(struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
return SCSI_SENSE_BUFFERSIZE -
(ent->sense_ptr - cmd->sense_buffer);
}
return p->cur_residue;
}
static void esp_advance_dma(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd, unsigned int len)
{
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->sense_ptr += len;
return;
}
p->cur_residue -= len;
p->tot_residue -= len;
if (p->cur_residue < 0 || p->tot_residue < 0) {
shost_printk(KERN_ERR, esp->host,
"Data transfer overflow.\n");
shost_printk(KERN_ERR, esp->host,
"cur_residue[%d] tot_residue[%d] len[%u]\n",
p->cur_residue, p->tot_residue, len);
p->cur_residue = 0;
p->tot_residue = 0;
}
if (!p->cur_residue && p->tot_residue) {
p->prv_sg = p->cur_sg;
p->cur_sg = sg_next(p->cur_sg);
p->cur_residue = sg_dma_len(p->cur_sg);
}
}
static void esp_unmap_dma(struct esp *esp, struct scsi_cmnd *cmd)
{
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
scsi_dma_unmap(cmd);
}
static void esp_save_pointers(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->saved_sense_ptr = ent->sense_ptr;
return;
}
ent->saved_cur_residue = spriv->cur_residue;
ent->saved_prv_sg = spriv->prv_sg;
ent->saved_cur_sg = spriv->cur_sg;
ent->saved_tot_residue = spriv->tot_residue;
}
static void esp_restore_pointers(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct esp_cmd_priv *spriv = ESP_CMD_PRIV(cmd);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->sense_ptr = ent->saved_sense_ptr;
return;
}
spriv->cur_residue = ent->saved_cur_residue;
spriv->prv_sg = ent->saved_prv_sg;
spriv->cur_sg = ent->saved_cur_sg;
spriv->tot_residue = ent->saved_tot_residue;
}
static void esp_write_tgt_config3(struct esp *esp, int tgt)
{
if (esp->rev > ESP100A) {
u8 val = esp->target[tgt].esp_config3;
if (val != esp->prev_cfg3) {
esp->prev_cfg3 = val;
esp_write8(val, ESP_CFG3);
}
}
}
static void esp_write_tgt_sync(struct esp *esp, int tgt)
{
u8 off = esp->target[tgt].esp_offset;
u8 per = esp->target[tgt].esp_period;
if (off != esp->prev_soff) {
esp->prev_soff = off;
esp_write8(off, ESP_SOFF);
}
if (per != esp->prev_stp) {
esp->prev_stp = per;
esp_write8(per, ESP_STP);
}
}
static u32 esp_dma_length_limit(struct esp *esp, u32 dma_addr, u32 dma_len)
{
if (esp->rev == FASHME) {
/* Arbitrary segment boundaries, 24-bit counts. */
if (dma_len > (1U << 24))
dma_len = (1U << 24);
} else {
u32 base, end;
/* ESP chip limits other variants by 16-bits of transfer
* count. Actually on FAS100A and FAS236 we could get
* 24-bits of transfer count by enabling ESP_CONFIG2_FENAB
* in the ESP_CFG2 register but that causes other unwanted
* changes so we don't use it currently.
*/
if (dma_len > (1U << 16))
dma_len = (1U << 16);
/* All of the DMA variants hooked up to these chips
* cannot handle crossing a 24-bit address boundary.
*/
base = dma_addr & ((1U << 24) - 1U);
end = base + dma_len;
if (end > (1U << 24))
end = (1U <<24);
dma_len = end - base;
}
return dma_len;
}
static int esp_need_to_nego_wide(struct esp_target_data *tp)
{
struct scsi_target *target = tp->starget;
return spi_width(target) != tp->nego_goal_width;
}
static int esp_need_to_nego_sync(struct esp_target_data *tp)
{
struct scsi_target *target = tp->starget;
/* When offset is zero, period is "don't care". */
if (!spi_offset(target) && !tp->nego_goal_offset)
return 0;
if (spi_offset(target) == tp->nego_goal_offset &&
spi_period(target) == tp->nego_goal_period)
return 0;
return 1;
}
static int esp_alloc_lun_tag(struct esp_cmd_entry *ent,
struct esp_lun_data *lp)
{
if (!ent->orig_tag[0]) {
/* Non-tagged, slot already taken? */
if (lp->non_tagged_cmd)
return -EBUSY;
if (lp->hold) {
/* We are being held by active tagged
* commands.
*/
if (lp->num_tagged)
return -EBUSY;
/* Tagged commands completed, we can unplug
* the queue and run this untagged command.
*/
lp->hold = 0;
} else if (lp->num_tagged) {
/* Plug the queue until num_tagged decreases
* to zero in esp_free_lun_tag.
*/
lp->hold = 1;
return -EBUSY;
}
lp->non_tagged_cmd = ent;
return 0;
}
/* Tagged command. Check that it isn't blocked by a non-tagged one. */
if (lp->non_tagged_cmd || lp->hold)
return -EBUSY;
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]]);
lp->tagged_cmds[ent->orig_tag[1]] = ent;
lp->num_tagged++;
return 0;
}
static void esp_free_lun_tag(struct esp_cmd_entry *ent,
struct esp_lun_data *lp)
{
if (ent->orig_tag[0]) {
BUG_ON(lp->tagged_cmds[ent->orig_tag[1]] != ent);
lp->tagged_cmds[ent->orig_tag[1]] = NULL;
lp->num_tagged--;
} else {
BUG_ON(lp->non_tagged_cmd != ent);
lp->non_tagged_cmd = NULL;
}
}
static void esp_map_sense(struct esp *esp, struct esp_cmd_entry *ent)
{
ent->sense_ptr = ent->cmd->sense_buffer;
if (esp->flags & ESP_FLAG_NO_DMA_MAP) {
ent->sense_dma = (uintptr_t)ent->sense_ptr;
return;
}
ent->sense_dma = dma_map_single(esp->dev, ent->sense_ptr,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
}
static void esp_unmap_sense(struct esp *esp, struct esp_cmd_entry *ent)
{
if (!(esp->flags & ESP_FLAG_NO_DMA_MAP))
dma_unmap_single(esp->dev, ent->sense_dma,
SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
ent->sense_ptr = NULL;
}
/* When a contingent allegiance conditon is created, we force feed a
* REQUEST_SENSE command to the device to fetch the sense data. I
* tried many other schemes, relying on the scsi error handling layer
* to send out the REQUEST_SENSE automatically, but this was difficult
* to get right especially in the presence of applications like smartd
* which use SG_IO to send out their own REQUEST_SENSE commands.
*/
static void esp_autosense(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
struct scsi_device *dev = cmd->device;
int tgt, lun;
u8 *p, val;
tgt = dev->id;
lun = dev->lun;
if (!ent->sense_ptr) {
esp_log_autosense("Doing auto-sense for tgt[%d] lun[%d]\n",
tgt, lun);
esp_map_sense(esp, ent);
}
ent->saved_sense_ptr = ent->sense_ptr;
esp->active_cmd = ent;
p = esp->command_block;
esp->msg_out_len = 0;
*p++ = IDENTIFY(0, lun);
*p++ = REQUEST_SENSE;
*p++ = ((dev->scsi_level <= SCSI_2) ?
(lun << 5) : 0);
*p++ = 0;
*p++ = 0;
*p++ = SCSI_SENSE_BUFFERSIZE;
*p++ = 0;
esp->select_state = ESP_SELECT_BASIC;
val = tgt;
if (esp->rev == FASHME)
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
esp_write8(val, ESP_BUSID);
esp_write_tgt_sync(esp, tgt);
esp_write_tgt_config3(esp, tgt);
val = (p - esp->command_block);
esp_send_dma_cmd(esp, val, 16, ESP_CMD_SELA);
}
static struct esp_cmd_entry *find_and_prep_issuable_command(struct esp *esp)
{
struct esp_cmd_entry *ent;
list_for_each_entry(ent, &esp->queued_cmds, list) {
struct scsi_cmnd *cmd = ent->cmd;
struct scsi_device *dev = cmd->device;
struct esp_lun_data *lp = dev->hostdata;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
ent->tag[0] = 0;
ent->tag[1] = 0;
return ent;
}
if (!spi_populate_tag_msg(&ent->tag[0], cmd)) {
ent->tag[0] = 0;
ent->tag[1] = 0;
}
ent->orig_tag[0] = ent->tag[0];
ent->orig_tag[1] = ent->tag[1];
if (esp_alloc_lun_tag(ent, lp) < 0)
continue;
return ent;
}
return NULL;
}
static void esp_maybe_execute_command(struct esp *esp)
{
struct esp_target_data *tp;
struct scsi_device *dev;
struct scsi_cmnd *cmd;
struct esp_cmd_entry *ent;
bool select_and_stop = false;
int tgt, lun, i;
u32 val, start_cmd;
u8 *p;
if (esp->active_cmd ||
(esp->flags & ESP_FLAG_RESETTING))
return;
ent = find_and_prep_issuable_command(esp);
if (!ent)
return;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
esp_autosense(esp, ent);
return;
}
cmd = ent->cmd;
dev = cmd->device;
tgt = dev->id;
lun = dev->lun;
tp = &esp->target[tgt];
list_move(&ent->list, &esp->active_cmds);
esp->active_cmd = ent;
esp_map_dma(esp, cmd);
esp_save_pointers(esp, ent);
if (!(cmd->cmd_len == 6 || cmd->cmd_len == 10 || cmd->cmd_len == 12))
select_and_stop = true;
p = esp->command_block;
esp->msg_out_len = 0;
if (tp->flags & ESP_TGT_CHECK_NEGO) {
/* Need to negotiate. If the target is broken
* go for synchronous transfers and non-wide.
*/
if (tp->flags & ESP_TGT_BROKEN) {
tp->flags &= ~ESP_TGT_DISCONNECT;
tp->nego_goal_period = 0;
tp->nego_goal_offset = 0;
tp->nego_goal_width = 0;
tp->nego_goal_tags = 0;
}
/* If the settings are not changing, skip this. */
if (spi_width(tp->starget) == tp->nego_goal_width &&
spi_period(tp->starget) == tp->nego_goal_period &&
spi_offset(tp->starget) == tp->nego_goal_offset) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
goto build_identify;
}
if (esp->rev == FASHME && esp_need_to_nego_wide(tp)) {
esp->msg_out_len =
spi_populate_width_msg(&esp->msg_out[0],
(tp->nego_goal_width ?
