linux/arch/sparc/mm/fault_64.c

545 lines
14 KiB
C
Raw Normal View History

/*
* arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
*
* Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
* Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#include <asm/head.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/signal.h>
#include <linux/mm.h>
#include <linux/extable.h>
#include <linux/init.h>
#include <linux/perf_event.h>
#include <linux/interrupt.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/percpu.h>
#include <linux/context_tracking.h>
mm/fault, arch: Use pagefault_disable() to check for disabled pagefaults in the handler Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-11 23:52:11 +08:00
#include <linux/uaccess.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/asi.h>
#include <asm/lsu.h>
#include <asm/sections.h>
[SPARC64]: Fix and re-enable dynamic TSB sizing. This is good for up to %50 performance improvement of some test cases. The problem has been the race conditions, and hopefully I've plugged them all up here. 1) There was a serious race in switch_mm() wrt. lazy TLB switching to and from kernel threads. We could erroneously skip a tsb_context_switch() and thus use a stale TSB across a TSB grow event. There is a big comment now in that function describing exactly how it can happen. 2) All code paths that do something with the TSB need to be guarded with the mm->context.lock spinlock. This makes page table flushing paths properly synchronize with both TSB growing and TLB context changes. 3) TSB growing events are moved to the end of successful fault processing. Previously it was in update_mmu_cache() but that is deadlock prone. At the end of do_sparc64_fault() we hold no spinlocks that could deadlock the TSB grow sequence. We also have dropped the address space semaphore. While we're here, add prefetching to the copy_tsb() routine and put it in assembler into the tsb.S file. This piece of code is quite time critical. There are some small negative side effects to this code which can be improved upon. In particular we grab the mm->context.lock even for the tsb insert done by update_mmu_cache() now and that's a bit excessive. We can get rid of that locking, and the same lock taking in flush_tsb_user(), by disabling PSTATE_IE around the whole operation including the capturing of the tsb pointer and tsb_nentries value. That would work because anyone growing the TSB won't free up the old TSB until all cpus respond to the TSB change cross call. I'm not quite so confident in that optimization to put it in right now, but eventually we might be able to and the description is here for reference. This code seems very solid now. It passes several parallel GCC bootstrap builds, and our favorite "nut cruncher" stress test which is a full "make -j8192" build of a "make allmodconfig" kernel. That puts about 256 processes on each cpu's run queue, makes lots of process cpu migrations occur, causes lots of page table and TLB flushing activity, incurs many context version number changes, and it swaps the machine real far out to disk even though there is 16GB of ram on this test system. :-) Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-16 18:02:32 +08:00
#include <asm/mmu_context.h>
#include <asm/setup.h>
int show_unhandled_signals = 1;
static inline __kprobes int notify_page_fault(struct pt_regs *regs)
{
int ret = 0;
/* kprobe_running() needs smp_processor_id() */
if (kprobes_built_in() && !user_mode(regs)) {
preempt_disable();
if (kprobe_running() && kprobe_fault_handler(regs, 0))
ret = 1;
preempt_enable();
}
return ret;
}
static void __kprobes unhandled_fault(unsigned long address,
struct task_struct *tsk,
struct pt_regs *regs)
{
if ((unsigned long) address < PAGE_SIZE) {
printk(KERN_ALERT "Unable to handle kernel NULL "
"pointer dereference\n");
} else {
printk(KERN_ALERT "Unable to handle kernel paging request "
"at virtual address %016lx\n", (unsigned long)address);
}
printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
(tsk->mm ?
CTX_HWBITS(tsk->mm->context) :
CTX_HWBITS(tsk->active_mm->context)));
printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
(tsk->mm ? (unsigned long) tsk->mm->pgd :
(unsigned long) tsk->active_mm->pgd));
die_if_kernel("Oops", regs);
}
static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
{
printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
regs->tpc);
printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
dump_stack();
unhandled_fault(regs->tpc, current, regs);
}
/*
* We now make sure that mmap_sem is held in all paths that call
* this. Additionally, to prevent kswapd from ripping ptes from
* under us, raise interrupts around the time that we look at the
* pte, kswapd will have to wait to get his smp ipi response from
* us. vmtruncate likewise. This saves us having to get pte lock.
