linux/drivers/accel/ivpu/ivpu_drv.h

223 lines
5.6 KiB
C
Raw Normal View History

accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2020-2023 Intel Corporation
*/
#ifndef __IVPU_DRV_H__
#define __IVPU_DRV_H__
#include <drm/drm_device.h>
#include <drm/drm_drv.h>
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
#include <drm/drm_managed.h>
#include <drm/drm_mm.h>
#include <drm/drm_print.h>
#include <linux/pci.h>
#include <linux/xarray.h>
#include <uapi/drm/ivpu_accel.h>
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
#include "ivpu_mmu_context.h"
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
#define DRIVER_NAME "intel_vpu"
#define DRIVER_DESC "Driver for Intel Versatile Processing Unit (VPU)"
#define DRIVER_DATE "20230117"
#define PCI_DEVICE_ID_MTL 0x7d1d
#define PCI_DEVICE_ID_LNL 0x643e
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
#define IVPU_HW_37XX 37
#define IVPU_HW_40XX 40
#define IVPU_GLOBAL_CONTEXT_MMU_SSID 0
/* SSID 1 is used by the VPU to represent reserved context */
#define IVPU_RESERVED_CONTEXT_MMU_SSID 1
#define IVPU_USER_CONTEXT_MIN_SSID 2
#define IVPU_USER_CONTEXT_MAX_SSID (IVPU_USER_CONTEXT_MIN_SSID + 63)
#define IVPU_NUM_ENGINES 2
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
#define IVPU_PLATFORM_SILICON 0
#define IVPU_PLATFORM_SIMICS 2
#define IVPU_PLATFORM_FPGA 3
#define IVPU_PLATFORM_INVALID 8
#define IVPU_DBG_REG BIT(0)
#define IVPU_DBG_IRQ BIT(1)
#define IVPU_DBG_MMU BIT(2)
#define IVPU_DBG_FILE BIT(3)
#define IVPU_DBG_MISC BIT(4)
#define IVPU_DBG_FW_BOOT BIT(5)
#define IVPU_DBG_PM BIT(6)
#define IVPU_DBG_IPC BIT(7)
#define IVPU_DBG_BO BIT(8)
#define IVPU_DBG_JOB BIT(9)
#define IVPU_DBG_JSM BIT(10)
#define IVPU_DBG_KREF BIT(11)
#define IVPU_DBG_RPM BIT(12)
#define ivpu_err(vdev, fmt, ...) \
drm_err(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_err_ratelimited(vdev, fmt, ...) \
drm_err_ratelimited(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_warn(vdev, fmt, ...) \
drm_warn(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_warn_ratelimited(vdev, fmt, ...) \
drm_err_ratelimited(&(vdev)->drm, "%s(): " fmt, __func__, ##__VA_ARGS__)
#define ivpu_info(vdev, fmt, ...) drm_info(&(vdev)->drm, fmt, ##__VA_ARGS__)
#define ivpu_dbg(vdev, type, fmt, args...) do { \
if (unlikely(IVPU_DBG_##type & ivpu_dbg_mask)) \
dev_dbg((vdev)->drm.dev, "[%s] " fmt, #type, ##args); \
} while (0)
#define IVPU_WA(wa_name) (vdev->wa.wa_name)
#define IVPU_PRINT_WA(wa_name) do { \
if (IVPU_WA(wa_name)) \
ivpu_dbg(vdev, MISC, "Using WA: " #wa_name "\n"); \
} while (0)
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
struct ivpu_wa_table {
bool punit_disabled;
bool clear_runtime_mem;
bool d3hot_after_power_off;
bool interrupt_clear_with_0;
bool disable_clock_relinquish;
bool disable_d0i3_msg;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
};
struct ivpu_hw_info;
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
struct ivpu_mmu_info;
struct ivpu_fw_info;
struct ivpu_ipc_info;
struct ivpu_pm_info;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
struct ivpu_device {
struct drm_device drm;
void __iomem *regb;
void __iomem *regv;
u32 platform;
u32 irq;
struct ivpu_wa_table wa;
struct ivpu_hw_info *hw;
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
struct ivpu_mmu_info *mmu;
struct ivpu_fw_info *fw;
struct ivpu_ipc_info *ipc;
struct ivpu_pm_info *pm;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
struct ivpu_mmu_context gctx;
struct ivpu_mmu_context rctx;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
struct xarray context_xa;
struct xa_limit context_xa_limit;
struct xarray submitted_jobs_xa;
struct task_struct *job_done_thread;
atomic64_t unique_id_counter;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
struct {
int boot;
int jsm;
int tdr;
int reschedule_suspend;
int autosuspend;
int d0i3_entry_msg;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
} timeout;
};
/*
* file_priv has its own refcount (ref) that allows user space to close the fd
* without blocking even if VPU is still processing some jobs.