1 : 0));
tp->flags |= ESP_TGT_NEGO_WIDE;
} else if (esp_need_to_nego_sync(tp)) {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
} else {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
}
/* If there are multiple message bytes, use Select and Stop */
if (esp->msg_out_len)
select_and_stop = true;
}
build_identify:
*p++ = IDENTIFY(tp->flags & ESP_TGT_DISCONNECT, lun);
if (ent->tag[0] && esp->rev == ESP100) {
/* ESP100 lacks select w/atn3 command, use select
* and stop instead.
*/
select_and_stop = true;
}
if (select_and_stop) {
esp->cmd_bytes_left = cmd->cmd_len;
esp->cmd_bytes_ptr = &cmd->cmnd[0];
if (ent->tag[0]) {
for (i = esp->msg_out_len - 1;
i >= 0; i--)
esp->msg_out[i + 2] = esp->msg_out[i];
esp->msg_out[0] = ent->tag[0];
esp->msg_out[1] = ent->tag[1];
esp->msg_out_len += 2;
}
start_cmd = ESP_CMD_SELAS;
esp->select_state = ESP_SELECT_MSGOUT;
} else {
start_cmd = ESP_CMD_SELA;
if (ent->tag[0]) {
*p++ = ent->tag[0];
*p++ = ent->tag[1];
start_cmd = ESP_CMD_SA3;
}
for (i = 0; i < cmd->cmd_len; i++)
*p++ = cmd->cmnd[i];
esp->select_state = ESP_SELECT_BASIC;
}
val = tgt;
if (esp->rev == FASHME)
val |= ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT;
esp_write8(val, ESP_BUSID);
esp_write_tgt_sync(esp, tgt);
esp_write_tgt_config3(esp, tgt);
val = (p - esp->command_block);
if (esp_debug & ESP_DEBUG_SCSICMD) {
printk("ESP: tgt[%d] lun[%d] scsi_cmd [ ", tgt, lun);
for (i = 0; i < cmd->cmd_len; i++)
printk("%02x ", cmd->cmnd[i]);
printk("]\n");
}
esp_send_dma_cmd(esp, val, 16, start_cmd);
}
static struct esp_cmd_entry *esp_get_ent(struct esp *esp)
{
struct list_head *head = &esp->esp_cmd_pool;
struct esp_cmd_entry *ret;
if (list_empty(head)) {
ret = kzalloc(sizeof(struct esp_cmd_entry), GFP_ATOMIC);
} else {
ret = list_entry(head->next, struct esp_cmd_entry, list);
list_del(&ret->list);
memset(ret, 0, sizeof(*ret));
}
return ret;
}
static void esp_put_ent(struct esp *esp, struct esp_cmd_entry *ent)
{
list_add(&ent->list, &esp->esp_cmd_pool);
}
static void esp_cmd_is_done(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd, unsigned int result)
{
struct scsi_device *dev = cmd->device;
int tgt = dev->id;
int lun = dev->lun;
esp->active_cmd = NULL;
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, dev->hostdata);
cmd->result = result;
if (ent->eh_done) {
complete(ent->eh_done);
ent->eh_done = NULL;
}
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE) {
esp_unmap_sense(esp, ent);
/* Restore the message/status bytes to what we actually
* saw originally. Also, report that we are providing
* the sense data.
*/
cmd->result = ((DRIVER_SENSE << 24) |
(DID_OK << 16) |
(COMMAND_COMPLETE << 8) |
(SAM_STAT_CHECK_CONDITION << 0));
ent->flags &= ~ESP_CMD_FLAG_AUTOSENSE;
if (esp_debug & ESP_DEBUG_AUTOSENSE) {
int i;
printk("esp%d: tgt[%d] lun[%d] AUTO SENSE[ ",
esp->host->unique_id, tgt, lun);
for (i = 0; i < 18; i++)
printk("%02x ", cmd->sense_buffer[i]);
printk("]\n");
}
}
cmd->scsi_done(cmd);
list_del(&ent->list);
esp_put_ent(esp, ent);
esp_maybe_execute_command(esp);
}
static unsigned int compose_result(unsigned int status, unsigned int message,
unsigned int driver_code)
{
return (status | (message << 8) | (driver_code << 16));
}
static void esp_event_queue_full(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_device *dev = ent->cmd->device;
struct esp_lun_data *lp = dev->hostdata;
scsi_track_queue_full(dev, lp->num_tagged - 1);
}
static int esp_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
struct scsi_device *dev = cmd->device;
struct esp *esp = shost_priv(dev->host);
struct esp_cmd_priv *spriv;
struct esp_cmd_entry *ent;
ent = esp_get_ent(esp);
if (!ent)
return SCSI_MLQUEUE_HOST_BUSY;
ent->cmd = cmd;
cmd->scsi_done = done;
spriv = ESP_CMD_PRIV(cmd);
spriv->num_sg = 0;
list_add_tail(&ent->list, &esp->queued_cmds);
esp_maybe_execute_command(esp);
return 0;
}
static DEF_SCSI_QCMD(esp_queuecommand)
static int esp_check_gross_error(struct esp *esp)
{
if (esp->sreg & ESP_STAT_SPAM) {
/* Gross Error, could be one of:
* - top of fifo overwritten
* - top of command register overwritten
* - DMA programmed with wrong direction
* - improper phase change
*/
shost_printk(KERN_ERR, esp->host,
"Gross error sreg[%02x]\n", esp->sreg);
/* XXX Reset the chip. XXX */
return 1;
}
return 0;
}
static int esp_check_spur_intr(struct esp *esp)
{
switch (esp->rev) {
case ESP100:
case ESP100A:
/* The interrupt pending bit of the status register cannot
* be trusted on these revisions.
*/
esp->sreg &= ~ESP_STAT_INTR;
break;
default:
if (!(esp->sreg & ESP_STAT_INTR)) {
if (esp->ireg & ESP_INTR_SR)
return 1;
/* If the DMA is indicating interrupt pending and the
* ESP is not, the only possibility is a DMA error.
*/
if (!esp->ops->dma_error(esp)) {
shost_printk(KERN_ERR, esp->host,
"Spurious irq, sreg=%02x.\n",
esp->sreg);
return -1;
}
shost_printk(KERN_ERR, esp->host, "DMA error\n");
/* XXX Reset the chip. XXX */
return -1;
}
break;
}
return 0;
}
static void esp_schedule_reset(struct esp *esp)
{
2019-03-26 03:32:28 +08:00
esp_log_reset("esp_schedule_reset() from %ps\n",
__builtin_return_address(0));
esp->flags |= ESP_FLAG_RESETTING;
esp_event(esp, ESP_EVENT_RESET);
}
/* In order to avoid having to add a special half-reconnected state
* into the driver we just sit here and poll through the rest of
* the reselection process to get the tag message bytes.
*/
static struct esp_cmd_entry *esp_reconnect_with_tag(struct esp *esp,
struct esp_lun_data *lp)
{
struct esp_cmd_entry *ent;
int i;
if (!lp->num_tagged) {
shost_printk(KERN_ERR, esp->host,
"Reconnect w/num_tagged==0\n");
return NULL;
}
esp_log_reconnect("reconnect tag, ");
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
if (esp->ops->irq_pending(esp))
break;
}
if (i == ESP_QUICKIRQ_LIMIT) {
shost_printk(KERN_ERR, esp->host,
"Reconnect IRQ1 timeout\n");
return NULL;
}
esp->sreg = esp_read8(ESP_STATUS);
esp->ireg = esp_read8(ESP_INTRPT);
esp_log_reconnect("IRQ(%d:%x:%x), ",
i, esp->ireg, esp->sreg);
if (esp->ireg & ESP_INTR_DC) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, got disconnect.\n");
return NULL;
}
if ((esp->sreg & ESP_STAT_PMASK) != ESP_MIP) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, not MIP sreg[%02x].\n", esp->sreg);
return NULL;
}
/* DMA in the tag bytes... */
esp->command_block[0] = 0xff;
esp->command_block[1] = 0xff;
esp->ops->send_dma_cmd(esp, esp->command_block_dma,
2, 2, 1, ESP_CMD_DMA | ESP_CMD_TI);
/* ACK the message. */
scsi_esp_cmd(esp, ESP_CMD_MOK);
for (i = 0; i < ESP_RESELECT_TAG_LIMIT; i++) {
if (esp->ops->irq_pending(esp)) {
esp->sreg = esp_read8(ESP_STATUS);
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->ireg & ESP_INTR_FDONE)
break;
}
udelay(1);
}
if (i == ESP_RESELECT_TAG_LIMIT) {
shost_printk(KERN_ERR, esp->host, "Reconnect IRQ2 timeout\n");
return NULL;
}
esp->ops->dma_drain(esp);
esp->ops->dma_invalidate(esp);
esp_log_reconnect("IRQ2(%d:%x:%x) tag[%x:%x]\n",
i, esp->ireg, esp->sreg,
esp->command_block[0],
esp->command_block[1]);
if (esp->command_block[0] < SIMPLE_QUEUE_TAG ||
esp->command_block[0] > ORDERED_QUEUE_TAG) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, bad tag type %02x.\n",
esp->command_block[0]);
return NULL;
}
ent = lp->tagged_cmds[esp->command_block[1]];
if (!ent) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, no entry for tag %02x.\n",
esp->command_block[1]);
return NULL;
}
return ent;
}
static int esp_reconnect(struct esp *esp)
{
struct esp_cmd_entry *ent;
struct esp_target_data *tp;
struct esp_lun_data *lp;
struct scsi_device *dev;
int target, lun;
BUG_ON(esp->active_cmd);
if (esp->rev == FASHME) {
/* FASHME puts the target and lun numbers directly
* into the fifo.
*/
target = esp->fifo[0];
lun = esp->fifo[1] & 0x7;
} else {
u8 bits = esp_read8(ESP_FDATA);
/* Older chips put the lun directly into the fifo, but
* the target is given as a sample of the arbitration
* lines on the bus at reselection time. So we should
* see the ID of the ESP and the one reconnecting target
* set in the bitmap.