*/
static unsigned int get_user_insn(unsigned long tpc)
{
pgd_t *pgdp = pgd_offset(current->mm, tpc);
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep, pte;
unsigned long pa;
u32 insn = 0;
if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
goto out;
pudp = pud_offset(pgdp, tpc);
if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
goto out;
/* This disables preemption for us as well. */
local_irq_disable();
pmdp = pmd_offset(pudp, tpc);
if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
goto out_irq_enable;
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (is_hugetlb_pmd(*pmdp)) {
pa = pmd_pfn(*pmdp) << PAGE_SHIFT;
pa += tpc & ~HPAGE_MASK;
/* Use phys bypass so we don't pollute dtlb/dcache. */
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=r" (insn)
: "r" (pa), "i" (ASI_PHYS_USE_EC));
} else
#endif
{
ptep = pte_offset_map(pmdp, tpc);
pte = *ptep;
if (pte_present(pte)) {
pa = (pte_pfn(pte) << PAGE_SHIFT);
pa += (tpc & ~PAGE_MASK);
/* Use phys bypass so we don't pollute dtlb/dcache. */
__asm__ __volatile__("lduwa [%1] %2, %0"
: "=r" (insn)
: "r" (pa), "i" (ASI_PHYS_USE_EC));
}
pte_unmap(ptep);
}
out_irq_enable:
local_irq_enable();
out:
return insn;
}
static inline void
show_signal_msg(struct pt_regs *regs, int sig, int code,
unsigned long address, struct task_struct *tsk)
{
if (!unhandled_signal(tsk, sig))
return;
if (!printk_ratelimit())
return;
printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
tsk->comm, task_pid_nr(tsk), address,
(void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
(void *)regs->u_regs[UREG_FP], code);
print_vma_addr(KERN_CONT " in ", regs->tpc);
printk(KERN_CONT "\n");
}
static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
unsigned long fault_addr, unsigned int insn,
int fault_code)
{
unsigned long addr;
siginfo_t info;
info.si_code = code;
info.si_signo = sig;
info.si_errno = 0;
if (fault_code & FAULT_CODE_ITLB) {
addr = regs->tpc;
} else {
/* If we were able to probe the faulting instruction, use it
* to compute a precise fault address. Otherwise use the fault
* time provided address which may only have page granularity.
*/
if (insn)
addr = compute_effective_address(regs, insn, 0);
else
addr = fault_addr;
}
info.si_addr = (void __user *) addr;
info.si_trapno = 0;
if (unlikely(show_unhandled_signals))
show_signal_msg(regs, sig, code, addr, current);
force_sig_info(sig, &info, current);
}
static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
{
if (!insn) {
if (!regs->tpc || (regs->tpc & 0x3))
return 0;
if (regs->tstate & TSTATE_PRIV) {
insn = *(unsigned int *) regs->tpc;
} else {
insn = get_user_insn(regs->tpc);
}
}
return insn;
}
static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
int fault_code, unsigned int insn,
unsigned long address)
{
unsigned char asi = ASI_P;
if ((!insn) && (regs->tstate & TSTATE_PRIV))
goto cannot_handle;
/* If user insn could be read (thus insn is zero), that
* is fine. We will just gun down the process with a signal
* in that case.
*/
if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
(insn & 0xc0800000) == 0xc0800000) {
if (insn & 0x2000)
asi = (regs->tstate >> 24);
else
asi = (insn >> 5);
if ((asi & 0xf2) == 0x82) {
if (insn & 0x1000000) {
handle_ldf_stq(insn, regs);
} else {
/* This was a non-faulting load. Just clear the
* destination register(s) and continue with the next
* instruction. -jj
*/
handle_ld_nf(insn, regs);
}
return;
}
}
/* Is this in ex_table? */
if (regs->tstate & TSTATE_PRIV) {
const struct exception_table_entry *entry;
entry = search_exception_tables(regs->tpc);
if (entry) {
regs->tpc = entry->fixup;
regs->tnpc = regs->tpc + 4;
return;
}
} else {
/* The si_code was set to make clear whether
* this was a SEGV_MAPERR or SEGV_ACCERR fault.