*/
struct ivpu_file_priv {
struct kref ref;
struct ivpu_device *vdev;
struct mutex lock; /* Protects cmdq */
struct ivpu_cmdq *cmdq[IVPU_NUM_ENGINES];
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
struct ivpu_mmu_context ctx;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
u32 priority;
accel/ivpu: Add Intel VPU MMU support VPU Memory Management Unit is based on ARM MMU-600. It allows the creation of multiple virtual address spaces for the device and map noncontinuous host memory (there is no dedicated memory on the VPU). Address space is implemented as a struct ivpu_mmu_context, it has an ID, drm_mm allocator for VPU addresses and struct ivpu_mmu_pgtable that holds actual 3-level, 4KB page table. Context with ID 0 (global context) is created upon driver initialization and it's mainly used for mapping memory required to execute the firmware. Contexts with non-zero IDs are user contexts allocated each time the devices is open()-ed and they map command buffers and other workload-related memory. Workloads executing in a given contexts have access only to the memory mapped in this context. This patch is has two main files: - ivpu_mmu_context.c handles MMU page tables and memory mapping - ivpu_mmu.c implements a driver that programs the MMU device Co-developed-by: Karol Wachowski <karol.wachowski@linux.intel.com> Signed-off-by: Karol Wachowski <karol.wachowski@linux.intel.com> Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-3-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:18 +08:00
bool has_mmu_faults;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
};
extern int ivpu_dbg_mask;
extern u8 ivpu_pll_min_ratio;
extern u8 ivpu_pll_max_ratio;
extern bool ivpu_disable_mmu_cont_pages;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
#define IVPU_TEST_MODE_FW_TEST BIT(0)
#define IVPU_TEST_MODE_NULL_HW BIT(1)
#define IVPU_TEST_MODE_NULL_SUBMISSION BIT(2)
#define IVPU_TEST_MODE_D0I3_MSG_DISABLE BIT(4)
#define IVPU_TEST_MODE_D0I3_MSG_ENABLE BIT(5)
extern int ivpu_test_mode;
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
struct ivpu_file_priv *ivpu_file_priv_get(struct ivpu_file_priv *file_priv);
struct ivpu_file_priv *ivpu_file_priv_get_by_ctx_id(struct ivpu_device *vdev, unsigned long id);
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
void ivpu_file_priv_put(struct ivpu_file_priv **link);
int ivpu_boot(struct ivpu_device *vdev);
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
int ivpu_shutdown(struct ivpu_device *vdev);
static inline u8 ivpu_revision(struct ivpu_device *vdev)
{
return to_pci_dev(vdev->drm.dev)->revision;
}
static inline u16 ivpu_device_id(struct ivpu_device *vdev)
{
return to_pci_dev(vdev->drm.dev)->device;
}
static inline int ivpu_hw_gen(struct ivpu_device *vdev)
{
switch (ivpu_device_id(vdev)) {
case PCI_DEVICE_ID_MTL:
return IVPU_HW_37XX;
case PCI_DEVICE_ID_LNL:
return IVPU_HW_40XX;
default:
ivpu_err(vdev, "Unknown VPU device\n");
return 0;
}
}
accel/ivpu: Introduce a new DRM driver for Intel VPU VPU stands for Versatile Processing Unit and it's a CPU-integrated inference accelerator for Computer Vision and Deep Learning applications. The VPU device consist of following components: - Buttress - provides CPU to VPU integration, interrupt, frequency and power management. - Memory Management Unit (based on ARM MMU-600) - translates VPU to host DMA addresses, isolates user workloads. - RISC based microcontroller - executes firmware that provides job execution API for the kernel-mode driver - Neural Compute Subsystem (NCS) - does the actual work, provides Compute and Copy engines. - Network on Chip (NoC) - network fabric connecting all the components This driver supports VPU IP v2.7 integrated into Intel Meteor Lake client CPUs (14th generation). Module sources are at drivers/accel/ivpu and module name is "intel_vpu.ko". This patch includes only very besic functionality: - module, PCI device and IRQ initialization - register definitions and low level register manipulation functions - SET/GET_PARAM ioctls - power up without firmware Co-developed-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Krystian Pradzynski <krystian.pradzynski@linux.intel.com> Signed-off-by: Jacek Lawrynowicz <jacek.lawrynowicz@linux.intel.com> Reviewed-by: Oded Gabbay <ogabbay@kernel.org> Reviewed-by: Jeffrey Hugo <quic_jhugo@quicinc.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20230117092723.60441-2-jacek.lawrynowicz@linux.intel.com
2023-01-17 17:27:17 +08:00
static inline struct ivpu_device *to_ivpu_device(struct drm_device *dev)
{
return container_of(dev, struct ivpu_device, drm);
}
static inline u32 ivpu_get_context_count(struct ivpu_device *vdev)
{
struct xa_limit ctx_limit = vdev->context_xa_limit;
return (ctx_limit.max - ctx_limit.min + 1);
}
static inline u32 ivpu_get_platform(struct ivpu_device *vdev)
{
WARN_ON_ONCE(vdev->platform == IVPU_PLATFORM_INVALID);
return vdev->platform;
}
static inline bool ivpu_is_silicon(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_SILICON;
}
static inline bool ivpu_is_simics(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_SIMICS;
}
static inline bool ivpu_is_fpga(struct ivpu_device *vdev)
{
return ivpu_get_platform(vdev) == IVPU_PLATFORM_FPGA;
}
#endif /* __IVPU_DRV_H__ */