*/
if (!(bits & esp->scsi_id_mask))
goto do_reset;
bits &= ~esp->scsi_id_mask;
if (!bits || (bits & (bits - 1)))
goto do_reset;
target = ffs(bits) - 1;
lun = (esp_read8(ESP_FDATA) & 0x7);
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP100) {
u8 ireg = esp_read8(ESP_INTRPT);
/* This chip has a bug during reselection that can
* cause a spurious illegal-command interrupt, which
* we simply ACK here. Another possibility is a bus
* reset so we must check for that.
*/
if (ireg & ESP_INTR_SR)
goto do_reset;
}
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
esp_write_tgt_sync(esp, target);
esp_write_tgt_config3(esp, target);
scsi_esp_cmd(esp, ESP_CMD_MOK);
if (esp->rev == FASHME)
esp_write8(target | ESP_BUSID_RESELID | ESP_BUSID_CTR32BIT,
ESP_BUSID);
tp = &esp->target[target];
dev = __scsi_device_lookup_by_target(tp->starget, lun);
if (!dev) {
shost_printk(KERN_ERR, esp->host,
"Reconnect, no lp tgt[%u] lun[%u]\n",
target, lun);
goto do_reset;
}
lp = dev->hostdata;
ent = lp->non_tagged_cmd;
if (!ent) {
ent = esp_reconnect_with_tag(esp, lp);
if (!ent)
goto do_reset;
}
esp->active_cmd = ent;
esp_event(esp, ESP_EVENT_CHECK_PHASE);
esp_restore_pointers(esp, ent);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
do_reset:
esp_schedule_reset(esp);
return 0;
}
static int esp_finish_select(struct esp *esp)
{
struct esp_cmd_entry *ent;
struct scsi_cmnd *cmd;
/* No longer selecting. */
esp->select_state = ESP_SELECT_NONE;
esp->seqreg = esp_read8(ESP_SSTEP) & ESP_STEP_VBITS;
ent = esp->active_cmd;
cmd = ent->cmd;
if (esp->ops->dma_error(esp)) {
/* If we see a DMA error during or as a result of selection,
* all bets are off.
*/
esp_schedule_reset(esp);
esp_cmd_is_done(esp, ent, cmd, (DID_ERROR << 16));
return 0;
}
esp->ops->dma_invalidate(esp);
if (esp->ireg == (ESP_INTR_RSEL | ESP_INTR_FDONE)) {
struct esp_target_data *tp = &esp->target[cmd->device->id];
/* Carefully back out of the selection attempt. Release
* resources (such as DMA mapping & TAG) and reset state (such
* as message out and command delivery variables).
*/
if (!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, cmd->device->hostdata);
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_NEGO_WIDE);
esp->cmd_bytes_ptr = NULL;
esp->cmd_bytes_left = 0;
} else {
esp_unmap_sense(esp, ent);
}
/* Now that the state is unwound properly, put back onto
* the issue queue. This command is no longer active.
*/
list_move(&ent->list, &esp->queued_cmds);
esp->active_cmd = NULL;
/* Return value ignored by caller, it directly invokes
* esp_reconnect().
*/
return 0;
}
if (esp->ireg == ESP_INTR_DC) {
struct scsi_device *dev = cmd->device;
/* Disconnect. Make sure we re-negotiate sync and
* wide parameters if this target starts responding
* again in the future.
*/
esp->target[dev->id].flags |= ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_ESEL);
esp_cmd_is_done(esp, ent, cmd, (DID_BAD_TARGET << 16));
return 1;
}
if (esp->ireg == (ESP_INTR_FDONE | ESP_INTR_BSERV)) {
/* Selection successful. On pre-FAST chips we have
* to do a NOP and possibly clean out the FIFO.
*/
if (esp->rev <= ESP236) {
int fcnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
scsi_esp_cmd(esp, ESP_CMD_NULL);
if (!fcnt &&
(!esp->prev_soff ||
((esp->sreg & ESP_STAT_PMASK) != ESP_DIP)))
esp_flush_fifo(esp);
}
/* If we are doing a Select And Stop command, negotiation, etc.
* we'll do the right thing as we transition to the next phase.
*/
esp_event(esp, ESP_EVENT_CHECK_PHASE);
return 0;
}
shost_printk(KERN_INFO, esp->host,
"Unexpected selection completion ireg[%x]\n", esp->ireg);
esp_schedule_reset(esp);
return 0;
}
static int esp_data_bytes_sent(struct esp *esp, struct esp_cmd_entry *ent,
struct scsi_cmnd *cmd)
{
int fifo_cnt, ecount, bytes_sent, flush_fifo;
fifo_cnt = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
if (esp->prev_cfg3 & ESP_CONFIG3_EWIDE)
fifo_cnt <<= 1;
ecount = 0;
if (!(esp->sreg & ESP_STAT_TCNT)) {
ecount = ((unsigned int)esp_read8(ESP_TCLOW) |
(((unsigned int)esp_read8(ESP_TCMED)) << 8));
if (esp->rev == FASHME)
ecount |= ((unsigned int)esp_read8(FAS_RLO)) << 16;
if (esp->rev == PCSCSI && (esp->config2 & ESP_CONFIG2_FENAB))
ecount |= ((unsigned int)esp_read8(ESP_TCHI)) << 16;
}
bytes_sent = esp->data_dma_len;
bytes_sent -= ecount;
bytes_sent -= esp->send_cmd_residual;
/*
* The am53c974 has a DMA 'pecularity'. The doc states:
* In some odd byte conditions, one residual byte will
* be left in the SCSI FIFO, and the FIFO Flags will
* never count to '0 '. When this happens, the residual
* byte should be retrieved via PIO following completion
* of the BLAST operation.
*/
if (fifo_cnt == 1 && ent->flags & ESP_CMD_FLAG_RESIDUAL) {
size_t count = 1;
size_t offset = bytes_sent;
u8 bval = esp_read8(ESP_FDATA);
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
ent->sense_ptr[bytes_sent] = bval;
else {
struct esp_cmd_priv *p = ESP_CMD_PRIV(cmd);
u8 *ptr;
ptr = scsi_kmap_atomic_sg(p->cur_sg, p->num_sg,
&offset, &count);
if (likely(ptr)) {
*(ptr + offset) = bval;
scsi_kunmap_atomic_sg(ptr);
}
}
bytes_sent += fifo_cnt;
ent->flags &= ~ESP_CMD_FLAG_RESIDUAL;
}
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
bytes_sent -= fifo_cnt;
flush_fifo = 0;
if (!esp->prev_soff) {
/* Synchronous data transfer, always flush fifo. */
flush_fifo = 1;
} else {
if (esp->rev == ESP100) {
u32 fflags, phase;
/* ESP100 has a chip bug where in the synchronous data
* phase it can mistake a final long REQ pulse from the
* target as an extra data byte. Fun.
*
* To detect this case we resample the status register
* and fifo flags. If we're still in a data phase and
* we see spurious chunks in the fifo, we return error
* to the caller which should reset and set things up
* such that we only try future transfers to this
* target in synchronous mode.