*/
do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
return;
}
cannot_handle:
unhandled_fault (address, current, regs);
}
static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
{
static int times;
if (times++ < 10)
printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
"64-bit TPC [%lx]\n",
current->comm, current->pid,
regs->tpc);
show_regs(regs);
}
asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
{
enum ctx_state prev_state = exception_enter();
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned int insn = 0;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 16:47:05 +08:00
int si_code, fault_code, fault;
[SPARC64]: Fix and re-enable dynamic TSB sizing. This is good for up to %50 performance improvement of some test cases. The problem has been the race conditions, and hopefully I've plugged them all up here. 1) There was a serious race in switch_mm() wrt. lazy TLB switching to and from kernel threads. We could erroneously skip a tsb_context_switch() and thus use a stale TSB across a TSB grow event. There is a big comment now in that function describing exactly how it can happen. 2) All code paths that do something with the TSB need to be guarded with the mm->context.lock spinlock. This makes page table flushing paths properly synchronize with both TSB growing and TLB context changes. 3) TSB growing events are moved to the end of successful fault processing. Previously it was in update_mmu_cache() but that is deadlock prone. At the end of do_sparc64_fault() we hold no spinlocks that could deadlock the TSB grow sequence. We also have dropped the address space semaphore. While we're here, add prefetching to the copy_tsb() routine and put it in assembler into the tsb.S file. This piece of code is quite time critical. There are some small negative side effects to this code which can be improved upon. In particular we grab the mm->context.lock even for the tsb insert done by update_mmu_cache() now and that's a bit excessive. We can get rid of that locking, and the same lock taking in flush_tsb_user(), by disabling PSTATE_IE around the whole operation including the capturing of the tsb pointer and tsb_nentries value. That would work because anyone growing the TSB won't free up the old TSB until all cpus respond to the TSB change cross call. I'm not quite so confident in that optimization to put it in right now, but eventually we might be able to and the description is here for reference. This code seems very solid now. It passes several parallel GCC bootstrap builds, and our favorite "nut cruncher" stress test which is a full "make -j8192" build of a "make allmodconfig" kernel. That puts about 256 processes on each cpu's run queue, makes lots of process cpu migrations occur, causes lots of page table and TLB flushing activity, incurs many context version number changes, and it swaps the machine real far out to disk even though there is 16GB of ram on this test system. :-) Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-16 18:02:32 +08:00
unsigned long address, mm_rss;
unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
fault_code = get_thread_fault_code();
if (notify_page_fault(regs))
goto exit_exception;
si_code = SEGV_MAPERR;
address = current_thread_info()->fault_address;
if ((fault_code & FAULT_CODE_ITLB) &&
(fault_code & FAULT_CODE_DTLB))
BUG();
if (test_thread_flag(TIF_32BIT)) {
if (!(regs->tstate & TSTATE_PRIV)) {
if (unlikely((regs->tpc >> 32) != 0)) {
bogus_32bit_fault_tpc(regs);
goto intr_or_no_mm;
}
}
if (unlikely((address >> 32) != 0))
goto intr_or_no_mm;
}
if (regs->tstate & TSTATE_PRIV) {
unsigned long tpc = regs->tpc;
/* Sanity check the PC. */
if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
(tpc >= MODULES_VADDR && tpc < MODULES_END)) {
/* Valid, no problems... */
} else {
bad_kernel_pc(regs, address);
goto exit_exception;
}
} else
flags |= FAULT_FLAG_USER;
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
mm/fault, arch: Use pagefault_disable() to check for disabled pagefaults in the handler Introduce faulthandler_disabled() and use it to check for irq context and disabled pagefaults (via pagefault_disable()) in the pagefault handlers. Please note that we keep the in_atomic() checks in place - to detect whether in irq context (in which case preemption is always properly disabled). In contrast, preempt_disable() should never be used to disable pagefaults. With !CONFIG_PREEMPT_COUNT, preempt_disable() doesn't modify the preempt counter, and therefore the result of in_atomic() differs. We validate that condition by using might_fault() checks when calling might_sleep(). Therefore, add a comment to faulthandler_disabled(), describing why this is needed. faulthandler_disabled() and pagefault_disable() are defined in linux/uaccess.h, so let's properly add that include to all relevant files. This patch is based on a patch from Thomas Gleixner. Reviewed-and-tested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: David.Laight@ACULAB.COM Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: airlied@linux.ie Cc: akpm@linux-foundation.org Cc: benh@kernel.crashing.org Cc: bigeasy@linutronix.de Cc: borntraeger@de.ibm.com Cc: daniel.vetter@intel.com Cc: heiko.carstens@de.ibm.com Cc: herbert@gondor.apana.org.au Cc: hocko@suse.cz Cc: hughd@google.com Cc: mst@redhat.com Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: schwidefsky@de.ibm.com Cc: yang.shi@windriver.com Link: http://lkml.kernel.org/r/1431359540-32227-7-git-send-email-dahi@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-11 23:52:11 +08:00
if (faulthandler_disabled() || !mm)
goto intr_or_no_mm;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
if (!down_read_trylock(&mm->mmap_sem)) {
if ((regs->tstate & TSTATE_PRIV) &&
!search_exception_tables(regs->tpc)) {
insn = get_fault_insn(regs, insn);
goto handle_kernel_fault;
}
retry:
down_read(&mm->mmap_sem);
}
sparc64: sun4v TLB error power off events We've witnessed a few TLB events causing the machine to power off because of prom_halt. In one case it was some nfs related area during rmmod. Another was an mmapper of /dev/mem. A more recent one is an ITLB issue with a bad pagesize which could be a hardware bug. Bugs happen but we should attempt to not power off the machine and/or hang it when possible. This is a DTLB error from an mmapper of /dev/mem: [root@sparcie ~]# SUN4V-DTLB: Error at TPC[fffff80100903e6c], tl 1 SUN4V-DTLB: TPC<0xfffff80100903e6c> SUN4V-DTLB: O7[fffff801081979d0] SUN4V-DTLB: O7<0xfffff801081979d0> SUN4V-DTLB: vaddr[fffff80100000000] ctx[1250] pte[98000000000f0610] error[2] . This is recent mainline for ITLB: [ 3708.179864] SUN4V-ITLB: TPC<0xfffffc010071cefc> [ 3708.188866] SUN4V-ITLB: O7[fffffc010071cee8] [ 3708.197377] SUN4V-ITLB: O7<0xfffffc010071cee8> [ 3708.206539] SUN4V-ITLB: vaddr[e0003] ctx[1a3c] pte[2900000dcc800eeb] error[4] . Normally sun4v_itlb_error_report() and sun4v_dtlb_error_report() would call prom_halt() and drop us to OF command prompt "ok". This isn't the case for LDOMs and the machine powers off. For the HV reported error of HV_ENORADDR for HV HV_MMU_MAP_ADDR_TRAP we cause a SIGBUS error by qualifying it within do_sparc64_fault() for fault code mask of FAULT_CODE_BAD_RA. This is done when trap level (%tl) is less or equal one("1"). Otherwise, for %tl > 1, we proceed eventually to die_if_kernel(). The logic of this patch was partially inspired by David Miller's feedback. Power off of large sparc64 machines is painful. Plus die_if_kernel provides more context. A reset sequence isn't a brief period on large sparc64 but better than power-off/power-on sequence. Cc: sparclinux@vger.kernel.org Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-16 21:26:47 +08:00
if (fault_code & FAULT_CODE_BAD_RA)
goto do_sigbus;
vma = find_vma(mm, address);
if (!vma)
goto bad_area;
/* Pure DTLB misses do not tell us whether the fault causing
* load/store/atomic was a write or not, it only says that there
* was no match. So in such a case we (carefully) read the
* instruction to try and figure this out. It's an optimization
* so it's ok if we can't do this.
*
* Special hack, window spill/fill knows the exact fault type.
*/
if (((fault_code &
(FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
(vma->vm_flags & VM_WRITE) != 0) {
insn = get_fault_insn(regs, 0);
if (!insn)
goto continue_fault;
/* All loads, stores and atomics have bits 30 and 31 both set
* in the instruction. Bit 21 is set in all stores, but we
* have to avoid prefetches which also have bit 21 set.
*/
if ((insn & 0xc0200000) == 0xc0200000 &&
(insn & 0x01780000) != 0x01680000) {
/* Don't bother updating thread struct value,
* because update_mmu_cache only cares which tlb
* the access came from.
*/
fault_code |= FAULT_CODE_WRITE;
}
}
continue_fault:
if (vma->vm_start <= address)
goto good_area;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if (!(fault_code & FAULT_CODE_WRITE)) {
/* Non-faulting loads shouldn't expand stack. */
insn = get_fault_insn(regs, insn);
if ((insn & 0xc0800000) == 0xc0800000) {
unsigned char asi;
if (insn & 0x2000)
asi = (regs->tstate >> 24);
else
asi = (insn >> 5);
if ((asi & 0xf2) == 0x82)
goto bad_area;
}
}
if (expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
si_code = SEGV_ACCERR;
/* If we took a ITLB miss on a non-executable page, catch
* that here.