*/
esp->sreg = esp_read8(ESP_STATUS);
phase = esp->sreg & ESP_STAT_PMASK;
fflags = esp_read8(ESP_FFLAGS);
if ((phase == ESP_DOP &&
(fflags & ESP_FF_ONOTZERO)) ||
(phase == ESP_DIP &&
(fflags & ESP_FF_FBYTES)))
return -1;
}
if (!(ent->flags & ESP_CMD_FLAG_WRITE))
flush_fifo = 1;
}
if (flush_fifo)
esp_flush_fifo(esp);
return bytes_sent;
}
static void esp_setsync(struct esp *esp, struct esp_target_data *tp,
u8 scsi_period, u8 scsi_offset,
u8 esp_stp, u8 esp_soff)
{
spi_period(tp->starget) = scsi_period;
spi_offset(tp->starget) = scsi_offset;
spi_width(tp->starget) = (tp->flags & ESP_TGT_WIDE) ? 1 : 0;
if (esp_soff) {
esp_stp &= 0x1f;
esp_soff |= esp->radelay;
if (esp->rev >= FAS236) {
u8 bit = ESP_CONFIG3_FSCSI;
if (esp->rev >= FAS100A)
bit = ESP_CONFIG3_FAST;
if (scsi_period < 50) {
if (esp->rev == FASHME)
esp_soff &= ~esp->radelay;
tp->esp_config3 |= bit;
} else {
tp->esp_config3 &= ~bit;
}
esp->prev_cfg3 = tp->esp_config3;
esp_write8(esp->prev_cfg3, ESP_CFG3);
}
}
tp->esp_period = esp->prev_stp = esp_stp;
tp->esp_offset = esp->prev_soff = esp_soff;
esp_write8(esp_soff, ESP_SOFF);
esp_write8(esp_stp, ESP_STP);
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
spi_display_xfer_agreement(tp->starget);
}
static void esp_msgin_reject(struct esp *esp)
{
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
struct esp_target_data *tp;
int tgt;
tgt = cmd->device->id;
tp = &esp->target[tgt];
if (tp->flags & ESP_TGT_NEGO_WIDE) {
tp->flags &= ~(ESP_TGT_NEGO_WIDE | ESP_TGT_WIDE);
if (!esp_need_to_nego_sync(tp)) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_RATN);
} else {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
return;
}
if (tp->flags & ESP_TGT_NEGO_SYNC) {
tp->flags &= ~(ESP_TGT_NEGO_SYNC | ESP_TGT_CHECK_NEGO);
tp->esp_period = 0;
tp->esp_offset = 0;
esp_setsync(esp, tp, 0, 0, 0, 0);
scsi_esp_cmd(esp, ESP_CMD_RATN);
return;
}
scsi: esp_scsi: Avoid sending ABORT TASK SET messages If an LLD aborts a task set, it should complete the affected commands with the appropriate result code. In a couple of cases esp_scsi doesn't do so. When the initiator receives an unhandled message, just respond by sending a MESSAGE REJECT instead of ABORT TASK SET, and thus avoid the issue. OTOH, a MESSAGE REJECT sent by a target can be taken as an indication that the initiator messed up somehow. It isn't always possible to abort correctly, so just fall back on a SCSI bus reset, which will complete the affected commands with the appropriate result code. For example, certain Apple (Sony) CD-ROM drives, when the non-existent LUN 1 is scanned, can't handle the INQUIRY command. The problem is not detected until the initiator gets a MESSAGE REJECT. Whenever esp_scsi sees that message, it raises ATN and sends ABORT TASK SET -- but neglects to complete the failed scmd. The target then goes into DATA OUT phase (probably bogus), while the ESP device goes into disconnected mode (surprising, given the bus phase). The next Transfer Information command from esp_scsi then causes an Invalid Command interrupt because that command is not valid when in disconnected mode: mac_esp: using PDMA for controller 0 mac_esp mac_esp.0: esp0: regs[50f10000:(null)] irq[19] mac_esp mac_esp.0: esp0: is a ESP236, 16 MHz (ccf=4), SCSI ID 7 scsi host0: esp scsi 0:0:0:0: Direct-Access SEAGATE ST318416N 0010 PQ: 0 ANSI: 3 scsi target0:0:0: Beginning Domain Validation scsi target0:0:0: asynchronous scsi target0:0:0: Domain Validation skipping write tests scsi target0:0:0: Ending Domain Validation scsi 0:0:3:0: CD-ROM SONY CD-ROM CDU-8003A 1.9a PQ: 0 ANSI: 2 CCS scsi target0:0:3: Beginning Domain Validation scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:3: Domain Validation skipping write tests scsi target0:0:3: Ending Domain Validation scsi host0: unexpected IREG 40 scsi host0: Dumping command log scsi host0: ent[2] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[3] CMD val[00] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[4] EVENT val[0d] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[5] EVENT val[03] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[6] CMD val[90] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[7] EVENT val[05] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[8] EVENT val[0d] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[05] scsi host0: ent[9] CMD val[01] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[10] CMD val[11] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[11] EVENT val[0b] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[12] CMD val[12] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[13] EVENT val[0c] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[14] CMD val[44] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[00] event[0c] scsi host0: ent[15] CMD val[01] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[16] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[17] CMD val[00] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[18] EVENT val[0d] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[19] EVENT val[06] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[20] CMD val[01] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[21] CMD val[10] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[22] CMD val[1a] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[23] CMD val[12] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[24] EVENT val[0d] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[25] EVENT val[09] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[26] CMD val[01] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[27] CMD val[10] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[28] EVENT val[0a] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[29] EVENT val[0d] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0a] scsi host0: ent[30] EVENT val[04] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0d] scsi host0: ent[31] CMD val[01] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[0] CMD val[90] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[1] EVENT val[05] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:0: asynchronous sr 0:0:3:0: [sr0] scsi-1 drive cdrom: Uniform CD-ROM driver Revision: 3.20 sd 0:0:0:0: Attached scsi generic sg0 type 0 sr 0:0:3:0: Attached scsi generic sg1 type 5 This patch resolves this issue because the bus reset causes the INQUIRY command to fail earlier, and return the appropriate result code. Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-04 13:43:20 +08:00
shost_printk(KERN_INFO, esp->host, "Unexpected MESSAGE REJECT\n");
esp_schedule_reset(esp);
}
static void esp_msgin_sdtr(struct esp *esp, struct esp_target_data *tp)
{
u8 period = esp->msg_in[3];
u8 offset = esp->msg_in[4];
u8 stp;
if (!(tp->flags & ESP_TGT_NEGO_SYNC))
goto do_reject;
if (offset > 15)
goto do_reject;
if (offset) {
int one_clock;
if (period > esp->max_period) {
period = offset = 0;
goto do_sdtr;
}
if (period < esp->min_period)
goto do_reject;
one_clock = esp->ccycle / 1000;
stp = DIV_ROUND_UP(period << 2, one_clock);
if (stp && esp->rev >= FAS236) {
if (stp >= 50)
stp--;
}
} else {
stp = 0;
}
esp_setsync(esp, tp, period, offset, stp, offset);
return;
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
return;
do_sdtr:
tp->nego_goal_period = period;
tp->nego_goal_offset = offset;
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
static void esp_msgin_wdtr(struct esp *esp, struct esp_target_data *tp)
{
int size = 8 << esp->msg_in[3];
u8 cfg3;
if (esp->rev != FASHME)
goto do_reject;
if (size != 8 && size != 16)
goto do_reject;
if (!(tp->flags & ESP_TGT_NEGO_WIDE))
goto do_reject;
cfg3 = tp->esp_config3;
if (size == 16) {
tp->flags |= ESP_TGT_WIDE;
cfg3 |= ESP_CONFIG3_EWIDE;
} else {
tp->flags &= ~ESP_TGT_WIDE;
cfg3 &= ~ESP_CONFIG3_EWIDE;
}
tp->esp_config3 = cfg3;
esp->prev_cfg3 = cfg3;
esp_write8(cfg3, ESP_CFG3);
tp->flags &= ~ESP_TGT_NEGO_WIDE;
spi_period(tp->starget) = 0;
spi_offset(tp->starget) = 0;
if (!esp_need_to_nego_sync(tp)) {
tp->flags &= ~ESP_TGT_CHECK_NEGO;
scsi_esp_cmd(esp, ESP_CMD_RATN);
} else {
esp->msg_out_len =
spi_populate_sync_msg(&esp->msg_out[0],
tp->nego_goal_period,
tp->nego_goal_offset);
tp->flags |= ESP_TGT_NEGO_SYNC;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
return;
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
static void esp_msgin_extended(struct esp *esp)
{
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
struct esp_target_data *tp;
int tgt = cmd->device->id;
tp = &esp->target[tgt];
if (esp->msg_in[2] == EXTENDED_SDTR) {
esp_msgin_sdtr(esp, tp);
return;
}
if (esp->msg_in[2] == EXTENDED_WDTR) {
esp_msgin_wdtr(esp, tp);
return;
}
shost_printk(KERN_INFO, esp->host,
"Unexpected extended msg type %x\n", esp->msg_in[2]);
scsi: esp_scsi: Avoid sending ABORT TASK SET messages If an LLD aborts a task set, it should complete the affected commands with the appropriate result code. In a couple of cases esp_scsi doesn't do so. When the initiator receives an unhandled message, just respond by sending a MESSAGE REJECT instead of ABORT TASK SET, and thus avoid the issue. OTOH, a MESSAGE REJECT sent by a target can be taken as an indication that the initiator messed up somehow. It isn't always possible to abort correctly, so just fall back on a SCSI bus reset, which will complete the affected commands with the appropriate result code. For example, certain Apple (Sony) CD-ROM drives, when the non-existent LUN 1 is scanned, can't handle the INQUIRY command. The problem is not detected until the initiator gets a MESSAGE REJECT. Whenever esp_scsi sees that message, it raises ATN and sends ABORT TASK SET -- but neglects to complete the failed scmd. The target then goes into DATA OUT phase (probably bogus), while the ESP device goes into disconnected mode (surprising, given the bus phase). The next Transfer Information command from esp_scsi then causes an Invalid Command interrupt because that command is not valid when in disconnected mode: mac_esp: using PDMA for controller 0 mac_esp mac_esp.0: esp0: regs[50f10000:(null)] irq[19] mac_esp mac_esp.0: esp0: is a ESP236, 16 MHz (ccf=4), SCSI ID 7 scsi host0: esp scsi 0:0:0:0: Direct-Access SEAGATE ST318416N 0010 PQ: 0 ANSI: 3 scsi target0:0:0: Beginning Domain Validation scsi target0:0:0: asynchronous scsi target0:0:0: Domain Validation skipping write tests scsi target0:0:0: Ending Domain Validation scsi 0:0:3:0: CD-ROM SONY CD-ROM CDU-8003A 1.9a PQ: 0 ANSI: 2 CCS scsi target0:0:3: Beginning Domain Validation scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:3: Domain Validation skipping write tests scsi target0:0:3: Ending Domain Validation scsi host0: unexpected IREG 40 scsi host0: Dumping command log scsi host0: ent[2] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[3] CMD val[00] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[4] EVENT val[0d] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[5] EVENT val[03] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[6] CMD val[90] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[7] EVENT val[05] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[8] EVENT val[0d] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[05] scsi host0: ent[9] CMD val[01] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[10] CMD val[11] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[11] EVENT val[0b] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[12] CMD val[12] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[13] EVENT val[0c] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[14] CMD val[44] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[00] event[0c] scsi host0: ent[15] CMD val[01] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[16] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[17] CMD val[00] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[18] EVENT val[0d] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[19] EVENT val[06] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[20] CMD val[01] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[21] CMD val[10] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[22] CMD val[1a] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[23] CMD val[12] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[24] EVENT val[0d] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[25] EVENT val[09] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[26] CMD val[01] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[27] CMD val[10] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[28] EVENT val[0a] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[29] EVENT val[0d] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0a] scsi host0: ent[30] EVENT val[04] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0d] scsi host0: ent[31] CMD val[01] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[0] CMD val[90] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[1] EVENT val[05] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:0: asynchronous sr 0:0:3:0: [sr0] scsi-1 drive cdrom: Uniform CD-ROM driver Revision: 3.20 sd 0:0:0:0: Attached scsi generic sg0 type 0 sr 0:0:3:0: Attached scsi generic sg1 type 5 This patch resolves this issue because the bus reset causes the INQUIRY command to fail earlier, and return the appropriate result code. Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-04 13:43:20 +08:00
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
}
/* Analyze msgin bytes received from target so far. Return non-zero
* if there are more bytes needed to complete the message.