*/
if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
sparc64: Convert BUG_ON to warning Pagefault handling has a BUG_ON path that panics the system. Convert it to a warning instead. There is no need to bring down the system for this kind of failure. The following was hit while running: perf sched record -g -- make -j 16 [3609412.782801] kernel BUG at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:416! [3609412.782833] \|/ ____ \|/ [3609412.782833] "@'/ .. \`@" [3609412.782833] /_| \__/ |_\ [3609412.782833] \__U_/ [3609412.782870] cat(4516): Kernel bad sw trap 5 [#1] [3609412.782889] CPU: 0 PID: 4516 Comm: cat Tainted: G E 4.1.0-rc8+ #6 [3609412.782909] task: fff8000126e31f80 ti: fff8000110d90000 task.ti: fff8000110d90000 [3609412.782931] TSTATE: 0000004411001603 TPC: 000000000096b164 TNPC: 000000000096b168 Y: 0000004e Tainted: G E [3609412.782964] TPC: <do_sparc64_fault+0x5e4/0x6a0> [3609412.782979] g0: 000000000096abe0 g1: 0000000000d314c4 g2: 0000000000000000 g3: 0000000000000001 [3609412.783009] g4: fff8000126e31f80 g5: fff80001302d2000 g6: fff8000110d90000 g7: 00000000000000ff [3609412.783045] o0: 0000000000aff6a8 o1: 00000000000001a0 o2: 0000000000000001 o3: 0000000000000054 [3609412.783080] o4: fff8000100026820 o5: 0000000000000001 sp: fff8000110d935f1 ret_pc: 000000000096b15c [3609412.783117] RPC: <do_sparc64_fault+0x5dc/0x6a0> [3609412.783137] l0: 000007feff996000 l1: 0000000000030001 l2: 0000000000000004 l3: fff8000127bd0120 [3609412.783174] l4: 0000000000000054 l5: fff8000127bd0188 l6: 0000000000000000 l7: fff8000110d9dba8 [3609412.783210] i0: fff8000110d93f60 i1: fff8000110ca5530 i2: 000000000000003f i3: 0000000000000054 [3609412.783244] i4: fff800010000081a i5: fff8000100000398 i6: fff8000110d936a1 i7: 0000000000407c6c [3609412.783286] I7: <sparc64_realfault_common+0x10/0x20> [3609412.783308] Call Trace: [3609412.783329] [0000000000407c6c] sparc64_realfault_common+0x10/0x20 [3609412.783353] Disabling lock debugging due to kernel taint [3609412.783379] Caller[0000000000407c6c]: sparc64_realfault_common+0x10/0x20 [3609412.783449] Caller[fff80001002283e4]: 0xfff80001002283e4 [3609412.783471] Instruction DUMP: 921021a0 7feaff91 901222a8 <91d02005> 82086100 02f87f7b 808a2873 81cfe008 01000000 [3609412.783542] Kernel panic - not syncing: Fatal exception [3609412.784605] Press Stop-A (L1-A) to return to the boot prom [3609412.784615] ---[ end Kernel panic - not syncing: Fatal exception With this patch rather than a panic I occasionally get something like this: perf sched record -g -m 1024 -- make -j N where N is based on number of cpus (128 to 1024 for a T7-4 and 8 for an 8 cpu VM on a T5-2). WARNING: CPU: 211 PID: 52565 at /opt/dahern/linux.git/arch/sparc/mm/fault_64.c:417 do_sparc64_fault+0x340/0x70c() address (7feffcd6000) != regs->tpc (fff80001004873c0) Modules linked in: ipt_REJECT nf_reject_ipv4 nf_conntrack_ipv4 nf_defrag_ipv4 iptable_filter ip_tables ip6t_REJECT nf_reject_ipv6 xt_tcpudp nf_conntrack_ipv6 nf_defrag_ipv6 xt_state nf_conntrack ip6table_filter ip6_tables x_tables ipv6 cdc_ether usbnet mii ixgbe mdio igb i2c_algo_bit i2c_core ptp crc32c_sparc64 camellia_sparc64 des_sparc64 des_generic md5_sparc64 sha512_sparc64 sha1_sparc64 uio_pdrv_genirq uio usb_storage mpt3sas scsi_transport_sas raid_class aes_sparc64 sunvnet sunvdc sha256_sparc64(E) sha256_generic(E) CPU: 211 PID: 52565 Comm: ld Tainted: G W E 4.1.0-rc8+ #19 Call Trace: [000000000045ce30] warn_slowpath_common+0x7c/0xa0 [000000000045ceec] warn_slowpath_fmt+0x30/0x40 [000000000098ad64] do_sparc64_fault+0x340/0x70c [0000000000407c2c] sparc64_realfault_common+0x10/0x20 ---[ end trace 62ee02065a01a049 ]--- ld[52565]: segfault at fff80001004873c0 ip fff80001004873c0 (rpc fff8000100158868) sp 000007feffcd70e1 error 30002 in libc-2.12.so[fff8000100410000+184000] The segfault is horrible, but better than a system panic. An 8-cpu VM on a T5-2 also showed the above traces from time to time, so it is a general problem and not specific to the T7 or baremetal. Signed-off-by: David Ahern <david.ahern@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-16 04:15:44 +08:00
WARN(address != regs->tpc,
"address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
WARN_ON(regs->tstate & TSTATE_PRIV);
goto bad_area;
}
if (fault_code & FAULT_CODE_WRITE) {
if (!(vma->vm_flags & VM_WRITE))
goto bad_area;
/* Spitfire has an icache which does not snoop
* processor stores. Later processors do...
*/
if (tlb_type == spitfire &&
(vma->vm_flags & VM_EXEC) != 0 &&
vma->vm_file != NULL)
set_thread_fault_code(fault_code |
FAULT_CODE_BLKCOMMIT);
flags |= FAULT_FLAG_WRITE;
} else {
/* Allow reads even for write-only mappings */
if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
fault = handle_mm_fault(vma, address, flags);
if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
goto exit_exception;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 16:47:05 +08:00
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
vm: add VM_FAULT_SIGSEGV handling support The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-01-30 02:51:32 +08:00
else if (fault & VM_FAULT_SIGSEGV)
goto bad_area;
mm: fault feedback #2 This patch completes Linus's wish that the fault return codes be made into bit flags, which I agree makes everything nicer. This requires requires all handle_mm_fault callers to be modified (possibly the modifications should go further and do things like fault accounting in handle_mm_fault -- however that would be for another patch). [akpm@linux-foundation.org: fix alpha build] [akpm@linux-foundation.org: fix s390 build] [akpm@linux-foundation.org: fix sparc build] [akpm@linux-foundation.org: fix sparc64 build] [akpm@linux-foundation.org: fix ia64 build] Signed-off-by: Nick Piggin <npiggin@suse.de> Cc: Richard Henderson <rth@twiddle.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ian Molton <spyro@f2s.com> Cc: Bryan Wu <bryan.wu@analog.com> Cc: Mikael Starvik <starvik@axis.com> Cc: David Howells <dhowells@redhat.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Hirokazu Takata <takata@linux-m32r.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Greg Ungerer <gerg@uclinux.org> Cc: Matthew Wilcox <willy@debian.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp> Cc: Richard Curnow <rc@rc0.org.uk> Cc: William Lee Irwin III <wli@holomorphy.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp> Cc: Chris Zankel <chris@zankel.net> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com> Acked-by: Ralf Baechle <ralf@linux-mips.org> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> [ Still apparently needs some ARM and PPC loving - Linus ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 16:47:05 +08:00
else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;
BUG();
}
if (flags & FAULT_FLAG_ALLOW_RETRY) {
if (fault & VM_FAULT_MAJOR) {
current->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
1, regs, address);
} else {
current->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
1, regs, address);
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry
* in mm/filemap.c.