*/
static int esp_msgin_process(struct esp *esp)
{
u8 msg0 = esp->msg_in[0];
int len = esp->msg_in_len;
if (msg0 & 0x80) {
/* Identify */
shost_printk(KERN_INFO, esp->host,
"Unexpected msgin identify\n");
return 0;
}
switch (msg0) {
case EXTENDED_MESSAGE:
if (len == 1)
return 1;
if (len < esp->msg_in[1] + 2)
return 1;
esp_msgin_extended(esp);
return 0;
case IGNORE_WIDE_RESIDUE: {
struct esp_cmd_entry *ent;
struct esp_cmd_priv *spriv;
if (len == 1)
return 1;
if (esp->msg_in[1] != 1)
goto do_reject;
ent = esp->active_cmd;
spriv = ESP_CMD_PRIV(ent->cmd);
if (spriv->cur_residue == sg_dma_len(spriv->cur_sg)) {
spriv->cur_sg = spriv->prv_sg;
spriv->cur_residue = 1;
} else
spriv->cur_residue++;
spriv->tot_residue++;
return 0;
}
case NOP:
return 0;
case RESTORE_POINTERS:
esp_restore_pointers(esp, esp->active_cmd);
return 0;
case SAVE_POINTERS:
esp_save_pointers(esp, esp->active_cmd);
return 0;
case COMMAND_COMPLETE:
case DISCONNECT: {
struct esp_cmd_entry *ent = esp->active_cmd;
ent->message = msg0;
esp_event(esp, ESP_EVENT_FREE_BUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 0;
}
case MESSAGE_REJECT:
esp_msgin_reject(esp);
return 0;
default:
do_reject:
esp->msg_out[0] = MESSAGE_REJECT;
esp->msg_out_len = 1;
scsi_esp_cmd(esp, ESP_CMD_SATN);
return 0;
}
}
static int esp_process_event(struct esp *esp)
{
int write, i;
again:
write = 0;
esp_log_event("process event %d phase %x\n",
esp->event, esp->sreg & ESP_STAT_PMASK);
switch (esp->event) {
case ESP_EVENT_CHECK_PHASE:
switch (esp->sreg & ESP_STAT_PMASK) {
case ESP_DOP:
esp_event(esp, ESP_EVENT_DATA_OUT);
break;
case ESP_DIP:
esp_event(esp, ESP_EVENT_DATA_IN);
break;
case ESP_STATP:
esp_flush_fifo(esp);
scsi_esp_cmd(esp, ESP_CMD_ICCSEQ);
esp_event(esp, ESP_EVENT_STATUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
case ESP_MOP:
esp_event(esp, ESP_EVENT_MSGOUT);
break;
case ESP_MIP:
esp_event(esp, ESP_EVENT_MSGIN);
break;
case ESP_CMDP:
esp_event(esp, ESP_EVENT_CMD_START);
break;
default:
shost_printk(KERN_INFO, esp->host,
"Unexpected phase, sreg=%02x\n",
esp->sreg);
esp_schedule_reset(esp);
return 0;
}
goto again;
case ESP_EVENT_DATA_IN:
write = 1;
/* fallthru */
case ESP_EVENT_DATA_OUT: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
dma_addr_t dma_addr = esp_cur_dma_addr(ent, cmd);
unsigned int dma_len = esp_cur_dma_len(ent, cmd);
if (esp->rev == ESP100)
scsi_esp_cmd(esp, ESP_CMD_NULL);
if (write)
ent->flags |= ESP_CMD_FLAG_WRITE;
else
ent->flags &= ~ESP_CMD_FLAG_WRITE;
if (esp->ops->dma_length_limit)
dma_len = esp->ops->dma_length_limit(esp, dma_addr,
dma_len);
else
dma_len = esp_dma_length_limit(esp, dma_addr, dma_len);
esp->data_dma_len = dma_len;
if (!dma_len) {
shost_printk(KERN_ERR, esp->host,
"DMA length is zero!\n");
shost_printk(KERN_ERR, esp->host,
"cur adr[%08llx] len[%08x]\n",
(unsigned long long)esp_cur_dma_addr(ent, cmd),
esp_cur_dma_len(ent, cmd));
esp_schedule_reset(esp);
return 0;
}
esp_log_datastart("start data addr[%08llx] len[%u] write(%d)\n",
(unsigned long long)dma_addr, dma_len, write);
esp->ops->send_dma_cmd(esp, dma_addr, dma_len, dma_len,
write, ESP_CMD_DMA | ESP_CMD_TI);
esp_event(esp, ESP_EVENT_DATA_DONE);
break;
}
case ESP_EVENT_DATA_DONE: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
int bytes_sent;
if (esp->ops->dma_error(esp)) {
shost_printk(KERN_INFO, esp->host,
"data done, DMA error, resetting\n");
esp_schedule_reset(esp);
return 0;
}
if (ent->flags & ESP_CMD_FLAG_WRITE) {
/* XXX parity errors, etc. XXX */
esp->ops->dma_drain(esp);
}
esp->ops->dma_invalidate(esp);
if (esp->ireg != ESP_INTR_BSERV) {
/* We should always see exactly a bus-service
* interrupt at the end of a successful transfer.
*/
shost_printk(KERN_INFO, esp->host,
"data done, not BSERV, resetting\n");
esp_schedule_reset(esp);
return 0;
}
bytes_sent = esp_data_bytes_sent(esp, ent, cmd);
esp_log_datadone("data done flgs[%x] sent[%d]\n",
ent->flags, bytes_sent);
if (bytes_sent < 0) {
/* XXX force sync mode for this target XXX */
esp_schedule_reset(esp);
return 0;
}
esp_advance_dma(esp, ent, cmd, bytes_sent);
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
}
case ESP_EVENT_STATUS: {
struct esp_cmd_entry *ent = esp->active_cmd;
if (esp->ireg & ESP_INTR_FDONE) {
ent->status = esp_read8(ESP_FDATA);
ent->message = esp_read8(ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_MOK);
} else if (esp->ireg == ESP_INTR_BSERV) {
ent->status = esp_read8(ESP_FDATA);
ent->message = 0xff;
esp_event(esp, ESP_EVENT_MSGIN);
return 0;
}
if (ent->message != COMMAND_COMPLETE) {
shost_printk(KERN_INFO, esp->host,
"Unexpected message %x in status\n",
ent->message);
esp_schedule_reset(esp);
return 0;
}
esp_event(esp, ESP_EVENT_FREE_BUS);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
}
case ESP_EVENT_FREE_BUS: {
struct esp_cmd_entry *ent = esp->active_cmd;
struct scsi_cmnd *cmd = ent->cmd;
if (ent->message == COMMAND_COMPLETE ||
ent->message == DISCONNECT)
scsi_esp_cmd(esp, ESP_CMD_ESEL);
if (ent->message == COMMAND_COMPLETE) {
esp_log_cmddone("Command done status[%x] message[%x]\n",
ent->status, ent->message);
if (ent->status == SAM_STAT_TASK_SET_FULL)
esp_event_queue_full(esp, ent);
if (ent->status == SAM_STAT_CHECK_CONDITION &&
!(ent->flags & ESP_CMD_FLAG_AUTOSENSE)) {
ent->flags |= ESP_CMD_FLAG_AUTOSENSE;
esp_autosense(esp, ent);
} else {
esp_cmd_is_done(esp, ent, cmd,
compose_result(ent->status,
ent->message,
DID_OK));
}
} else if (ent->message == DISCONNECT) {
esp_log_disconnect("Disconnecting tgt[%d] tag[%x:%x]\n",
cmd->device->id,
ent->tag[0], ent->tag[1]);
esp->active_cmd = NULL;
esp_maybe_execute_command(esp);
} else {
shost_printk(KERN_INFO, esp->host,
"Unexpected message %x in freebus\n",
ent->message);
esp_schedule_reset(esp);
return 0;
}
if (esp->active_cmd)
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
}
case ESP_EVENT_MSGOUT: {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp_debug & ESP_DEBUG_MSGOUT) {
int i;
printk("ESP: Sending message [ ");
for (i = 0; i < esp->msg_out_len; i++)
printk("%02x ", esp->msg_out[i]);
printk("]\n");
}
if (esp->rev == FASHME) {
int i;
/* Always use the fifo. */
for (i = 0; i < esp->msg_out_len; i++) {
esp_write8(esp->msg_out[i], ESP_FDATA);
esp_write8(0, ESP_FDATA);
}
scsi_esp_cmd(esp, ESP_CMD_TI);
} else {
if (esp->msg_out_len == 1) {
esp_write8(esp->msg_out[0], ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_TI);
} else if (esp->flags & ESP_FLAG_USE_FIFO) {
for (i = 0; i < esp->msg_out_len; i++)
esp_write8(esp->msg_out[i], ESP_FDATA);
scsi_esp_cmd(esp, ESP_CMD_TI);
} else {
/* Use DMA. */
memcpy(esp->command_block,
esp->msg_out,
esp->msg_out_len);
esp->ops->send_dma_cmd(esp,
esp->command_block_dma,
esp->msg_out_len,
esp->msg_out_len,
0,
ESP_CMD_DMA|ESP_CMD_TI);
}
}
esp_event(esp, ESP_EVENT_MSGOUT_DONE);
break;
}
case ESP_EVENT_MSGOUT_DONE:
if (esp->rev == FASHME) {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
} else {
if (esp->msg_out_len > 1)
esp->ops->dma_invalidate(esp);
/* XXX if the chip went into disconnected mode,
* we can't run the phase state machine anyway.
*/
if (!(esp->ireg & ESP_INTR_DC))
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
esp->msg_out_len = 0;
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
case ESP_EVENT_MSGIN:
if (esp->ireg & ESP_INTR_BSERV) {
if (esp->rev == FASHME) {
if (!(esp_read8(ESP_STATUS2) &
ESP_STAT2_FEMPTY))
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
} else {
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (esp->rev == ESP100)
scsi_esp_cmd(esp, ESP_CMD_NULL);
}
scsi_esp_cmd(esp, ESP_CMD_TI);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
return 1;
}
if (esp->ireg & ESP_INTR_FDONE) {
u8 val;
if (esp->rev == FASHME)
val = esp->fifo[0];
else
val = esp_read8(ESP_FDATA);
esp->msg_in[esp->msg_in_len++] = val;
esp_log_msgin("Got msgin byte %x\n", val);
if (!esp_msgin_process(esp))
esp->msg_in_len = 0;
if (esp->rev == FASHME)
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
scsi_esp_cmd(esp, ESP_CMD_MOK);
scsi: esp_scsi: Avoid sending ABORT TASK SET messages If an LLD aborts a task set, it should complete the affected commands with the appropriate result code. In a couple of cases esp_scsi doesn't do so. When the initiator receives an unhandled message, just respond by sending a MESSAGE REJECT instead of ABORT TASK SET, and thus avoid the issue. OTOH, a MESSAGE REJECT sent by a target can be taken as an indication that the initiator messed up somehow. It isn't always possible to abort correctly, so just fall back on a SCSI bus reset, which will complete the affected commands with the appropriate result code. For example, certain Apple (Sony) CD-ROM drives, when the non-existent LUN 1 is scanned, can't handle the INQUIRY command. The problem is not detected until the initiator gets a MESSAGE REJECT. Whenever esp_scsi sees that message, it raises ATN and sends ABORT TASK SET -- but neglects to complete the failed scmd. The target then goes into DATA OUT phase (probably bogus), while the ESP device goes into disconnected mode (surprising, given the bus phase). The next Transfer Information command from esp_scsi then causes an Invalid Command interrupt because that command is not valid when in disconnected mode: mac_esp: using PDMA for controller 0 mac_esp mac_esp.0: esp0: regs[50f10000:(null)] irq[19] mac_esp mac_esp.0: esp0: is a ESP236, 16 MHz (ccf=4), SCSI ID 7 scsi host0: esp scsi 0:0:0:0: Direct-Access SEAGATE ST318416N 0010 PQ: 0 ANSI: 3 scsi target0:0:0: Beginning Domain Validation scsi target0:0:0: asynchronous scsi target0:0:0: Domain Validation skipping write tests scsi target0:0:0: Ending Domain Validation scsi 0:0:3:0: CD-ROM SONY CD-ROM CDU-8003A 1.9a PQ: 0 ANSI: 2 CCS scsi target0:0:3: Beginning Domain Validation scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:3: Domain Validation skipping write tests scsi target0:0:3: Ending Domain Validation scsi host0: unexpected IREG 40 scsi host0: Dumping command log scsi host0: ent[2] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[3] CMD val[00] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[4] EVENT val[0d] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[5] EVENT val[03] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[6] CMD val[90] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[7] EVENT val[05] sreg[91] seqreg[04] sreg2[00] ireg[18] ss[00] event[03] scsi host0: ent[8] EVENT val[0d] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[05] scsi host0: ent[9] CMD val[01] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[10] CMD val[11] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[11] EVENT val[0b] sreg[93] seqreg[cc] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[12] CMD val[12] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[13] EVENT val[0c] sreg[97] seqreg[cc] sreg2[00] ireg[08] ss[00] event[0b] scsi host0: ent[14] CMD val[44] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[00] event[0c] scsi host0: ent[15] CMD val[01] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[16] CMD val[c2] sreg[90] seqreg[cc] sreg2[00] ireg[20] ss[01] event[0c] scsi host0: ent[17] CMD val[00] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[18] EVENT val[0d] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0c] scsi host0: ent[19] EVENT val[06] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[0d] scsi host0: ent[20] CMD val[01] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[21] CMD val[10] sreg[87] seqreg[02] sreg2[00] ireg[18] ss[00] event[06] scsi host0: ent[22] CMD val[1a] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[23] CMD val[12] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[24] EVENT val[0d] sreg[87] seqreg[ca] sreg2[00] ireg[08] ss[00] event[06] scsi host0: ent[25] EVENT val[09] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[0d] scsi host0: ent[26] CMD val[01] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[27] CMD val[10] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[28] EVENT val[0a] sreg[86] seqreg[ca] sreg2[00] ireg[10] ss[00] event[09] scsi host0: ent[29] EVENT val[0d] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0a] scsi host0: ent[30] EVENT val[04] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[0d] scsi host0: ent[31] CMD val[01] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[0] CMD val[90] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi host0: ent[1] EVENT val[05] sreg[80] seqreg[ca] sreg2[00] ireg[20] ss[00] event[04] scsi target0:0:3: FAST-5 SCSI 2.0 MB/s ST (500 ns, offset 15) scsi target0:0:0: asynchronous sr 0:0:3:0: [sr0] scsi-1 drive cdrom: Uniform CD-ROM driver Revision: 3.20 sd 0:0:0:0: Attached scsi generic sg0 type 0 sr 0:0:3:0: Attached scsi generic sg1 type 5 This patch resolves this issue because the bus reset causes the INQUIRY command to fail earlier, and return the appropriate result code. Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2017-08-04 13:43:20 +08:00
/* Check whether a bus reset is to be done next */
if (esp->event == ESP_EVENT_RESET)
return 0;
if (esp->event != ESP_EVENT_FREE_BUS)
esp_event(esp, ESP_EVENT_CHECK_PHASE);
} else {
shost_printk(KERN_INFO, esp->host,
"MSGIN neither BSERV not FDON, resetting");
esp_schedule_reset(esp);
return 0;
}
break;
case ESP_EVENT_CMD_START:
memcpy(esp->command_block, esp->cmd_bytes_ptr,
esp->cmd_bytes_left);
esp_send_dma_cmd(esp, esp->cmd_bytes_left, 16, ESP_CMD_TI);
esp_event(esp, ESP_EVENT_CMD_DONE);
esp->flags |= ESP_FLAG_QUICKIRQ_CHECK;
break;
case ESP_EVENT_CMD_DONE:
esp->ops->dma_invalidate(esp);
if (esp->ireg & ESP_INTR_BSERV) {
esp_event(esp, ESP_EVENT_CHECK_PHASE);
goto again;
}
esp_schedule_reset(esp);
return 0;
case ESP_EVENT_RESET:
scsi_esp_cmd(esp, ESP_CMD_RS);
break;
default:
shost_printk(KERN_INFO, esp->host,
"Unexpected event %x, resetting\n", esp->event);
esp_schedule_reset(esp);
return 0;
}
return 1;
}
static void esp_reset_cleanup_one(struct esp *esp, struct esp_cmd_entry *ent)
{
struct scsi_cmnd *cmd = ent->cmd;
esp_unmap_dma(esp, cmd);
esp_free_lun_tag(ent, cmd->device->hostdata);
cmd->result = DID_RESET << 16;
if (ent->flags & ESP_CMD_FLAG_AUTOSENSE)
esp_unmap_sense(esp, ent);
cmd->scsi_done(cmd);
list_del(&ent->list);
esp_put_ent(esp, ent);
}
static void esp_clear_hold(struct scsi_device *dev, void *data)
{
struct esp_lun_data *lp = dev->hostdata;
BUG_ON(lp->num_tagged);
lp->hold = 0;
}
static void esp_reset_cleanup(struct esp *esp)
{
struct esp_cmd_entry *ent, *tmp;
int i;
list_for_each_entry_safe(ent, tmp, &esp->queued_cmds, list) {
struct scsi_cmnd *cmd = ent->cmd;
list_del(&ent->list);
cmd->result = DID_RESET << 16;
cmd->scsi_done(cmd);
esp_put_ent(esp, ent);
}
list_for_each_entry_safe(ent, tmp, &esp->active_cmds, list) {
if (ent == esp->active_cmd)
esp->active_cmd = NULL;
esp_reset_cleanup_one(esp, ent);
}
BUG_ON(esp->active_cmd != NULL);
/* Force renegotiation of sync/wide transfers. */
for (i = 0; i < ESP_MAX_TARGET; i++) {
struct esp_target_data *tp = &esp->target[i];
tp->esp_period = 0;
tp->esp_offset = 0;
tp->esp_config3 &= ~(ESP_CONFIG3_EWIDE |
ESP_CONFIG3_FSCSI |
ESP_CONFIG3_FAST);
tp->flags &= ~ESP_TGT_WIDE;
tp->flags |= ESP_TGT_CHECK_NEGO;
if (tp->starget)
__starget_for_each_device(tp->starget, NULL,
esp_clear_hold);
}
esp->flags &= ~ESP_FLAG_RESETTING;
}
/* Runs under host->lock */
static void __esp_interrupt(struct esp *esp)
{
int finish_reset, intr_done;
u8 phase;
/*
* Once INTRPT is read STATUS and SSTEP are cleared.
*/
esp->sreg = esp_read8(ESP_STATUS);
esp->seqreg = esp_read8(ESP_SSTEP);
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->flags & ESP_FLAG_RESETTING) {
finish_reset = 1;
} else {
if (esp_check_gross_error(esp))
return;
finish_reset = esp_check_spur_intr(esp);
if (finish_reset < 0)
return;
}
if (esp->ireg & ESP_INTR_SR)
finish_reset = 1;
if (finish_reset) {
esp_reset_cleanup(esp);
if (esp->eh_reset) {
complete(esp->eh_reset);
esp->eh_reset = NULL;
}
return;
}
phase = (esp->sreg & ESP_STAT_PMASK);
if (esp->rev == FASHME) {
if (((phase != ESP_DIP && phase != ESP_DOP) &&
esp->select_state == ESP_SELECT_NONE &&
esp->event != ESP_EVENT_STATUS &&
esp->event != ESP_EVENT_DATA_DONE) ||
(esp->ireg & ESP_INTR_RSEL)) {
esp->sreg2 = esp_read8(ESP_STATUS2);
if (!(esp->sreg2 & ESP_STAT2_FEMPTY) ||
(esp->sreg2 & ESP_STAT2_F1BYTE))
hme_read_fifo(esp);
}
}
esp_log_intr("intr sreg[%02x] seqreg[%02x] "
"sreg2[%02x] ireg[%02x]\n",
esp->sreg, esp->seqreg, esp->sreg2, esp->ireg);
intr_done = 0;
if (esp->ireg & (ESP_INTR_S | ESP_INTR_SATN | ESP_INTR_IC)) {
shost_printk(KERN_INFO, esp->host,
"unexpected IREG %02x\n", esp->ireg);
if (esp->ireg & ESP_INTR_IC)
esp_dump_cmd_log(esp);
esp_schedule_reset(esp);
} else {
if (esp->ireg & ESP_INTR_RSEL) {
if (esp->active_cmd)
(void) esp_finish_select(esp);
intr_done = esp_reconnect(esp);
} else {
/* Some combination of FDONE, BSERV, DC. */
if (esp->select_state != ESP_SELECT_NONE)
intr_done = esp_finish_select(esp);
}
}
while (!intr_done)
intr_done = esp_process_event(esp);
}
irqreturn_t scsi_esp_intr(int irq, void *dev_id)
{
struct esp *esp = dev_id;
unsigned long flags;
irqreturn_t ret;
spin_lock_irqsave(esp->host->host_lock, flags);
ret = IRQ_NONE;
if (esp->ops->irq_pending(esp)) {
ret = IRQ_HANDLED;
for (;;) {
int i;
__esp_interrupt(esp);
if (!(esp->flags & ESP_FLAG_QUICKIRQ_CHECK))
break;
esp->flags &= ~ESP_FLAG_QUICKIRQ_CHECK;
for (i = 0; i < ESP_QUICKIRQ_LIMIT; i++) {
if (esp->ops->irq_pending(esp))
break;
}
if (i == ESP_QUICKIRQ_LIMIT)
break;
}
}
spin_unlock_irqrestore(esp->host->host_lock, flags);
return ret;
}
EXPORT_SYMBOL(scsi_esp_intr);
static void esp_get_revision(struct esp *esp)
{
u8 val;
esp->config1 = (ESP_CONFIG1_PENABLE | (esp->scsi_id & 7));
if (esp->config2 == 0) {
esp->config2 = (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY);
esp_write8(esp->config2, ESP_CFG2);
val = esp_read8(ESP_CFG2);
val &= ~ESP_CONFIG2_MAGIC;
esp->config2 = 0;
if (val != (ESP_CONFIG2_SCSI2ENAB | ESP_CONFIG2_REGPARITY)) {
/*
* If what we write to cfg2 does not come back,
* cfg2 is not implemented.