*/
goto retry;
}
}
up_read(&mm->mmap_sem);
[SPARC64]: Fix and re-enable dynamic TSB sizing. This is good for up to %50 performance improvement of some test cases. The problem has been the race conditions, and hopefully I've plugged them all up here. 1) There was a serious race in switch_mm() wrt. lazy TLB switching to and from kernel threads. We could erroneously skip a tsb_context_switch() and thus use a stale TSB across a TSB grow event. There is a big comment now in that function describing exactly how it can happen. 2) All code paths that do something with the TSB need to be guarded with the mm->context.lock spinlock. This makes page table flushing paths properly synchronize with both TSB growing and TLB context changes. 3) TSB growing events are moved to the end of successful fault processing. Previously it was in update_mmu_cache() but that is deadlock prone. At the end of do_sparc64_fault() we hold no spinlocks that could deadlock the TSB grow sequence. We also have dropped the address space semaphore. While we're here, add prefetching to the copy_tsb() routine and put it in assembler into the tsb.S file. This piece of code is quite time critical. There are some small negative side effects to this code which can be improved upon. In particular we grab the mm->context.lock even for the tsb insert done by update_mmu_cache() now and that's a bit excessive. We can get rid of that locking, and the same lock taking in flush_tsb_user(), by disabling PSTATE_IE around the whole operation including the capturing of the tsb pointer and tsb_nentries value. That would work because anyone growing the TSB won't free up the old TSB until all cpus respond to the TSB change cross call. I'm not quite so confident in that optimization to put it in right now, but eventually we might be able to and the description is here for reference. This code seems very solid now. It passes several parallel GCC bootstrap builds, and our favorite "nut cruncher" stress test which is a full "make -j8192" build of a "make allmodconfig" kernel. That puts about 256 processes on each cpu's run queue, makes lots of process cpu migrations occur, causes lots of page table and TLB flushing activity, incurs many context version number changes, and it swaps the machine real far out to disk even though there is 16GB of ram on this test system. :-) Signed-off-by: David S. Miller <davem@davemloft.net>
2006-03-16 18:02:32 +08:00
mm_rss = get_mm_rss(mm);
#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
#endif
if (unlikely(mm_rss >
mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
tsb_grow(mm, MM_TSB_BASE, mm_rss);
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
sparc64 mm: Fix more TSB sizing issues Commit af1b1a9b36b8 ("sparc64 mm: Fix base TSB sizing when hugetlb pages are used") addressed the difference between hugetlb and THP pages when computing TSB sizes. The following additional issues were also discovered while working with the code. In order to save memory, THP makes use of a huge zero page. This huge zero page does not count against a task's RSS, but it does consume TSB entries. This is similar to hugetlb pages. Therefore, count huge zero page entries in hugetlb_pte_count. Accounting of THP pages is done in the routine set_pmd_at(). Unfortunately, this does not catch the case where a THP page is split. To handle this case, decrement the count in pmdp_invalidate(). pmdp_invalidate is only called when splitting a THP. However, 'sanity checks' are added in case it is ever called for other purposes. A more general issue exists with HPAGE_SIZE accounting. hugetlb_pte_count tracks the number of HPAGE_SIZE (8M) pages. This value is used to size the TSB for HPAGE_SIZE pages. However, each HPAGE_SIZE page consists of two REAL_HPAGE_SIZE (4M) pages. The TSB contains an entry for each REAL_HPAGE_SIZE page. Therefore, the number of REAL_HPAGE_SIZE pages should be used to size the huge page TSB. A new compile time constant REAL_HPAGE_PER_HPAGE is used to multiply hugetlb_pte_count before sizing the TSB. Changes from V1 - Fixed build issue if hugetlb or THP not configured Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-01 04:48:19 +08:00
mm_rss *= REAL_HPAGE_PER_HPAGE;
if (unlikely(mm_rss >
mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
tsb_grow(mm, MM_TSB_HUGE, mm_rss);
else
hugetlb_setup(regs);
}
#endif
exit_exception:
exception_exit(prev_state);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
insn = get_fault_insn(regs, insn);
up_read(&mm->mmap_sem);
handle_kernel_fault:
do_kernel_fault(regs, si_code, fault_code, insn, address);
goto exit_exception;
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
insn = get_fault_insn(regs, insn);
up_read(&mm->mmap_sem);
if (!(regs->tstate & TSTATE_PRIV)) {
pagefault_out_of_memory();
goto exit_exception;
}
goto handle_kernel_fault;
intr_or_no_mm:
insn = get_fault_insn(regs, 0);
goto handle_kernel_fault;
do_sigbus:
insn = get_fault_insn(regs, insn);
up_read(&mm->mmap_sem);
/*
* Send a sigbus, regardless of whether we were in kernel
* or user mode.
*/
do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
/* Kernel mode? Handle exceptions or die */
if (regs->tstate & TSTATE_PRIV)
goto handle_kernel_fault;
}