* Therefore this must be a plain esp100.
*/
esp->rev = ESP100;
return;
}
}
esp_set_all_config3(esp, 5);
esp->prev_cfg3 = 5;
esp_write8(esp->config2, ESP_CFG2);
esp_write8(0, ESP_CFG3);
esp_write8(esp->prev_cfg3, ESP_CFG3);
val = esp_read8(ESP_CFG3);
if (val != 5) {
/* The cfg2 register is implemented, however
* cfg3 is not, must be esp100a.
*/
esp->rev = ESP100A;
} else {
esp_set_all_config3(esp, 0);
esp->prev_cfg3 = 0;
esp_write8(esp->prev_cfg3, ESP_CFG3);
/* All of cfg{1,2,3} implemented, must be one of
* the fas variants, figure out which one.
*/
if (esp->cfact == 0 || esp->cfact > ESP_CCF_F5) {
esp->rev = FAST;
esp->sync_defp = SYNC_DEFP_FAST;
} else {
esp->rev = ESP236;
}
}
}
static void esp_init_swstate(struct esp *esp)
{
int i;
INIT_LIST_HEAD(&esp->queued_cmds);
INIT_LIST_HEAD(&esp->active_cmds);
INIT_LIST_HEAD(&esp->esp_cmd_pool);
/* Start with a clear state, domain validation (via ->slave_configure,
* spi_dv_device()) will attempt to enable SYNC, WIDE, and tagged
* commands.
*/
for (i = 0 ; i < ESP_MAX_TARGET; i++) {
esp->target[i].flags = 0;
esp->target[i].nego_goal_period = 0;
esp->target[i].nego_goal_offset = 0;
esp->target[i].nego_goal_width = 0;
esp->target[i].nego_goal_tags = 0;
}
}
/* This places the ESP into a known state at boot time. */
static void esp_bootup_reset(struct esp *esp)
{
u8 val;
/* Reset the DMA */
esp->ops->reset_dma(esp);
/* Reset the ESP */
esp_reset_esp(esp);
/* Reset the SCSI bus, but tell ESP not to generate an irq */
val = esp_read8(ESP_CFG1);
val |= ESP_CONFIG1_SRRDISAB;
esp_write8(val, ESP_CFG1);
scsi_esp_cmd(esp, ESP_CMD_RS);
udelay(400);
esp_write8(esp->config1, ESP_CFG1);
/* Eat any bitrot in the chip and we are done... */
esp_read8(ESP_INTRPT);
}
static void esp_set_clock_params(struct esp *esp)
{
int fhz;
u8 ccf;
/* This is getting messy but it has to be done correctly or else
* you get weird behavior all over the place. We are trying to
* basically figure out three pieces of information.
*
* a) Clock Conversion Factor
*
* This is a representation of the input crystal clock frequency
* going into the ESP on this machine. Any operation whose timing
* is longer than 400ns depends on this value being correct. For
* example, you'll get blips for arbitration/selection during high
* load or with multiple targets if this is not set correctly.
*
* b) Selection Time-Out
*
* The ESP isn't very bright and will arbitrate for the bus and try
* to select a target forever if you let it. This value tells the
* ESP when it has taken too long to negotiate and that it should
* interrupt the CPU so we can see what happened. The value is
* computed as follows (from NCR/Symbios chip docs).
*
* (Time Out Period) * (Input Clock)
* STO = ----------------------------------
* (8192) * (Clock Conversion Factor)
*
* We use a time out period of 250ms (ESP_BUS_TIMEOUT).
*
* c) Imperical constants for synchronous offset and transfer period
* register values
*
* This entails the smallest and largest sync period we could ever
* handle on this ESP.
*/
fhz = esp->cfreq;
ccf = ((fhz / 1000000) + 4) / 5;
if (ccf == 1)
ccf = 2;
/* If we can't find anything reasonable, just assume 20MHZ.
* This is the clock frequency of the older sun4c's where I've
* been unable to find the clock-frequency PROM property. All
* other machines provide useful values it seems.
*/
if (fhz <= 5000000 || ccf < 1 || ccf > 8) {
fhz = 20000000;
ccf = 4;
}
esp->cfact = (ccf == 8 ? 0 : ccf);
esp->cfreq = fhz;
esp->ccycle = ESP_HZ_TO_CYCLE(fhz);
esp->ctick = ESP_TICK(ccf, esp->ccycle);
esp->neg_defp = ESP_NEG_DEFP(fhz, ccf);
esp->sync_defp = SYNC_DEFP_SLOW;
}
static const char *esp_chip_names[] = {
"ESP100",
"ESP100A",
"ESP236",
"FAS236",
"FAS100A",
"FAST",
"FASHME",
"AM53C974",
};
static struct scsi_transport_template *esp_transport_template;
int scsi_esp_register(struct esp *esp)
{
static int instance;
int err;
if (!esp->num_tags)
esp->num_tags = ESP_DEFAULT_TAGS;
esp->host->transportt = esp_transport_template;
esp->host->max_lun = ESP_MAX_LUN;
esp->host->cmd_per_lun = 2;
esp->host->unique_id = instance;
esp_set_clock_params(esp);
esp_get_revision(esp);
esp_init_swstate(esp);
esp_bootup_reset(esp);
dev_printk(KERN_INFO, esp->dev, "esp%u: regs[%1p:%1p] irq[%u]\n",
esp->host->unique_id, esp->regs, esp->dma_regs,
esp->host->irq);
dev_printk(KERN_INFO, esp->dev,
"esp%u: is a %s, %u MHz (ccf=%u), SCSI ID %u\n",
esp->host->unique_id, esp_chip_names[esp->rev],
esp->cfreq / 1000000, esp->cfact, esp->scsi_id);
/* Let the SCSI bus reset settle. */
ssleep(esp_bus_reset_settle);
err = scsi_add_host(esp->host, esp->dev);
if (err)
return err;
instance++;
scsi_scan_host(esp->host);
return 0;
}
EXPORT_SYMBOL(scsi_esp_register);
void scsi_esp_unregister(struct esp *esp)
{
scsi_remove_host(esp->host);
}
EXPORT_SYMBOL(scsi_esp_unregister);
static int esp_target_alloc(struct scsi_target *starget)
{
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
struct esp_target_data *tp = &esp->target[starget->id];
tp->starget = starget;
return 0;
}
static void esp_target_destroy(struct scsi_target *starget)
{
struct esp *esp = shost_priv(dev_to_shost(&starget->dev));
struct esp_target_data *tp = &esp->target[starget->id];
tp->starget = NULL;
}
static int esp_slave_alloc(struct scsi_device *dev)
{
struct esp *esp = shost_priv(dev->host);
struct esp_target_data *tp = &esp->target[dev->id];
struct esp_lun_data *lp;
lp = kzalloc(sizeof(*lp), GFP_KERNEL);
if (!lp)
return -ENOMEM;
dev->hostdata = lp;
spi_min_period(tp->starget) = esp->min_period;
spi_max_offset(tp->starget) = 15;
if (esp->flags & ESP_FLAG_WIDE_CAPABLE)
spi_max_width(tp->starget) = 1;
else
spi_max_width(tp->starget) = 0;
return 0;
}
static int esp_slave_configure(struct scsi_device *dev)
{
struct esp *esp = shost_priv(dev->host);
struct esp_target_data *tp = &esp->target[dev->id];
if (dev->tagged_supported)
scsi_change_queue_depth(dev, esp->num_tags);
tp->flags |= ESP_TGT_DISCONNECT;
if (!spi_initial_dv(dev->sdev_target))
spi_dv_device(dev);
return 0;
}
static void esp_slave_destroy(struct scsi_device *dev)
{
struct esp_lun_data *lp = dev->hostdata;
kfree(lp);
dev->hostdata = NULL;
}
static int esp_eh_abort_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
struct esp_cmd_entry *ent, *tmp;
struct completion eh_done;
unsigned long flags;
/* XXX This helps a lot with debugging but might be a bit
* XXX much for the final driver.
*/
spin_lock_irqsave(esp->host->host_lock, flags);
shost_printk(KERN_ERR, esp->host, "Aborting command [%p:%02x]\n",
cmd, cmd->cmnd[0]);
ent = esp->active_cmd;
if (ent)
shost_printk(KERN_ERR, esp->host,
"Current command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
list_for_each_entry(ent, &esp->queued_cmds, list) {
shost_printk(KERN_ERR, esp->host, "Queued command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
}
list_for_each_entry(ent, &esp->active_cmds, list) {
shost_printk(KERN_ERR, esp->host, " Active command [%p:%02x]\n",
ent->cmd, ent->cmd->cmnd[0]);
}
esp_dump_cmd_log(esp);
spin_unlock_irqrestore(esp->host->host_lock, flags);
spin_lock_irqsave(esp->host->host_lock, flags);
ent = NULL;
list_for_each_entry(tmp, &esp->queued_cmds, list) {
if (tmp->cmd == cmd) {
ent = tmp;
break;
}
}
if (ent) {
/* Easiest case, we didn't even issue the command
* yet so it is trivial to abort.
*/
list_del(&ent->list);
cmd->result = DID_ABORT << 16;
cmd->scsi_done(cmd);
esp_put_ent(esp, ent);
goto out_success;
}
init_completion(&eh_done);
ent = esp->active_cmd;
if (ent && ent->cmd == cmd) {
/* Command is the currently active command on
* the bus. If we already have an output message
* pending, no dice.
*/
if (esp->msg_out_len)
goto out_failure;
/* Send out an abort, encouraging the target to
* go to MSGOUT phase by asserting ATN.
*/
esp->msg_out[0] = ABORT_TASK_SET;
esp->msg_out_len = 1;
ent->eh_done = &eh_done;
scsi_esp_cmd(esp, ESP_CMD_SATN);
} else {
/* The command is disconnected. This is not easy to
* abort. For now we fail and let the scsi error
* handling layer go try a scsi bus reset or host
* reset.
*
* What we could do is put together a scsi command
* solely for the purpose of sending an abort message
* to the target. Coming up with all the code to
* cook up scsi commands, special case them everywhere,
* etc. is for questionable gain and it would be better
* if the generic scsi error handling layer could do at
* least some of that for us.
*
* Anyways this is an area for potential future improvement
* in this driver.
*/
goto out_failure;
}
spin_unlock_irqrestore(esp->host->host_lock, flags);
if (!wait_for_completion_timeout(&eh_done, 5 * HZ)) {
spin_lock_irqsave(esp->host->host_lock, flags);
ent->eh_done = NULL;
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
return SUCCESS;
out_success:
spin_unlock_irqrestore(esp->host->host_lock, flags);
return SUCCESS;
out_failure:
/* XXX This might be a good location to set ESP_TGT_BROKEN
* XXX since we know which target/lun in particular is
* XXX causing trouble.
*/
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
static int esp_eh_bus_reset_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
struct completion eh_reset;
unsigned long flags;
init_completion(&eh_reset);
spin_lock_irqsave(esp->host->host_lock, flags);
esp->eh_reset = &eh_reset;
/* XXX This is too simple... We should add lots of
* XXX checks here so that if we find that the chip is
* XXX very wedged we return failure immediately so
* XXX that we can perform a full chip reset.
*/
esp->flags |= ESP_FLAG_RESETTING;
scsi_esp_cmd(esp, ESP_CMD_RS);
spin_unlock_irqrestore(esp->host->host_lock, flags);
ssleep(esp_bus_reset_settle);
if (!wait_for_completion_timeout(&eh_reset, 5 * HZ)) {
spin_lock_irqsave(esp->host->host_lock, flags);
esp->eh_reset = NULL;
spin_unlock_irqrestore(esp->host->host_lock, flags);
return FAILED;
}
return SUCCESS;
}
/* All bets are off, reset the entire device. */
static int esp_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
struct esp *esp = shost_priv(cmd->device->host);
unsigned long flags;
spin_lock_irqsave(esp->host->host_lock, flags);
esp_bootup_reset(esp);
esp_reset_cleanup(esp);
spin_unlock_irqrestore(esp->host->host_lock, flags);
ssleep(esp_bus_reset_settle);
return SUCCESS;
}
static const char *esp_info(struct Scsi_Host *host)
{
return "esp";
}
struct scsi_host_template scsi_esp_template = {
.module = THIS_MODULE,
.name = "esp",
.info = esp_info,
.queuecommand = esp_queuecommand,
.target_alloc = esp_target_alloc,
.target_destroy = esp_target_destroy,
.slave_alloc = esp_slave_alloc,
.slave_configure = esp_slave_configure,
.slave_destroy = esp_slave_destroy,
.eh_abort_handler = esp_eh_abort_handler,
.eh_bus_reset_handler = esp_eh_bus_reset_handler,
.eh_host_reset_handler = esp_eh_host_reset_handler,
.can_queue = 7,
.this_id = 7,
.sg_tablesize = SG_ALL,
.max_sectors = 0xffff,
.skip_settle_delay = 1,
};
EXPORT_SYMBOL(scsi_esp_template);
static void esp_get_signalling(struct Scsi_Host *host)
{
struct esp *esp = shost_priv(host);
enum spi_signal_type type;
if (esp->flags & ESP_FLAG_DIFFERENTIAL)
type = SPI_SIGNAL_HVD;
else
type = SPI_SIGNAL_SE;
spi_signalling(host) = type;
}
static void esp_set_offset(struct scsi_target *target, int offset)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
if (esp->flags & ESP_FLAG_DISABLE_SYNC)
tp->nego_goal_offset = 0;
else
tp->nego_goal_offset = offset;
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static void esp_set_period(struct scsi_target *target, int period)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
tp->nego_goal_period = period;
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static void esp_set_width(struct scsi_target *target, int width)
{
struct Scsi_Host *host = dev_to_shost(target->dev.parent);
struct esp *esp = shost_priv(host);
struct esp_target_data *tp = &esp->target[target->id];
tp->nego_goal_width = (width ? 1 : 0);
tp->flags |= ESP_TGT_CHECK_NEGO;
}
static struct spi_function_template esp_transport_ops = {
.set_offset = esp_set_offset,
.show_offset = 1,
.set_period = esp_set_period,
.show_period = 1,
.set_width = esp_set_width,
.show_width = 1,
.get_signalling = esp_get_signalling,
};
static int __init esp_init(void)
{
BUILD_BUG_ON(sizeof(struct scsi_pointer) <
sizeof(struct esp_cmd_priv));
esp_transport_template = spi_attach_transport(&esp_transport_ops);
if (!esp_transport_template)
return -ENODEV;
return 0;
}
static void __exit esp_exit(void)
{
spi_release_transport(esp_transport_template);
}
MODULE_DESCRIPTION("ESP SCSI driver core");
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
module_param(esp_bus_reset_settle, int, 0);
MODULE_PARM_DESC(esp_bus_reset_settle,
"ESP scsi bus reset delay in seconds");
module_param(esp_debug, int, 0);
MODULE_PARM_DESC(esp_debug,
"ESP bitmapped debugging message enable value:\n"
" 0x00000001 Log interrupt events\n"
" 0x00000002 Log scsi commands\n"
" 0x00000004 Log resets\n"
" 0x00000008 Log message in events\n"
" 0x00000010 Log message out events\n"
" 0x00000020 Log command completion\n"
" 0x00000040 Log disconnects\n"
" 0x00000080 Log data start\n"
" 0x00000100 Log data done\n"
" 0x00000200 Log reconnects\n"
" 0x00000400 Log auto-sense data\n"
);
module_init(esp_init);
module_exit(esp_exit);
#ifdef CONFIG_SCSI_ESP_PIO
static inline unsigned int esp_wait_for_fifo(struct esp *esp)
{
int i = 500000;
do {
unsigned int fbytes = esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES;
if (fbytes)
return fbytes;
udelay(1);
} while (--i);
shost_printk(KERN_ERR, esp->host, "FIFO is empty. sreg [%02x]\n",
esp_read8(ESP_STATUS));
return 0;
}
static inline int esp_wait_for_intr(struct esp *esp)
{
int i = 500000;
do {
esp->sreg = esp_read8(ESP_STATUS);
if (esp->sreg & ESP_STAT_INTR)
return 0;
udelay(1);
} while (--i);
shost_printk(KERN_ERR, esp->host, "IRQ timeout. sreg [%02x]\n",
esp->sreg);
return 1;
}
#define ESP_FIFO_SIZE 16
void esp_send_pio_cmd(struct esp *esp, u32 addr, u32 esp_count,
u32 dma_count, int write, u8 cmd)
{
u8 phase = esp->sreg & ESP_STAT_PMASK;
cmd &= ~ESP_CMD_DMA;
esp->send_cmd_error = 0;
if (write) {
u8 *dst = (u8 *)addr;
u8 mask = ~(phase == ESP_MIP ? ESP_INTR_FDONE : ESP_INTR_BSERV);
scsi_esp_cmd(esp, cmd);
while (1) {
if (!esp_wait_for_fifo(esp))
break;
*dst++ = readb(esp->fifo_reg);
--esp_count;
if (!esp_count)
break;
if (esp_wait_for_intr(esp)) {
esp->send_cmd_error = 1;
break;
}
if ((esp->sreg & ESP_STAT_PMASK) != phase)
break;
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->ireg & mask) {
esp->send_cmd_error = 1;
break;
}
if (phase == ESP_MIP)
esp_write8(ESP_CMD_MOK, ESP_CMD);
esp_write8(ESP_CMD_TI, ESP_CMD);
}
} else {
unsigned int n = ESP_FIFO_SIZE;
u8 *src = (u8 *)addr;
scsi_esp_cmd(esp, ESP_CMD_FLUSH);
if (n > esp_count)
n = esp_count;
writesb(esp->fifo_reg, src, n);
src += n;
esp_count -= n;
scsi_esp_cmd(esp, cmd);
while (esp_count) {
if (esp_wait_for_intr(esp)) {
esp->send_cmd_error = 1;
break;
}
if ((esp->sreg & ESP_STAT_PMASK) != phase)
break;
esp->ireg = esp_read8(ESP_INTRPT);
if (esp->ireg & ~ESP_INTR_BSERV) {
esp->send_cmd_error = 1;
break;
}
n = ESP_FIFO_SIZE -
(esp_read8(ESP_FFLAGS) & ESP_FF_FBYTES);
if (n > esp_count)
n = esp_count;
writesb(esp->fifo_reg, src, n);
src += n;
esp_count -= n;
esp_write8(ESP_CMD_TI, ESP_CMD);
}
}
esp->send_cmd_residual = esp_count;
}
EXPORT_SYMBOL(esp_send_pio_cmd);
#endif